BD = Field Engineering

Theory of Operation

2 @ g @ Processing Unit

System/360 Model 30

PREFACE

This manual contains information about the IBM 2030 Processing
Unit. A companion manual, IBM 2030 I/0O Control, Theory of
Operation Manual, Form Y24-3362, should be obtained for
information pertaining to the attachment of I/O devices to the
IBM System/360 Model 30. For maintenance information on the
IBM 2030, refer to the IBM 2030 Maintenance Manual, Form
Y24-3390. The IBM 2030 Maintenance Diagram Manual, Form
Y24-3466, contains flowcharts of specific op-code microprograms
for the basic machine and the IBM 1400 Compatibility Feature.
The IBM 1620 Compatibility Feature Diagram Manual, Form
Y25-3478, contains flowcharts of 1620 emulation.

The following SRL publications contain much useful information
about operation and application of the IBM System/360 Model 30:

Title Form

IBM System/360 Model 30 Functional Characteristics A24-3231

IBM System/360 Model 30 Configurator A24-3232

IBM System/360 Model 30 1401 Compatibility Feature A24~3255

IBM System/360 Model 30 1620 Compatibility Feature A24-3365

IBM System/360 Model 30 Operators Guide A24-3373
IBM System/360 Model 30 Channel Characteristics A24-3411
IBM System/360 Principles of Operation A22-6821

Fifth Edition, June 1967

This edition, Y24-3360-1, is a minor revision of
the previous edition, Y24-3360-0, but does not
obsolete it. Minor changes, which are primarily
in the IBM 1620 Compatibility Feature section,
are marked by a vertical line to the left of the
affected text, or by a dot (e) next to the title
of an affected figure. In addition, other non-
technical, typographical corrections have been
made throughout the manual.

Significant changes or additions to the
specifications contained in this publication
will be reported in subsequent revisions or
in FE Supplements.

This manual has been prepared by the IBM Systems Development
pivision, Product Publications, Dept. 171, PO 6, Endicott, New
York. Address comments concerning the manual to this address.

(© International Business Machines Corporation 1965

CONTENTS

CHAPTER 1. INTRODUCTION. 1-1 Machine Check Microprogram. 3-39
Forced Microprogram Entries 3-41
Overall Data Flow « . .+ . . 1-1 Parity Check Timings. 3-43
CPU Data Flow . . +« +« « « & « & & « o« 1-9
Arithmetic Operations 1-13 CHAPTER 4. FEATURES. . . « « « . . . 4-1
Fixed Point Arithmetic. 1-13
Packed Decimal Arithmetic . e« o o 1-16 Storage Protection. . « + « + .« . . . 4-1
IBM System/360 General Informatlon. . 1-25 Interval Timer. e o o o o 4-25
Numbering Systems 1-25 1401/1440/1460 Compatlblllty. .« . . 4-28
Information Formats « « . . . 1-35 1620 Compatibility. « 4-75
Basic Programming 1-41
Storage Protection. 1-70 CHAPTER 5. POWER SUPPLIES. 5-1
Programming Systems 1-74
Power-On Sequence (Stepper Switch). . 5-1
CHAPTER 2. FUNCTIONAL UNITS. 2~1 Power-Off Sequence. . . . « . « « .« . 5-5
Power-On Sequence (Mid-Pac) 5-7
System Clock. « « ¢ & ¢ ¢ ¢ ¢ o o « o« 2=1 Power-Off Sequence (Mid-Pac 5-7
Registers « . « . ¢« « « . . 2-3
Read Only Storage and Microprogram. . 2-4 CHAPTER 6. CONSOLE AND MAINTENANCE
Arithmetical Logical Unit (ALU) . . . 2-52 FEATURES. « « « « ¢« o o o « o« « &« « 6-1
M2 Core Storage Unit. 2-57
M2-I Core Storage Unit. 2-91 2030 Console. . .+ + ¢ ¢ e e 4o e o . . 6-1
Upper Indicator Panel 6-4
CHAPTER 3. PRINCIPLES OF OPERATION . 3-1 Lower Indicator Panel« 6-9
Indicators on OCP « « « . . . 6-13
Instruction Read-In . . . + « « « « .« 3-1 Pushbutton Controls on OCP. 6-14
ROS Timing to Core Storage Timing . . 3-1 Data and Address Entry Switches . . . 6-15
Break-In-Timings. « « « « + . 3=3 Display Storage Selection Switch. . . 6-16
Binary B2dd. . « ¢« ¢« ¢ ¢ + s s « o o o 3-4 Pushbutton Key Controls 6-17
Branch on Condition (RR Format) . . . 3-17 Rotary Control Test Switches. 6-23
Pack With Indexing. . . « « 3-20 Meter Panel . . ¢« « « o« o « o « « « . 6=25
Shifts. . . . « + ¢« ¢« ¢« & « + « « « » 3-32
Floating Point. . . . e e +« « o« « . 3-35 APPENDIX A. . +« + o o o o o o o o « o A-1
Machine Check Handllng. e e+ « « o o 3=37
CPU EXXOrS. « « « + s o o o o o o o o 3=-37 APPENDIX B. . . +« + « o « o« « « « « o A-3
Machine Check Register. 3-37
INDEX &« « & « o o ¢ o o o o o« o« o X=1
List of Abbreviations
ALU Arithmetic Logic Unit L length code
ASCII American Standards Code for LS Local Storage
Information Interchange
Aux Stor Auxiliary Storage MPX Multiplexor
MS main storage
BCD Binary Coded Decimal
bin binary PSW Program Status Word
CAW Channel Address Word RBC Read Back Check
CID Compatibility Initialization ROAR Read Only Address Register
Deck ROS Read Only Storage
CLD CAS Logic Diagram RPG Report Program Generator
CPU Central Processing Unit RR Register-to~register
CROS Capacitor Read Only Storage RS Storage-to-register
cu Control Unit RX Storage-to-register
dec decimal SA Stack Address
. SAL Sense Amplifier Latch
EBCDI Extended Binary Coded Decimal SI Storage-immediate
Interchange SLD Simplified Logic Diagram
EOF End of File SRL System Reference Library
Sss Storage-to-storage
GM Group Mark
GMWM Group Mark Word Mark UCW Unit Control Word
IC Instruction Counter WLR Wrong Length Record
1/0 Input-Output WM Word Mark

IPL Initial Program Loader

Figure 1-1. IBM System/360 Model 30 with IBM 1052 Documentary Console

Introduction

The first part of this chapter is an intro-
duction to IBM System/ 360 Model 30 charac-
teristics. Basic Systemv/360 information
(such as data formats and basic programming
concepts) is subsequently described in the
IBM System/360 General Information section
of this chapter. The material in this
general information section covers many of
the topics included in the Field Engineer-
ing System/360 Introductory Programming

OVERALL DATA FLOW

CHAPTER 1. INTRODUCTION

Student Self-Study Course. (The self-study
course is a prerequisite to this publica-
tion.) The general information section is
primarily for reference and review purpos-
es.

The last part of Chapter 1 is an intro-
duction to certain programming systems
concepts with which you should be familiar.

s Overall control of system operations is provided by control
circuitry that interprets instructions and requlates the

actions called for by instructions.

* Three basic areas controlled are:
1. The arithmetic logic unit (ALU)
2. Core storage

3. Channels

¢ A channel is a control and data link between 1/0 control

units and the processing unit.

s An I/0 control unit responds to the channel in a standard

way over the standard I/O interface cable.

Any data processing system performs three
basic operations:

1. Information is entered into the system
by use of an input device, such as a
card reader.

2. The input information is processed.
(Processing includes arithmetical and
logical manipulations of source infor-
mation. The processed information is
then usually put into some predeter-
mined format.)

3. The formatted information is sent to an
output device, such as a printer or
card punch, which then produces a mean-
ingful record of the processed informa-
tion.

Control of these input, arithmetic,
logic, and output functions must be provid-
ed. This control is achieved by interac-
tion of two factors:

1. A series of instructions (program) that
indicates the operations to be per-
formed.

2. Machine control circuitry that is capa-
ble of interpreting and then directing
performance of the operations called
for by the program.

Because speed is an important factor,
each instruction must be obtained quickly
by the machine. In System/360 Model 30,
the program controlling the system is
located in high-speed main storage. (How a
program is initially put into main storage
is not pertinent to this discussion.)

The control circuitry of the system
interprets an instruction fetched from main
storage and directs performance of the
indicated operation. The next instruction
is then obtained from storage and its oper-
ation is performed. This sequence is
repeated until the job is completed or
terminated at an intermediate step.

In the System/360 Model 30, during the
processing of any instruction, one (or two,
or all three) of three basic areas must be
controlled. (Figure 1-2):

1. The ALU (Arithmetic Logic Unit) in

2030 FETOM

(9/1/66) 1-1

Introduction

which arithmetical and logical manip-
ulations of information are performed.

2. Core storage, either (or both) main
storage or an auxiliary storage (that
contains, among other things, areas
devoted to general registers, floating
point registers, and certain controll-
ing information for I/0 operations).

3. Channels, which are the main controll-
ing elements in 1/0 operations (which,
in general, take precedence over non-
1/0 operations).

Notice in Fiqure 1-2 that any
input/output channel is a link between I/0
control units and the control circuitry in
the IBM 2030 {the processing unit for
System/360 Model 30).

A CU (Control Unit) is necessary for the
operation of any I/0 device attached to the
System/360 Model 30. The CU may be an
integral part of an I/0 unit or it may be a
separate unit to which the I/0 device is
attached. 1In either case, the CU has cir-
cuitry that allows it to communicate with a
channel. The data and control information
exchanged between a channel and any CU is
in a standard form; therefore, a channel
can communicate with any CU as long as the
circuitry in the CU is able to operate
through the use of the standard signals
recognized by the channel. A cable that
connects CU's with a channel is called a
standard I/0 interface cable.

Note, however, one exeption: The 1050
Documentary Console is not attached, on the
Model 30, to a standard 1I/0 interface
cable.

Standard 1/O Interface

R To I/O Control Units

1/0 /0
Control Control
Unit Unit
1/0 1/0
Unit Unit

Figure 1-2.

1-2 (9/1/66)

IBM 2030 Processing Unit
Control
ALU
Control Data
' Addresses mmmmm——
Instructions and Data —— Core
Storage
Control 1 '
Control Data Data
Control and Data —s| MPX Selector Selector
Ch | Channel Channel
anne y 2
1
1 |
Standard /O Control and Data
Interface
To /O Control Units
Le— Control and Data

1/0

Control

Unit
1/0 1/0 1/0
Unit Unit Unit

Systemv 360 Model 30 Overall Data Flow

Introduction

ROS (READ-ONLY-STORAGE) CONTROL

*» Read-only-storage (ROS) is the basic control circuitry for
System/360 Model 30.

Control circuitry is the guiding or regu- In a sense, the outputs of the storage
lating medium of the system. There are, address registers control addressing of
however, various levels of control. For storage. However, the storage address
example, suppose that a specific byte is to registers themselves are controlled by ROS,
be read out of main storage. To read out both when the address is initially set into
the specified byte, the following actions them, and when it is read out.
occur:
In System/360 Model 30, basic controll-
1. The address of the byte is set into ing circuitry is called ROS
storage address registers. (Read-Only-Storage). Outputs of ROS cir-
cuitry determine which circuit elements
2. The output of these registers is used (such as registers) are used and how they
to specify the storage location. are used for each operation. For informa-
tion about the functions and physical make-
3. The byte is read out of storage and up of ROS, refer to Chapter 2 of this
placed into a machine register. publication.

ALU (ARITHMETIC LOGIC UNIT)

e Arithmetic and logical operations are performed on binary
and packed decimal data (if decimal feature is used) by the
ALU.

» Two registers (B and A) provide input to the ALU.

e Ccontrol circuitry (ROS) directs, as indicated by an instruc-
tion, both the operation to be performed by ALU and how the
data in the B~ and A-registers is to be used by ALU.

e Parity is not carried through the ALU circuits. Correct
parity is generated for the resulting byte after the infor-
mation has passed through the ALU.

s Data is sent through the ALU in both true and complemented
form, thereby providing a check of ALU operations.

The ALU performs: performed on packed decimal operands.
Here, each byte contains two packed decimal
1. Arithmetic operations of: digits; one digit is in the four high-order
bits, and the other in the four low-order
a. Adding and bits. (The sign is carried in the four
low-order bits of the low-order byte.) A
b. Subtracting. packed decimal digit is valid only if the
four bits that represent it are in the
2. Logical operations of: range 0000 to 1001 (binary).
a. ANDing, Two registers (the B- and A-registers)
provide the basic information-inputs to
b. ORing, and ALU. The original information set into
these two registers can come from a variety
c. Exclusive ORing. of sources. The sources used depend upon

the operation performed.
The ALU performs binary addition and
subtraction (i.e., complement addition) on ROS output:
fixed-point data, two bytes (one from each
operand) at a time. If the decimal feature 1. controls the manner in which the con-
is used, additions and subtractions are tents of the B- and A-registers are

2030 FETOM (9/1/66) 1-3

Introduction

sent to ALU. (Some ALU operations do
not require use of two full bytes of
data. For example, comparison against
four bits of a mask field requires only
two separate four bit entries into
ALU.)

2. Specifies the type of operation to be
performed {(true or complement, binary
or decimal, add, AND, OR, exclusive OR)
as indicated by the instruction being
processed.

STORAGE SIZES AND CYCLE TIMES

Parity is not carried through ALU cir-
cuitry. Input line levels are complemented
so that input to AIU is in both true and
complemented form. Exclusive OR circuitry
is used to check that each output line at
an up level has a corresponding complement-
ed line at a down level. Correct parity
for the result byte is generated after the
data has passed through ALU.

s Model 30 uses either a 1.5 or a 2.0 microsecond storage

cycle (i.e., read/write cycle).

s Information is handled one byte at a time in System/360

Model 30 core storage.

* Auxiliary storage is made up of local storage and MPX

(multiplexor) storage.

e The sixteen general registers and the four floating point

registers are in local storage.

¢ MPX storage contains the multiplexor channel‘'s Unit Control

words.

The 1IBM 2030 Processing Unit contains core
storage and logic, arithmetic, and control
circuits for IBM System/360 Model 30. Four
models are available; the primary charac-
teristic of each model is its amount of
main storage. The letter prefix in the
model designation indicates the amount of
main storage:

System/360 Model Main Storage (in bytes)

Cc30 8192
D30 16384
E30 32768
F30 65536

Each one of the four models has either (but
not both) a 1.5- or a 2.0-microsecond stor-
age cycle (such as read from and then
immediately write into storage).

"Refer to the Data Width column in Figure
1-3 or Figure 1-4. Notice that one byte
(eight bits plus parity) at a time is han-
dled in Model 30. This is true for the
general and floating point registers as
well as for main storage. Handling a word
(four bytes) in a general register requires
at least 6 microseconds in the
1.5-microsecond storage cycle system
(Figure 1-3). What is meant here is that
one byte at a time is read from a general
register and then written, for example,
into a main storage location. Other
operations, such as computations, may

1-4 (9/1/766)

extend the time, but to read and write in
succession requires at least 1.5 microse-
conds per byte. (Other models of

System/ 360 [Model 40, Model 50, etc.] han-
dle more than one byte per storage access
cycle.)

An additional core storage area, called
auxiliary storage, is contained in the 2030
(Figure 1-5). Auxiliary storage is a part
of the main storage array. However, auxil-
iary storage is addressed differently and
does not use any of the main storage loca-
tions. The amount of available auxiliary
storage is, in general, dependent upon the
size of the main storage array. Standard
auxiliary storage capacity for each model
is:

Model Auxiliary Storage (bytes)
Cc30 512
D30 1024
E30 1024
F30 1024

Auxiliary storage is made up of two
areas:

Local storage, and

MPX (Multiplexor) storage.

Local storage contains the sixteen general
registers, the four floating point reg-
isters, and other miscellaneous areas.
Every Model 30 has 256 bytes of local stor-
age.

Introduction

Speed Data Width
Characteristics (in microseconds) Bits (Bytes)
Basic Machine Cycle .75 —
Main Storage: 1.5 8 (1)
Model C30 -- 8192 Bytes
Model D30 -~ 16384 Bytes
Model E30 -- 32768 Bytes
Modei F30 -- 65536 Bytes
Registers Accessible to
Programmer:
Sixteen General Registers * 6 32 (4)
Four Floating-Point Registers * 12 64 (8) Double
Precision
6 32 (4) Single
Precision
System Control:
Read Only Storage (ROS) .75 _—

* These registers are in local storage (a storage area that is in addition
to the main storage capacity).

Figure 1-3. CPU Characteristics

The remainder of auxiliary storage is
used to contain multiplexor channel UCW's
(Unit control Words). Each one of these
UCW's contains the information necessary to
control the I/0 unit, on the multiplexor
channel, to which the UCW pertains. There
are 32 UCW's, each eight bytes long, in the
MPX storage of Model C30. Hence, a maximum
of 32 subchannels can be controlled from
information in MPX storage in Model C30.
Models D30, E30, and F30 can use up to 96
UCW's in MPX storage as a standard feature.
Models E30 and F30, however, can have the
Additional Multiplexor Subchannels optional
feature that allows use of up to 224 sub-
channels. (If this feature is installed,
2048 bytes are used for auxiliary storage.)
If the 1400 or 1620 compatibility feature
is installed, certain parts of MPX storage
are used for purposes other than storing
UCW's.

Data Width
Bits (Bytes)

Speed

Characteristics (in microseconds)

Basic Machine Cycle 1

Main Storage: 2 8 (1)
Model C30 -- 8192 Bytes
Model D30 -- 16384 Bytes
Model E30 -- 32768 Bytes

Model F30 -- 65536 Bytes

Registers Accessible to

Programmer
Sixteen General Registers * 8 32 (4)
Four Floating-Point Registers * 16 64 (8) Double
Precision
8 32 (4) Single
Precision

System Control:
Read Only Storage (ROS) 1

* These registers are in local storage (a storage area that is in addition
to the main storage capacity).

CPU Characteristics (2.0

Figure 1-4.
Microsecond Read/wWwrite Cycle)

Core Storage Array

Main Storage
Model Capacity (in Bytes)
C30 8,192
D30 16,384
E30 32,768
F30 65,536

Auxiliary. Storage

Local Storage MPX Storage

256 Bytes in Every System/360 Model Number of UCWs
Model 30 C30 32

D30 96
(Contains 16 general purpose E30 96*
registers, 4 floating point F30 96*

registers, and other miscellan-
eous areas.)

* Model E30 or F30 can have
224 UCWs if the Additional
Multiplexor Subchannels
Optional feature is installed

Pigure 1-5. Core Storage Allocations

2030 FETOM (9/1/66)

Introduction

CHANNELS

* Up to three channels can be installed in System/360 Model

30:
1. One Multiplexor Channel
2. Selector Channel 1

3. Selector Channel 2

* The multiplexor channel can operate in either multiplex or
burst mode; a selector channel operates only in burst mode.

|2 (3 l4

Time —-IL

I E

Data transfers over }

[a A] B 8B B|[C] (A Al

888 8l{c]

multiplexor channel

Key:

A Data byte from device A to main storage .
B Data bytes to device B from main storage .
C Data byte from device C to main storage

Figure 1-6. Multiplex Mode Operation

The 2030 can have up to three channels:

1. A multiplexor channel (standard
feature)

2. Selector Channel 1 (special feature)
3. Selector Channel 2 (special feature)

The main purpose of the multiplexor
channel is to provide for operation of
lower speed 1/0 devices in multiplex (data
interleaved) mode (Figure 1-6). 1In the
multiplex mode, information is transferred
in groups of bytes between the processing
unit and several 1/0 devices concurrently.
For example, multiplexing service for two
serial unbuffered card readers could pro-
ceed as follows:

1. One byte of data is sent from the con-
trol unit of the first card reader to
the processing unit.

2. Next, one byte of data is sent from the
control unit of the second card reader
to the processing unit.

Steps 1 and 2 are repeated until a complete
record is transferred for one of the units.

1-6 (9/1766)

Servicing for the other unit is then com-
pleted alone.

While some I/0 units always operate in
burst mode regardless of the channel, buf-
fered units (except the 2520) attached to
the multiplexor channel can operate in
burst mode as well as in multiplex mode.
This capability is provided by a switch
associated with the buffered unit. 1In
burst mode (Figure 1-7), the data transfer
is completed on a record basis.

Multiplexing operations are not allowed
on the multiplexor channel during the time
that a unit attached to the multiplexor
channel is operating in burst mode. There-
fore, a burst mode unit should not be
started (on the multiplexor channel) while
units that are multiplexed are operating.

Selector channels operate only in burst
mode. An 1I/0 control unit obtains control
of the channel and transfers an entire
record (i.e., multiplexing does not occur)
for the associated I/0 unit. After the
record is transferred (and if no chaining
for the same unit occurs), another 1I/0
control unit can obtain control of the
selector channel for record transfer.

Introduction

Thw——»Uﬁ | 2

| 3 4

~

Complete Record
Transferred for

Unit B

Complete Record
Transferred for

Unit A

Data Transfer
on Channel

From Time 1 to Time 2,
Unit A is the Only 1/O
Device Transferring

Data on the Channel

From Time 3 to Time 4,
Unit B is the Only 1/0
Device Transterring
Data on the Channel

Figure 1-7. Burst Mode Operation

Multiplexor Channel

» Some of the CPU circuits are used by the multiplexor channel

for its operations.

* Certain information used in CPU instruction processing is
stored in local storage during multiplexor channel opera-

tions.

e UCW information is used to indicate how an I/O unit's opera-
tion is controlled on the multiplexor channel.

e The maximum number of I/0 units that can be addressed on the

multiplexor channel is dependent upon:

1. The amount of MPX storage available.

2. The number of shared subchannels used.

3. The fact that a maximum of eight CU's can be attached to

the standard I/0 interface cable.

The terms "concurrent®, "simultaneous”, and
"multiplex™ are used consistently in
system/360 publications. What, however, is
meant by these terms when applied to
System/7360 Model 30 multiplexor channel
operations? Consider a typical multiplexor
channel data transfer.

In the 2030, certain CPU circuits are
shared with the multiplexor channel.
Therefore, CPU instruction processing oper-
ations are stopped during the time that a
multiplexor channel operation (data trans-
fer or chaining) is in progress. Assume
that an add operation is being executed in
the CPU and that a 1442 card read operation
is in progress. CPU control circuitry,
including certain registers (not the 16
general or 4 floating point registers),
contains information that is updated as the
add instruction is executed. Now suppose
that the I/0 CU (Control Unit) of the 1442
requests channel service (i.e., the CU has
a data byte ready for transfer to storage).
The CU can wait to transfer the data byte
for only a certain time period. This time

is dependent upon when the next card column
is read. If the first byte is not trans-
ferred before the next byte is ready, data
is temporarily lost. (To recover the data,
the operator must reload the 1442 with the
appropriate cards.)

In the CPU, the information needed for
execution of the add instruction is taken
out of CPU registers and placed in local
storage. The UCW (Unit Control Word) that
pertains to the 1442 is then taken out of
MPX storage and placed in the appropriate
CPU registers. The UCW is used to indicate
how the byte from the 1442 should be han-
dled (such as where it should be stored in
main storage). As soon as the byte is
processed and the UCW contents are updated,
the UCW is stored into MPX storage. The
CPU registers are loaded from local storage
with the necessary add instruction informa-
tion, and the add operation is continued.
The next request for service by the 1442
results in repetition of the operations
just described.

2030 FETOM (9/1/66) 1-7

Introduction

CPU information is not always restored
into CPU registers after a multiplexor
channel data byte transfer, If another
request for I/0 data transfer is made soon
enough, then that data is processed. This
operation can occur, for example, when a
high-speed device (such as a magnetic tape
unit) is run on the multiplexor channel.

The maximum number of I/0 units that can
be attached to the multiplexor channel
depends upon:

1. The number of available UCW's in MPX
storage.

2. The number shared subchan-

nels used.

(if any) of

3. The restriction that a maximum of eight
adapters (CU's) can be connected to the
standard I/0 interface cable.

Item 1 depends upon the model. Up to 32
subchannels (UCW's) can be used in Model

Selector Channels

C30; up to 96 in Models D30, E30, and F30
as a standard feature. Models E30 and F30
can have the Additional Multiplexor Sub-
channels optional feature that provides for
use of up to 224 subchannels. 1In this last
case, shared subchannels are not allowed.

A shared subchannel is used for multiple
I/0 units controlled, one at a time (i.e.,
no multiplexing between the sharing units),
by a single CU. An example of this type of
confiquration is several direct access
mechanisms (such as 2311 disk storage
drives) connected to one CU. Only one UCW
is used to store controlling information
for operation of one of the direct access
mechanisms at a time. Use of certain
unshared UCW's (i.e., a UCW devoted to only
one I/0 unit) is excluded if shared sub-
channel addresses are used. For further
information on multiplexor channel address-
ing, refer to Field Engineering Manual, IBM
2030 I/0 Control, System/360, Model 30,
Form Y24-3362.

e Data transfer for an I/0 unit is completed on a record basis

before another I/0 unit can be started on the same selector
channel.

A selector channel uses its own circuitry (including clock)
to effect data transfers between its attached I/0 units and
main storage.

Selector channels use CPU circuitry during starting, chain-
ing, and ending procedures. If any overlapping CPU instruc-

tion processing is also taking place, the CPU instruction
information is stored in local storage until completion of

the selector channel operation.

s Up to 256 170 addresses can be used to address units on a

selector channel.

bably be less than the maximum, however,

The actual number of I/0 units will pro-
because only eight

adapters (I/0 control units) can be attached to a standard

I/0 interface cable.

Either of the two selector channels availa-
ble for Model 30 operates in burst mode
only. Only one device at a time can be
actively engaged in a data transfer on a
specific selector channel.

Each selector channel has its own cir-
cuitry for use in data transfers. When a
selector channel data transfer occurs, CPU
instruction processing is stopped only for
the time necessary to transfer the data
byte between main storage and the channel.
Because only one device at a time can be
operated, a separate area for storage of
selector channel UCW's is unnecessarye.
That is, for each selector channel there is
only one current UCW, which is handled by

1-8 (9/1/66)

selector channel circuitry. Operation
indicated by the current UCW is completed
before another I/0 operation can be started
on the same selector channel. Hence, cur-
rent CPU instruction information is not
stored into local storage (as it is during
maltiplexor channel data transfers).

During transfer of a byte of data
between main storage and a selector channel
the CPU clock is not used. Rather, each
selector channel has its own clock to con-
trol operation of storage. After the data
transfer is completed, the CPU clock is
used for processing the CPU instruction in
progress.

Introduction

Note that in selector channel starting,
chaining, and ending operations, CPU con-
trol circuitry is used. For chaining and
ending operations, information related to
the CPU instruction in progress is placed
in local storage.

CPU instruction-processing information
is restored into machine registers from
local storage at completion of the chaining
or ending procedure. Instruction process-
ing is then continued in overlap fashion
with any selector channel data transfers

CPU DATA FLOW

that occur. (Note that during starting of
an I/0 operation, the CPU instruction in
progress is an I/0 instruction such as
START 1/0.)

The eight-bit unit addressing scheme
allows for up to 256 separate 1/0 addresses
on a selector channel. However, because
only eight CU's (also called adapters) can
be attached to a standard I/0 interface
cable, the actual number of I/0 units will
probably be less than the maximum addressa-
ble number.

* The series of logical steps used to control information flow
between machine elements (such as ALU, machine registers,

and storage) for a particular operation,

microprogram routine.

is called a ROS-

* The ROS microprogram is not written by the user or problem
programmer; its routines are established in circuitry, and
ROS micro instructions are not stored in core storage.

Recall that ROS (Read-Only-Storage) is the
basic control circuitry in the 2030. The
particular series of ROS steps taken to
control an operation is a microprogram
routine. The ROS-microprogram routine for
any specific machine operation is, in
general, dependent upon:

1. The requirements of the operation
(i.e., what machine elements must be
used to achieve the desired results).

2. The logical methods used by the micro-
programmer,

It is important to realize that the micro-
program is part of the machine circuits and
has nothing to do with the writing of prob-
lem or control programs. ROS microinstruc-
tions are not stored in core storage. A
description of ROS is provided in Chapter 2
of this publication.

BUSSES

The function of a particular machine
register, as used in a specific operation,
is dependent, to some degree, on how the
microprogram for that operation is written.
Hence, in this chapter, subsequent intro-
ductory descriptions of machine registers
and their general functions do not neces-
sarily apply to all operations. Rather,
the most usual functions are described.

Many times, reference is made to a bit
position in a register. Most registers can
hold one byte (eight information bits plus
one parity bit) of data. Reference to a
bit position within a register is done by
prefixing the bit position with the letter-
name of the register. For example, the
high-order bit in the R register is
referenced by RO.

e Busses are circuits that provide for transfer of information

between various machine elements.

Busses provide the information-paths
between machine elements such as registers,
ALU, and core storage. In many operations,
microprogram steps call for transfer of
information from a register to a bus and
from there to another register. For exam-
ple, an address byte can be incremented by
1, by:

1. Gating the original address byte out of
a register to a bus,

2. Sending the address byte through ALU
while adding 1 to it as it passes
through ALU,

3. Sending the result byte from ALU to
another bus, and

2030 FETOM (9/1/66) 1-9

Introduction

4. Sending the result byte back into the
original register.

Most busses in the 2030 handle 8 infor-
mation bits plus 1 parity bit (one byte).

MACHINE REGISTERS

Some busses handle less than a byte. The
need for busses of differing capacities
will become more evident when you study
detailed machine circuitry.

e« The M and N registers are set with information used to

address core storage locations.

* The R register (storage data register), in general, is:

1. The immediate source register for a byte to be stored

into a core storage location.

2. The immediate destination register for a byte read out

of core storage.

* In general:

1. Information used to address instructions is sent from

the I and J registers to the M and N registers.

2. Information used to address data is sent from the U and

V registers to the M and N registers.

3. Information used to address certain auxiliary storage

locations is sent from the T register to the N register.

s The G register usually contains the operation code.

Any position of core storage can be locat-
ed, for reading or writing purposes, by use
of address information placed in the M and
N registers. Each of these registers can
contain one byte. Hence, a maximum address
of 65,535 (decimal) can be represented by
the 16 bits in the M and N registers.

(That is, the maximum number represented by
16 binary digits is 216-1.,) This arrange-
ment provides for addressing from 0000 to
FFFF, or a total of 65,536 (decimal) stor-
age locations.

In the 2030, the M and N registers
always have the capacity to hold the bit
structure that represents the address FFFF
(i.e., for Model 30F). However, any
address reference outside of the actual
range of main storage positions available
(Model 30C has 8192 bytes; Model 30D has
16384 bytes; Model 30E has 32768 bytes) may
cause an addressing exception (a program
interruption).

Other circuits are used in conjunction
with the output of the M and N registers
when auxiliary storage (local or one of the
MPX storages) is addressed. The actual
address is specified in the M and N reg-
isters while these other circuits determine
to which storage area (main, local, or a
MPX) the address applies. The 8 high-order
bits of the address are set into the M
register, while the 8 low-order bits are

1-10 (9/1/66)

set into the N register. The M and N stor-
age address registers are frequently
referred to as one register (viz., the
MN-register).

Addressing compatibility is maintained
with other System/360 Models because of the
base-displacement addressing method used.
Recall that addresses are -derived from a
12-bit displacement plus a 24-bit base.

For example, a program segment that might
be written for a System/360, Model I 65
might use storage addresses in the 500,000
to 504,000 (decimal) range. Here, the base
register used could have 500,000 as the
base address. Displacement values could
then run from 0 to 4,000 (decimal). To run
this program segment on a Model D30, the
base register could be loaded with the
address 0 (decimal), and the displacement
values left unchanged. Because displace-
ment values cannot exceed FFF (i.e., 12 bit
positions are used for displacement) any
Model 30 can handle any displacement value
in its M and N registers. However, any
base-plus-displacement value that exceeds
the storage capacity of the System/360
model used may, as previously mentioned,
cause an addressing exception.

In general, data written into (or read
from) storage passes through the R reg-
ister. (One notable exception is that when
data is transferred between a selector

Introduction

channel and main storage, it does not pass
through the R register. Refer to the Field
Engineering Manual of Instruction,
I/0 Control, Form Y2u4-3362.)

Notice in Figure 1-8 that the MN-bus
(really the M and N busses--eight informa-
tion bits plus one parity bit for each bus)
provides input paths to the MN-registers.
The following table summarizes the address
information source inputs to the MN-
registers:

Usual Immediate
Source of

Source Destin-
Register ation

I M High order address bits for
an instruction byte

J N Low order address bits for
an instruction byte

U M High order address bits for
a data byte

v N Low order address bits for
a data byte

T N Address bits for certain

auxiliary storage locations

Addresses are frequently obtained from
instructions which are in main storage.
Hence, there must be a path, during normal
instruction processing, over which these
addresses can be set into the U, V, I, J,
or T registers. One path is from storage,
to the R register, through the A-register
inputs to ALU, through ALU to the Z bus,
and from there to the appropriate register
(Figure 1-8). This description is not
meant to imply that every time a byte is
sent from storage it follows the path just
described into all registers. The
microprogram specifies which registers are
to take part in the operation, and, as
already pointed out, the microprogram steps
used depend upon the operation being per-
formed.

During instruction processing, the G-
register usually contains the instruction
operation code. Hence, the values of the
bit positions of this register indicate
such items as instruction length and
format.

Many other registers are used. However,
how a register is used is mainly dependent

IBM 2030

upon the operation performed. The follow-
ing table summarizes the usual functions of
some important registers in the data flow
(Figure 1-8):

Register Usual Function

I Instruction address (high-order
bits)

Instruction address (low-order
bits)

Data address (high-order bits)
Data address (low-order bits)
Data length

Auxiliary storage address

General purpose data register
Storage data register

Status (CPU)

Instruction operation code
Priority status register
Storage-Protection key in PSW
(High 4 bits); Storage-Protection
key of block of storage just used
(low 4-bits)

Interval Timer Count

External Interrupt: Interval Six
direct-control interruptions

(bits 2 through 7).

omaQtvoAr<ca

o Nl

The W and X registers hold information
that is used to address ROS. A maximum of
13 bits are needed to address any ROS word.
The W register holds the 5 high-order bits
and the X register holds the 8 low-order
bits. (Note that the W register has only
five bit positions which are W3, W4, W5,
W6, and W7.) 1In addition, each of these
registers has a parity bit position.

The FW-FX and GW-GX registers are backup
registers for ROS addresses. The FW-FX
registers are used to retain the ROS
address just held by the WX registers when
certain multiplexor channel operations
break into CPU instruction processing. The
GW-GX registers provide backup for address-
es in WX when selector channel one requires
use of ROS (such as in chaining
operations). A similar set of registers
(HW-HX) is used during ROS operations for
selector channel two. For detailed infor-
mation about the WX registers, refer to
Chapter 2 of this publication. Multiplexor
and selector channel operations and reg-
ister usage) are described in Field Engi-
neering Manual of Instruction, IBM
System/360 Model 30, 2030 I/O Control, Form
Y24-3362.

2030 FETOM (9/1/66)

1-11

ZT-1

(99/1/6)

*g-1 @bty

moTd ®3BQ OTISEH 0£0Z

FW

FX

GW GX

MN Bus (18 bits)

Error

4

MN Bus

T

Machine
Check

Status

1

Next

Decode

MN

MPX Interface

Uil

\Z

Address
Decode

In |OuK

CK

B Bus (9 bits)

P
B

Register

P

A Bus

A

Address
Information

——)

Control
Register

4

From External
Interrupt

To Machine Control Points

Z Bus

7| Register

R

1050 Data
Register

1050 Interface

uoT3IONPOIUT

Introduction

ARITHMETIC OPERATIONS

e The B-register input to ALU is complemented in certain
arithmetic operations. In some packed decimal operations
the B-register input to ALU is incremented by 6.

* Fach second operand (source) byte is sent to the B-register
during arithmetic operations.

Certain arithmetic operations require com- In the following descriptions, actual
plementation of second (source) operand circuit functions (including ROS controls)
bytes. Some packed decimal operations are not presented. Rather, the general
require addition of 6 to each second oper- arithmetic procedures used by ALU are pre-
and byte. These two functions are handled sented. If you need to review binary or
by circuits that affect the outputs of the hexadecimal numbering systems in order to
B-register (but not the A-register understand the following descriptions of
outputs). Therefore, a source byte is set arithmetic operations, refer to the Numbker-
into the B-register input to ALU and the ing Systems section in Chapter 1 of this
destination (first operand) byte is set publication.

into the A-register input to ALU.

FIXED POINT ARITHMETIC

e In fixed-point numeric operands, all bit positions to the
left of the high-order significant digit have the same value
as the sign bit.

¢ The maximum positive number that can be contained in a
binary field of n digits is equal to 2"-1.

¢ The maximum negative number (in two's-complement form) that
can be contained in a binary field of n digits is equal to

2",

Recall that fixed-point binary operands are When all of a given numkber of binary
stored as half words or words with the sign digits are 1, the largest positive quantity
indicated in the high-order bit position. that can be represented by that number of
When the high-order position has a value of digits is given. For example, the maximum
0, the binary number is positive. A nega- positive number represented by two binary
tive number has a sign bit at a value of 1. digits is 11 (decimal 3). The maximum

The remainder of the halfword or word is positive quantity represented by a binary
used to designate the magnitude of the field can be expressed in decimal notation

number. However, all bit positions between by:

the leftmost significant digit and the sign

bit have the same value as the sign bit.

For example, either of the following are 1. Counting the number of binary digit
positive numbers: positions in the field.

2. Raising 2 to a power equal to the count
+3S determined in step 1.
0 000 0000 0000 1000

3. Subtracting 1 from the product obtained
+S in step 2.
0 111 1111 1111 1000

Hence, the maximum positive quantity rep-

But, both of the following are negative resented by four binary bits is 24-1 (15 in
numbers: decimal).
-S Because one of the sixteen bit positions
1 000 0000 0000 0000 in a fixed-point half word is used for the
sign, fifteen bit positions can be used for
-5 the integer. Therefore, the maximum posi-
1 111 1i11 1111 1011 tive quantity that can be represented in a

2030 FETOM (9/1/66) 1-13

Introduction

fixed-point binary half word is 213-1
(32,767 in decimal).

In fixed point operations, negative
numbers are carried in two's-complement
form. For example, the true binary form of
the decimal value +26 is changed to a nega-
tive quantity by complementing it:

Decimal value Sign

+26 0 000 0000 0001 1010
1 111 1111 1110 0101

+1

-26 1 111 1111 1110 0110

Notice that the two's-complement of 11010
(+26) is 00110. The remainder of the bit
positions are at a value of 1 to indicate a
negative quantity.

The maximum negat ive number that can be
represented in a half word is:

S
1 000 0000 0000 0000

Fixed Point Addition

This is the complement of 1 0000000 0000
0000 which should represent a positive
gquantity. However, the convention is that
the high-order bit of a half word is 0 when
the quantity is positive. To show 1
0000000 0000 0000 as positive would require
an extra high-order position at a 0 value.
But this is impossible because only 16
positions are provided in a half word.
Hence, in a half word, the absolute value
of the largest negative number is one
greater than the absolute value of the
largest positive number. This concept also
applies to gquantities represented in a
word. A summary of the magnitude of binary
numbers that can be represented in a word

" is shown in Figure 1-9.

Numberl Decimal T 51 Integer

231 -1 = 2147 483 647 = [RRRARANEARASARA R RRARARANRRERANEN
216 = 65536 =0 0000000 00000001 00000000 00000000
20 = 1 = 0000000 00000000 00000000 00000001
0 = 0 = 0000000 00000000 00000000 00000000
-20 = -1 = T 101 1 nunm
-21 = -2 =1 1011 T I o
-216 = -65536 = 1111111 11111111 00000000 00000000
-231 4+ 1 =—2 147 483 647 =1 0000000 00000000 00000000 00000001
-231 =-2 147 483 648 =1 0000000 00000000 00000000 00000000
Figure 1-9. Fixed Point Numbers

e An overflow is indicated when the carry-conditions, out of
the high order digit position and out of the sign position,

do not agree.

An overflow occurs when two numbers are
arithmetically manipulated into an area,
such as a half word, that is not large
enough to contain the resulit. In fixed-
point operations, an overflow condition is
indicated when the carry out of the high-
order digit position and the carry-out of
the sign position do not agree.

The following addition examples
illustrate fixed point binary addition.
Only eight bit positions are used; the
high-order bit is the sign. Carry condi-
tions and any consequent overflow results
are summarized for each example:

S
1. +57 = 00111001
+35 = 00100011
92 = 01011100 (true form)

1-14 (9/1/66)

a. No carry out of high order digit
position.

b. No carry out of sign position.

c. Carries agree; therefore, no over-

flow.
S
2. +57 = 00111001
-35 = 11011101
+22 = 00010110 (true form)
a. Carry out of high order digit posi-

tion.
b. Carry out of sign position.

c. Carries agree; therefore, no over-
flow.

Introduction

S
3. +35 = 00100011
-57 = 11000111
-22 = 11101010 (complement form)

a. No carry out of high order digit
position.

b. No carry out of sign position.

c. Carries agree; therefore, no over-

flow.
S
4, =57 = 11000111
-35 = 11011101
-92 = 10100100 (complement form)

a. Carry out of high order digit posi-
tion.

b. Carry out of sign position.
c. Carries agree; therefore, no over-

flow.

Fixed Point Subtraction

S
5. =57 = 11000111
-92 = 10100100
-149 = 01101011

a. No carry out of high order digit
position.

b. Carry out of sign position.

c. Carries do not agree; therefore,

overflow.
S
6. +57 = 00111001
+92 = 01011100
+149 = 10010101

a. carry out of high order digit posi-
tion.

b. No carry out of sign position.

c. Carries do not agree; therefore,
overflow.

» The two's-complement of the second operand is added to the
first operand in fixed-point subtract operations.

e An overflow occurs when the carry conditions out of the
high-order digit position and out of the sign position do

not agree.

Fixed-point subtraction is done by adding
the two's-complement of the second operand
to the first operand.

An example is subtraction of +456 from
+678. +456, the second operand, is comple-
mented and added to +678, the first oper-
and.

+678 001010100110 (first operand)
(-) +456 111000111000 (2nd operand comp.)
+222 000011011110

Ooverflow occurs when the carry out of
the high order digit position does not
agree With the carry out of the sign posi-

tion. For example:
S
32,766 1 000 0000 0000 0001
(-) + 20 1 111 1111 1111 1100 (Comp)
-32,786 0 111 1111 1110 1101

a. No carry out of high order digit
position.

b. Carry out of sign position.

c. Carries do not agree; therefore,
overf low.

In any fixed-point binary subtract oper-
ation, each second operand byte, as it is
operated on by ALU, is effectively comple-
mented. Recall that data is sent through
ALU in complemented and true form. In the
binary subtract operation, the complement
lines of the second operand byte are added
to the true lines of the first operand
byte. The complement lines are really the
one's-complement of the second operand
byte. To obtain the correct result, a one
is forced (by control circuitry) into the
low-order bit position (bit7) of ALU when
the low-order bytes are added. 1In this
process, then, the inversion plus the one
in the low-order position effectively
results in addition of the two's~complement
of the second operand byte to the first
operand byte. For example:

1. Operation: fixed-point binary sub-

tract.
2. First operand: 00000001
3. Second operand: 11111111

2030 FETOM (9/1/66)

1-15

Introduction

4. Action in ALU:

First operand in true form = 0 000 0001

Second operand inverted = 0 000 0000
Forced carry = 1
Result = 0 000 0010

The forced carry is automatic only for
the low order byte addition. Consider, for
example, subtraction of -1 from +496.

(Half word operands are used.)

1. First operand = 0 000 0001 1111 0000
2. Second operand = 1 111 1111 1111 1111
3. Operation on low order bytes:
First operand in true form = 1111 0000
Second operand inverted = 0000 0000

Forced carry = 1
Result low-order byte = 1111 0001

PACKED DECIMAL ARITHMETIC

*» In packed decimal add or subtract:

4. Operation on high order bytes:

1st operand byte = 0000 0001
2nd oper. byte inverted =0000 0000
No forced carry.

Result high-order byte = 0000 0001

5. Resulting half word:

0 000 0001 1111 0001 = +497 (decimal)

6. Equivalent operation in decimal nota-
tion:

+496 - (-1) = +497
If a carry occurs out of the high order bit
position of a result byte, then that carry
is added to the low order position of the
next two-byte addition.

1. An even number of minus signs indicates a true add.

2. An odd number of minus signs indicates a complement add.

Recall that the sign of a packed decimal
field is in the four low-order bits of the
low-order byte. Sign analysis must be made
before any adding or subtracting is start-
ed. The result of the sign analysis indi-
cates whether or not the second operand
bytes are to be complemented. When the
system is using the EBCDI code, the sign
bit-combinations are:

Bit Combination Siqn Represented

1100 +
1111 +
1101 -

Three conditions are analyzed to deter-
mine how the operation is to proceed:
1. The operation: add (+) or subtract (-)
2. The sign of the first operand: + or -

3. The sign of the second operand: + or -

1-16 (9/1/66)

An even number of minus signs specifies a
true-add operation, while an odd number of
minus signs specifies a complement-add

operation. The eight possible combinations
are:

Sign of Sign of

First Second True or
Operation Operand Operand Complement Add
add (+) + + true
add (+) - + complement
add (+) - - true
add (+) + - complement
subtract (-) + + complement
subtract (-) - + true
subtract (-) - - complement
subtract (=) + - true

Introduction

Packed LCecimal True Addition

* Decimal corrector circuits are used to prevent a four bit
binary sum from representing a hexadecimal digit rather than

the desired decimal digit.

values of four binary bits in the range
0000 to 1001 can represent decimal digits
in the range 0 to 9. Addition of two four-
bit binary numbers results in a total that
represents a decimal digit as long as the
total does not exceed 9. If the total
exceeds 9, then the result is outside the
range of single decimal symbols
representable by the four binary bits.

For example:

0001 + 1000 = 1001
(1 +8 = 9).

sgut s
0010 + 1000 = 1010
(2 + 8 = 10)

In the last addition, the resulting four
binary bits represent two decimal digits.
Four bits in packed decimal fields, howev-
er, nmust represent only the single decimal
digits: 0o, 1, 2, 3, 4, 5, 6, 7, 8, or 9.
Decimal corrector circuits are used to
prevent two four-bit groups from giving a
result outside of the range of a single
decimal symbol.

After sign analysis, packed-decimal true
add proceeds as follows:

1. Six (0110 in binary) is added to each
four bit digit group of the second
operand byte.

2. The entire first operand byte (or only
four high-order bits for low order
byte) is added to the step 1 sum. Any
carry out of a four-bit total is noted.

3. If, in step 2, a carry occurred out of
the high-order bit of a four-bit sum,
add 0000 to that sum, If such a carry
did not occur, add the complement of
0110 (i.e., 1010) to that sum.

For example, ignoring sign analysis, add+18
(first operand) to +16 (second operand):

1. Add 6 (0110) to each four bit group of
the second operand:

Second operand (16) = 0001 0110
0110 0110
0111 1100

It is of some interest to note that
this addition has resulted in conver-
sion from ten’s comgplement notation to
sixteen's complement notation. That
is, 1 (0001) is the ten's
complement-of-9 (1001). Addition of 6
(0110) to the ten's complement-of-9
produces the sixteen's complement-of-9
which is 7 (0111). Also, 6 (0110)
added to the ten's complement-of-4
(which is 6 or 0110) produces the
sixteen's complement-of-4 (which is 12
or 1100).

Add the first operand byte to the sum
obtained in step 1. (Any carry out of
the high bit position of the four low
bits is carried into the low order bit
of the four high bits.)

Sum from step 1 = 0111 1100
First operand (18) = 0001 1000
1001 0100

If this addition results in a carry out
of a four-bit group, then the maximum
hexadecimal digit (F) has been exceed-
ed. But the first ten hexadecimal
symbols (0 through 9) equate directly
to the corresponding decimal symbols.
Therefore, if a carry-out does occur,
the digit represented by that four-bit
group must be in the range 0000 to 1001
(0 to 9). On the other hand, if no
carry-out occurs, then the four-bit
group does not represent the desired
decimal digit, and the 6 originally
added into that group must now be sub-
tracted.

Add 0000 to a four bit group if a carry
cut of its high order position
occurred. Add 1010 (complement of 6)
to a four bit group if a carry did not
occur out of its high order position.

1001 0100
1010 0000
0011 0100 or +16+18=+34

(Note that the carry out of the high
order position is not used as part of
the total.)

2030 FETOM (9/1/66)

1-17

Introduction

of

1.

Before operation
After operation

1-

18

As a second example, consider addition
two packed decimal fields:

Second operand

(138+): 0001 0011 1000 1100
First operand
(117+): 0001 0001 0111 1100

4.
The low order bytes are sent to ALU. A
true add is indicated because the num-
ber (zero) of minus signs is even.

SC

The four high order bits of each
low order byte are added:

First, six is added to the second
operand:

Ae

1000
+0110
1110

b. Then the first operand is added to
the sum obtained in step 3a:
1110
+0111
0101

The carry is retained for use in
addition of the next two four bit
groups.

Because a carry occurred out of the
high order position, 0000 is added
to the result of step 3b:

0101
+0000
0101 +

(5 decimal)

0101 represents the result low

First Operand

order decimal digit. 0101 and the
sign 1100 are stored in the low
order byte position of the destina-
tion field (first operand
location).

The next two bytes (one from
the first operand, one from the second
operand) are sent to ALU.

The two bytes are added:

a. Six is added to each four bit group
of the second operand byte:
0001 0011
+0110 +0110
0111 1001
b. The first operand and the carry

from step 3b are added to the sum
obtained in step 5a:

Carry from step 3b = 1
Sum from step 5a = 0111 1001
First operand = 0001 0001

1000 1011

c. Because a carry did not occur out of
either four bit group, 1010 is
added to each group:

1000 1011
1010 1010
0010 0101

Notice that the high bit carries of
each four bit group are not used in
the total. The result is placed in
the first operand location. Sum—
marizing this operation:

Second Operand

0001 0011 1000 1100

(In decimal notation: + 138 + 117

(9/1/66)

0001 0001 0111 1100
0010 0101 0101 1100 0001 0001 0111 1100

+255.)

Introduction

Packed Decimal Complement Addition

¢ In complement add, the complement value of the second oper-
and byte is added to the true value of the first operand

byte.

Packed decimal complement addition employs
decimal correction circuits in a different
way than true add. After sign analysis,
packed decimal complement add proceeds as
follows:

1. The portion of the second operand being
operated on is complemented.

2. The portion of the first operand being
operated on is added to the result of
step 1. Carry conditions out of each
participating four-bit group are noted.

3. 1If, in step 2, a carry occurred out of
a four-bit group, add 0000 to that
group; if no carry occurred, add 1010
(the complement of 0110) to that group.

4. If there was a carry out of the high-
order four bits in step 2, the answer
is in true form. If there was no carry
out of the high-order four bits in step
2, the answer is in complement form and
must be recomplemented. In this case,
take the 2's complement of the number
and decimal correct those four-bit
groups where no carry occurred. The
procedure is:

a. Invert each position of the
complement answer and add 1 to the
low-order position.

b. Decimal correct by adding 0000 to
each four-bit group that has a
carry out, and 1010 (2's complement
of 6) to each four-bit group that
has no carry out.

For example, subtract 15 (second operand)
from 18 (first operand):

1. Complement the second operand.

Second operand (16) 0001 0110

(complemented) 1110 1010

2. Add first operand to result of step 1.
Result of step 1 1110 1010

First operand (18) = 0001 1000
0000 0010

3. Carries occurred out of each four bit
group. Therefore, add 0000 to each
group. The result is in true form.

0000 0010
0000 0000
0000 0010

In decimal:
18 - (+16) = 2
As a second example (summarized in Figure

1-10), consider subtraction of +200 from
+190:

1. First operand 0001 1001 0000 1100

Second operand 0010 0000 0000 1100

2. The low order bytes are sent to ALU. A
complement add is indicated because the
number of minus signs is odd (one minus
for the subtract operation, each oper-
and is plus).

3. Invert the four high order bits of the
low order second operand byte:

0000 (inverted) = 1111

4. Add the four high order bits of the
first operand byte to the result of
step 3. Because this is the units
position, add 1 to make the notation
2's complement.

Result step 3 = 1111
First Operand = 0000
1

0000

5. Because a carry did occur from the
four-bit group, no decimal correction
is necessary.

6. The next two bytes (one from each
field) are sent to ALU.

2030 FETOM (9/1/66) 1-19

Introduction

High-Order Byte - Step in Text Low-Order Byte
First Operand =190 = 0001 1001 | @ 0000 1100
Second Operand =200 = 0010 0000 } 0000 1100
Invert Second Operand o1 1 @ G | m
Add First Operand 0001 1001 ‘| 0000
Plus 1 (2's complement Notation) @ 1

nc c ¢
/' 1M 1000 0000
1010 0000 @ @ 0000 (Hex correction)

Recomplement

Necessary 1001 1001 0000
Invert Result 0110 0110 1
Plus 1 (2's complement notation) 1
"o10 "o 0000
1010 1010 0000 (Hex correction)
Answer (010-) 0000 0001 0000

1101

Decimal Equivalent (190+) - (200+) = 010-

Figure 1-10. Packed Decimal Complement Add Example

7.

8.

Invert the second operand byte. a.

The first operand byte is added to

the inverted second operand. (Note
that a carry out of the high-bit posi-
tion in the first addition--step 4--4did
not occur. Therefore, no additional
carry is used to form this step 8

total.)

Step 7 result = 1101 1111
First operand byte = 0001 1001
Result = 1111 1000

A carry did not occur out of the high-

- order four bit group. Therefore, add

10.

1-20

1010 to that group. A carry did occur b.
from the low-order four-bit group. Add
zero to this group.

1111 1001
1010 0000
1001 1001

There was no carry out of the high
order bit of the step 8 result.
Therefore, the answer is in complement
form and must be recomplemented to
produce a true result.

(9/1/66)

Read out the low-order byte result-
ing from step 5. Invert the high-
order four bits and add 1 to
produce the correct 2's complement
notation.

High-order four bits = 0000
Inverted = 1111
Plus 1 (2's Comp) = 1
Low-order byte answer = 0000

There is a carry from this four bit
group so hexadecimal correction is
not needed. Therefore, add 0000 to
produce the low-order digit of the
answer.

Read out the high-order byte.
Invert the bits and add the carry
from the low-order byte (step 10a).

High-Order byte = 1001 1001
Inverted = 0110 0110
Low-order byte carry = 1

0110 0111

There was no carry from either
four-bit group. Therefore, both
groups must be
hexadecimal-corrected by adding
1010 to each groug.

Introduction

Result from above = 0110 0111 Result = 0000 0001 0000 1101
Hex-correction = 1010 1010
High-order byte answer 0000 0001 Decimal

Equiv. = 0 1 0 -

11. The result of the addition is stored in
the first operand location.

Floating Point Arithmetic

s Floating point operands are made up of three fields:
a. fraction sign-bit
b. characteristic (represents -64 to +63)
c. fraction (made up of hexadecimal digits)

» Short precision operands are a word in length.

e Long precision operands are a double word in length.

s A normalized fraction has a high order non-zero hexadecimal
digit; an unnormalized fraction has a high-order hexadecimal
digit of zero.

Floating point is not a numbering system. .12 X 102° = 12,000,000,000,000,000,000
Rather, it is a way of representing a

quantity in any numbering system. This

representation takes the form of a series .567 X 10-2° = ,00000000000000000000567

of digits multiplied by the base (of the

numbering system used) which is raised to a

power. For example, in the decimal system, guantities of such magnitudes are frequent-
the number 1,234 is equal to any one of the ly used in scientific computations. Hence,

following: floating point (a special feature) is main-
ly applicable to processing of scientific
problems.
123.4 X 101
12.34 X 102 In System/360 floating point operands
1.234 X 103 are fixed in length:
.1234 X 104
.01234 x 108 1. Short precision operands are a word in
length.
Notice that the decimal point is located at
a different position in each of the preced- 2. Long precision operands are a double
ing numbers. It is in fact a floating word in length.

decimal point.
Floating point operands represent hexadeci-

The significant digit portion of a mal numbers. The areas in a floating point
floating point number is called the frac- word and double word are:
tion, and the power to which the base is
raised is called the characteristic. For Word
example, in .1235 x 104, .1235 is the frac- r-—-r +~ 1
tion and 4 is the characteristic. Notice |S |Characteristic |Fraction |
that the fraction can be either positive or t-—t L 4
negative and the characteristic can be 0 1 78 31

either positive or negative:
Double wWord

.1235 X 104 r—— —_ \
-.1235 X 10% |S |Characteristic |Fraction]
.1235 X 10-4 L1 i J
-.1235 X 10-¢ 0 1 7 8 63
Very large and very small quantities can be The sign kit position is at a value of 0
conveniently represented in floating point for positive fractions and at a value of 1

format. For example: for negative fractions:

2030 FETOM (9/1/66) 1-21

Introduction

Hexadecimal Fraction Sign Bit Value

+.12 0
-.12 1

Up to 6 hexadecimal digits can be rep-
resented by the 24 bits of the fraction
field in a word. (During addition, sub-
traction, and division operations, however,
a seventh digit-the guard digit-is used to
increase the precision of the result.) A
double word fraction can contain up to 14
hexadecimal digits. (A guard digit is not
used here.)

The hexadecimal point of the fraction is
assumed to be immediately to the left of
the high-order fraction digit.

The sign of the fraction is taken care
of by the sign bit, but notice that there
is no sign bit for the characteristic. The
characteristic portion in a word or double
word is seven bits long. The maximum mag-
nitude of a positive number represented by
7 binary bits is 27 -1 or 127; the smallest
magnitude is 0. 1In order to represent
positive and negative exponents, the value
1000000 (64 in decimal), of the seven bits
that comprise the characteristic, is recog-
nized by the system as a characteristic of
0. The maximum positive characteristic is
then 1111111 and the maximum negative char-
acteristic is 0000000. Hence, the charac-
teristic is negative if the bit structure
of the characteristic field is in the range
0000000 to 0111111 (0 to 63 decimal). This
provides a range of negative charac-
teristics from -1 to -64, In other words a
characteristic field of 0000011 is recog-
nized by the system as a characteristic of
-61. This convention of using 1000000 as
zero is called excess 64 notation.

If the characteristic is negative (i.e.,
a characteristic field in which the high-

order bit is zero), its value can be
determined by subtracting it (by complement
addition) from 1000000 (64 decimal). For

example, if the characteristic field is

0010111:

Inverted char. = 1101000

plus 1 = _ 1
1101001

2. Add complement to 1000000:

1000000
1101001
0101001

The carry indicates that the answer is
in true form, but it is ignored in the
result. Therefore: 0101001 = 41
(decimal). Hence, the characteristic
represented by 0010111 is -u41
(decimal)j.

To determine the decimal value of a posi-
tive characteristic:

1. Note that the high order bit must be at
a value of 1 for positive charac-
teristics.

2. Convert the remaining bit positions to
the appropriate decimal value.

For example, 1001001 is a positive charac-
teristic because the high-order digit is 1.
The remainder of the characteristic (1001)
is equal to 9 in decimal notation. Hence,
1001001 represents a characteristic of +9.

A normalized floating-point number has a
non-zero high-order hexadecimal fraction
digit. For example, the hexadecimal number
+.1A3 x 162 in a normalized word (floating
point format) is:

Sign Characteristic Fraction

r T -7 k]

] 0 | 1000010 | 0001 1010 0011 0000 0000 0000 |

L i 1l 4
+ +2 1 A 3 0 0 0

Notice that the three high-order binary
fraction digits are 0, but that the high
order hexadecimal fraction digit is 1. The
fraction is normalized, however, because it
is normalized with respect to hexadecimal
digits and not with respect to binary
digits. An example of an unnormalized
fraction is:

1-22 (3/1/66)

Introduction

o |

—
1000011 |
L L 1

0000 1111 1111 0000 0000 0001 1

p—

+ +3 0 F F 0

Normalization is done by left-shifting
the fraction digits until the high order
hexadecimal digit 1is non-zero. For each
left shift, the characteristic is decreased
by one.

Floating-Point Addition

0 1

When normalization is done prior to an
arithmetic operation, it is called prenor-
malization. Postnormalization is a process
that changes an intermediate arithmetic
result to its normalized form.

¢ The operand fraction with smallest characteristic is right-
shifted until the two operands have equal characteristics;

then the operands are added.

Before addition starts, the characteristics
of both operands are compared. The

fraction with the smaller characteristic is

right-shifted. For each right-shift, the
characteristic is increased by one. when
the characteristics of the two operands are
equal, shifting stops. The fractions are
then added algebraically to form an inter-
mediate sum. 1f a carry occurs out of the
high-order hexadecimal sum digit, the sum
fraction is shifted right once and its
characteristic is increased by one. If a
characteristic overflow occurs as a result
of this increase, an exponent-overflow
exception (program interruption) occurs.

There are two floating-point add
instructions: add normalized and add
unnormalized. When the add unnormalized
instruction is executed, the sum is stored
without normalization. 1In the normalized
add instruction, however, the intermediate

sum is left-shifted until the high-order
hexadecimal digit is non-zero. For each
left-shift of the hexadecimal digits, the
characteristic is decreased by one.

For example, add .124 X 162 to .0127 X
163 using the add unnormalized instruction
(short precision assumed):

1. .124 X 162 is right-shifted once before
the addition starts,
.124 X 162 (right-shifted once) = .0124
X 163

2. The fractions are added:
-.0127
+,0124
.0258B

3. The result is not normalized but it is
stored as is:

Sign Characteristic Fraction

- T T 1

] 0] 1000011 | 0000 0010 0101 1011 0000 0000 |

L i F .]
+ +3 0 2 5 B 0 0

2030 FETOM (9/1/66)

1-23

Introduction

The same operation using an add normalized instruction is:
1. .124 X 162 is right-shifted once before the addition starts:
.124 X 162 (right-shifted once) = .0124 X 163

2. The fractions are added:

.0127

+.0124

.025B

3. The result is normalized by one left-shift:

.025BX 163 = .25BX 162 (normalized)

4. The result is then stored:

Sign Characteristic Fraction

T T =T A

] O | 1000010 | 0010 0101 1011 0000 0000 0000 |

| 1 1 J
+ +2 2 5 B 0 0 0

Floating-Point Subtraction

* The sign of the second operand fraction is changed before
the operation starts.

* The operation follows the sign rules of algebra so that, if
necessary, the second operand bytes are complemented during
the operation.

Floating-point subtract is similar to two's-complement form as in fixed-point
floating-point add: operands) as a series of hexadecimal
digits.
1. The fraction with smallest charac-
teristic is right-shifted before sub- Before the actual subtraction, the sign
traction starts. The characteristic is of the second operand (always the operand
increased by one for each right-shift that is subtracted from the first operand)
of the hexadecimal digits. is changed. Then, if necessary, each sec-
ond operand byte is cormplemented as it
2. There are two floating-point subtract enters ALU. The operation follows the sign
instructions: rules of algebra. Hence, for a subtraction

operat ion:
a. Subtract normalized.
Original
b. Subtract unnormalized. Sign of Sign of Complement 2nd
1st Operand 2nd Operand Operand Bytes?

These instructions are executed in basi-
cally the same way as the corresponding add + + Yes
instructions.

+ - No
Note that the sign of a negative frac-
tion is indicated in the sign bit position - + Yes
of a floating point operand. The fraction,
however, is carried in true form (i.e., not - - No

1-24 (9/1/66)

Introduction

IBM SYSTEM/360 GENERAL INFORMATION

NUMBERING SYSTEMS

e A number is a sum of terms;

each term is a product of a

digit symbol times some power of the base of the numbering

system.

e A carry out of a position occurs when a one is added to the

highest valued symbol in that position.

Combinations of the symbols of a numbering
system represent quantities or amounts. A
quantity can relate to specific items (such
as five apples), or it can be abstract (2 +
3 = 5%). In either case, symbols are used
to express the quantity. For example, the
quantity can be represented by:

1. The written numeral 5.
2. The written word five.

3. The sound produced when the word five
is spoken.

The symbol for any quantity depends upon
the numbering system used. For example,
the Roman Numeral symbol for the number S
is V. The symbol(s) used to express a
guantity have been adopted by convention.
We are familiar with the meaning of the
sympbol 5, but if we had always represented
5 with a #, we would know what the # stands
for.

Consider some basic
decimal-numbering-system conventions.
These will help you to understand less
familiar numbering systems. A decimal
number is composed of symbols that are
called digits. The decimal number 12 is
represented by the digits 1 and 2, but
these symbols must be written in a specific
position. (12 is a different quantity than
is 21.) Each decimal digit has a meaning
that is determined by its position in a
string or series of digits. Some of the
decimal positions are defined:

| hundreds
thousands

Each of these positions is defined in terms
of powers of ten (the base of the decimal
numbering system). Any decimal number can
be represented by multiplying each position
by the appropriate power of ten and adding

the products. For example, 1234 is the

same quantity as:

1 X103 + 2 X 102 + 3 X 10* + 4 X 10° =
1234

1000 + 200 + 30 + 4 = 1234

Notice that the units digit (4) is
multiplied by 10°. Any decimal number
rajsed to the zero power is 1. This is
also true of the other numbering systems
described in this publication.

In proceeding to the left from the units
position, the power of the base (10) is
raised one degree for each position moved.
Fractions are handled similarly, except
that in proceeding to the right from the
units position, the power of the base is
lowered one degree for each position moved.
Hence, the number 2.34 is the same as:

2 X100 +# 3 X 10-* + 4 X 10-2

One other convention you should under-
stand is the way in which carries are han-
dled. In the decimal system, counting can
proceed from a zero quantity up to nine
without any carry:

WO NE WO

At this point, however, there are no more
decimal symbols to use. Of course, the
next number is 10; but why? Notice the
significance of the carry from the units to
the tens position. What happens is that
when we run out of symbols, we carry to the
next higher position. The zero indicates
that we start counting all over again.

2030 FETOM (9/1/66)

1-25

Introduction

Counting then proceeds as follows:

10

Again we have run out of symbols to rep-
resent the unit position gquantity. So, we
carry one over to the tens position and the
zero tells us to start counting again.

This procedure continues until we reach 99.
At this point we have run out of symbols in

BINARY

both units and tens positions. So, we
carry from the units to the tens position
and from the tens to the hundreds position.
We now have 100 and can start counting
units again. Each time we run out of units
symbols we again carry to the tens position
until we run out of symbols in both the
units and tens positions, in which case
another carry is made to the hundreds posi-
tion.

These same concepts of carrying and
starting again at zero are used in the
binary and hexadecimal numbering systems.
In these systems, however, the number of
symbols (two for binmary, sixteen for
hexadecimal) used is different than the
number of decimal symbols.

* The only two digit symbols in the binary system are 0 and 1.

* Binary addition rules are:

0 +0=20
1 +0=1
0+1=1

1 +1=0 plus a carry

1 +1+1=1 plus a carry

e To obtain the two's-complement of a binary number:

1. 1Invert each position of the original number ({i.e.,
change all 0°'s to 1's and all 1's to 0°'s).

2. Add 1 to the low order position of the inverted number.

In order to subtract B from A (both binary numbers) comple-
ment B and add it to A. A carry out of the high-order posi-
tion signifies that the answer is in true form; no carry out
of the high-order position indicates that the answer (which
must be recomplemented to obtain an answer in true form) is

in two's-complement form.

The binary numbering system uses a base of
10 (2 in decimal notation) and has two
symbols (0 and 1). Let's try the princi-
ples of carry and starting-at-zero that we
used for decimal numbers and add two. binary
numbers.

1+1=10

Notice that we started out with 1 and
then added 1 to it. We were already out of
symbols when we started, so a carry was

1-26 (9/1/66)

made to the next position. The 0 in 10
means that we can start counting in the
low-order position again. Let's add 1 more
to the total:

10 + 1 = 11

A carry did not occur because the low-
order position could accomodate one
additional count without running out of
symbols.

Introduction

Just as in the decimal system, the zero Using this principle, let's subtract 0100
in binary is a quantity which when added to from 1000 by complement addition.
a second quantity results in a sum equal to

the second quantity.
The two's complement of 0100 is:

For example:

1 +0=1 1011 + 1 = 1100
or
Now the complement of 0100 is added to
0+1=1 1000:
We can now summarize all the facts you need
in order to add in binary: 1000
1100
0+0=0 1 0100
1+0=1
The high-order digit indicates that the
0+1=1 answer is in true form and this digit is
not part of the total. The same operation
1 +1 =0 (with a carry to the next using decimal notation is:
position) = 10
1+1+1=1 (with a carry to the Binary Complement Decimal
next position) = 11 Subtraction Addition Subtraction
The last item of the list can be broken 1000 1000 8
down into: -0100 +1100 -4
0100 0100 4

1 +1=10 + 1= 11
Now subtract 0011 from 0010. PFirst 0011 is

Subtraction of binary numbers can be complemented:
performed by using the same basic princi-
ples used in decimal subtraction. However, 1100 + 1 = 1101
the System/360 uses complement addition
rather than subtraction. Therefore, com- Then the addition is performead:
plement addition is described here.

0010

The two's complement of a binary number 1101
is used in complement addition. It is 1111
obtained by inverting each position of the
original number and adding 1 to the low Notice that there was no carry out of the
order position. To find the two's comple- high order position. This lack of a carry
ment of 1100 invert each position: indicates that the answer is in

two's-complement form. To obtain an answer
in true form, recomplement the answer:

1100 inverted is 0011
1111

Then add 1:
0000 + 1 = 0001

+1 . Oor, 3 (0011) subtracted from 2 (0010) is a
0100 minus 1.

2030 FETOM (9/1/66) 1-27

Introduction

Binary to Decimal Conversion

s To convert from binary to decimal, sum the appropriate
powers of two that correspond to 1's in the original binary

number,

Just as in the decimal system, any
binary number can be represented as a ser-
ies of multiplications that are added
together. For example:

1101 = 1 x 23 + 1 x 22 + 0 x 2* + 1 x 20 =
13 (decimal)

This example really presents a way of con-
verting binary to decimal. Recognize that
we have only two symbols in binary (0 and
1) but we have used the symbols 0, 1, 2,
and 3 in this conversion. Shown in true

binary, the above series is:
v

1 x 1022 + 1 x 102° + 0 x 10* + 1 x 109
The arithmetic would look like this:

1 x (10) (10) (10) + 1 x (10) (10) + 0 x 10

+1x1= 1101
or

1 x 1000 + 1 x 100 +«+ 0 x 10 + 1 x 1 = 1000
+ 100 + 0 + 1 = 1101

There is no need to use this second proce-
dure. What we are primarily interested in
is a conversion process from binary to
decimal so that a quantity can be rep-
resented in the familiar decimal numbering
system.

Notice in the original conversion to
decimal that each binary position value, of
either 1 or 0, is multiplied by a power of
two. Therefore, in converting from binary
to decimal, you need sum only those powers
of 2 that are multiplied by a 1. (0 times
anything is 0.) Using powers of 2, convert
11011 to decimal. The powers of two used
are:

1-28 (9/1/66)

2%, 23, 22, 21 20
or
16, 8, 4, 2, 1

By placing these over the appropriate
binary positions, you can quickly add to
find the equivalent decimal symbols:

16 8 4 2 1
1 1 0 1 1

16 + 8 + 2 + 1 = 27 (decimal)

The four was multiplied by zero, and there-
fore, it was not used in the summation.

Conversion of fractions is not generally
necessary. The following information is,
therefore, presented for reference purposes

only. To convert a binary fraction to a
decimal fraction:

1. Express the binary fraction as a deci-
mal series using powers of two:

«111 = 1 x 2=+ + 1 x 272 + 1 x 2=3
2. Express the series as a fraction:

1 x2-* x1 x2-2 + 1 x
2-3 = 1/2 +1/4 + 1/8 = /8

3. Divide the numerator by the denominator
to form the decimal fraction:

7 = .875 (decimal) = .111 (binary)

ol

Introduction

Decimal to Binary Conversion

e To convert a number in decimal notation to a number in
binary notation:

1. Divide the original number and subsequent quotients by
two.

2. Each remainder is a successively higher ordered binary

digit.
3. The last quotient (always a 1) is the high-order binary
digit.
The following procedure can be used to use of hexadecimal notation. See the Deci-
convert a number in decimal notation to a mal to Hexadecimal Conversion section.

number in binary notation:

1. Divide the decimal number by 2. The 1 11000
remainder is the low-order binary 2[3~ r
digit. 2 ' .

'|]

2. Divide the quotient obtained in step 1
by 2. The remainder is the next binary 3
digit. 26~

6

3. Continue dividing subsequent quotients 0
by two, to obtain each binary digit, 6
until a final quotient of 1 is reached. 22
This last quotient is the high-order 12
binary digit.)

For example, the conversion of 24 12

{decimal) to a binary number is shown in 2024

Figure 1-11. 24

Decimal fraction to binary fraction

conversion is more easily accomplished by Figure 1-11. Conversion of 24 (Decimal) to

Binary Notation
HEXADECIMAL

¢ The hexadecimal system has 16 symbols (0, 1, 2, 3, 4, S5, 6,
7, 8, 9, A, B, ¢, D, E, F).

* The 16's-complement of a hexadecimal number is found by:

1. Subtracting the digits of the original number from an
equivalent number of F's,

2. Adding 1 to the low-order position of the result
obtained in step 1.

s Hexadecimal subtraction of B from A can be done by comple-
menting B and adding; the answer is in true form if a carry-
out of the high-order position occurs; the answer is in
16's-complement form if a carry does not occur out of the
high-order position.

2030 FETOM (9/1/66) 1-29

Introduction

The hexadecimal numbering system uses a
base of 10 (16 in decimal notation) and has
the following symbols:

Hexadecimal Decimal Binary
Symbol Equivalent Equivalent
0 0 0000
1 1 0001
2 2 0010
3 3 0011
4 4 0100
5 5 0101
6 6 0110
7 7 0111
8 8 1000
9 9 1001
A 10 1010
B 11 1011
o 12 1100
D 13 1101
E 14 1110
F 15 1111

Addition of hexadecimal symbols is similar
to decimal addition except that a carry
does not occur until the unit sum exceeds F
(15 in decimal). Hence, in hexadecimal

notation:
F+1=10
F+2=11
F +3 =12
F + 4 =13
F +5 =14
F+6=15
F +7 =16
F+8=17
F + 9 =18
F + A =19
F+B= 1A
F+C=1B
F +« D= 1C
F+ E=1D
F + F = 1E
F+ F+1=1F
F +F + 2 =20

An example of hexadecimal addition written
in another form is:

1-30 (9/1/66)

In hexadecimal In decimal

BAC 2988
+1 F E 4510
DAA 3498

In other words:

C + E = A plus a carry

A ¢+ F +1 (the carry) A plus a carry

B +1 +1 (the carry) D

Subtraction of hexadecimal numbers can
be performed by complement addition. To
subtract 1FE from BAC, find the 16°s
complement of 1FE and add it to BAC. (The
16°'s complement of a hexadecimal number is
determined by subtracting each position
from F and adding one to the low-order
position of the result.)

The operation proceeds as follows:

1. Problem BAC - 1FE = ?
2. Complement 1FE:
FFF
(-) 1FE

EO1 + 1 = EO02
3. Addition:

BAC
+EQ2
9AE

4. The carry out of the high order posi-
tion is ignored in the result and the
answer is 9AE.

If there is no carry out of the high order
position, the result is in 16°'s-complement
notation and must be recomplemented if an
answer in true form is desired.

Introduction

Binary to Hexadecimal Conversion

e Four binary digits can be represented by one of the 16 hexa-
decimal symbols.

e To convert from binary to hexadecimal:

1. Divide the binary field into four-digit groups, starting
from the binary point.

2. Substitute, in order, the appropriate hexadecimal symbol
for each four-digit group.

Four binary digits can be represented by a 3. Substitute the appropriate hexadecimal
single hexadecimal digit. This results symbol for each decimal quantity:

from the fact that 16, the base of the
hexadecimal system, is equal to 2% which is

the fourth power of the base of the binary Decimal Quantity Hexadecimal Symbol
system. Therefore, conversion of binary to
hexadecimal is accomplished as follows: 14 E
2 2
1. Divide the binary field to be converted 7 7
into four-digit groups. Start counting
groups of four from the binary point
(i.e., the point that separates binary 4. Arrange the hexadecimal symbols in the
fractions from whole numbers). For sequence that corresponds to the origi-
example, 111000100111 can be divided nal number:
into:
1110 0010 0111 1110 0010 0111 = E27
2. convert each four-digit group into its
decimal equivalent: As you become more proficient in using
hexadecimal symbols you will probably omit
step 2.
Binary pecimal Equivalent
1110 14
0010 2
0111 7

Hexadecimal to Binary Conversion

e Each hexadecimal digit is equivalent to the quantity rep-
resented by four binary digits.

e conversion from hexadecimal to binary is accomplished by
substituting, in sequence, four binary digits for each hexa-
decimal digit.

To convert from hexadecimal to binary, or:
reverse the hexadecimal to binary proce-
dure. For example, convert F26B to binary:
F26B = 1111 0010 0110

Hexadecimal Decimal Binary
Symbol Equivalent Equivalent
F 15 1111
2 2 0010
6 6 0110
B 11 1011

2030 FETOM (9/1/66)

1011

Introduction

Hexadecimal to Decimal Conversion

e Because each hexadecimal place value is determined by powers
of 16, conversion to decimal notation is effected by repeat-

ed miltiplications by 16.

Use the following procedure to convert a
hexadecimal to a decimal number:

1. Convert each hexadecimal digit to an
equivalent decimal number.

2. Multiply the high order digit
(equivalent decimal number) by 16.

3. Aadd the next lower order digit
(equivalent decimal number) to the
product obtained in step 1.

4. Multiply the sum obtained in step two
by 16.

5. Add the next lower order digit to the
product obtained in step 3.

6. Continue forming products and adding
the next lower order digit until the
units position is reached.

7. Add the units position to the last
product formed and stop. Do not form
another product by multiplying by 16.

For example, convert 1FE1 to decimal nota-
tion:
1. Conversion of each digit of 1FE1l to
equivalent decimal numbers
produces: 1 15 14 1

uy

(V]
L]

[y
[y
Sy}

1o
[+

O\‘

e

w
L]
'Y
W=
w
A
|
|

&
.
»
P
[

r—
]
[}

1
|
|
|
|
|
!
I
|
I
|
|

(%4}
.
wile
P [
(=0

o
L]
x
=
[=))

8

-
(=]
o

et i S s i s S iy, T . g, s T s s S s, -

-

7. *
8161 (answer)

-

1-32 (9/1/66)

Conversion of hexadecimal to decimal
fractions may be useful if you are consid-
ering floating point operations. This
conversion, however, is presented here for
reference purposes only. To convert a
hexadecimal fraction to an equivalent deci-
mal fraction:

1. Express the hexadecimal fraction as a
sum of equivalent decimal numbers (1
through 15) times powers of 16.

2. Form fractions for each term.

3. Express each fraction in terms of a
common denominator and form one frac-
tion.

4. Divide the numerator of the fraction Ly
the denominator. (Round off the result
to obtain the desired accuracy.) The
result is the approximate decimal equi-
valent of the original hexadecimal
fraction.

As an example, convert .1FE to a decimal
fraction:

1. .1FE =1 x 16* + F x 1672 + E x 16~3
1FE = 1 x 16~* + 15 x 162 + 14 x 16-3
2. 1 +15+ 14
16 256 4096

3. 256 + 240 + 14 = 510

4096 40

-]

4, 510 = .1245 (rounded off)
4096

Introduction

Decimal to Hexadecimal Conversion

» Recause each hexadecimal place value is in terms of powers
of 16, conversion from decimal to hexadecimal notation is

effected by successive divisions by 16.

To convert a decimal to a hexadecimal num-
ber:

1. Divide the decimal number by 16. The
remainder is the low order hexadecimal
digit.

2. Divide the quotient obtained in step 1
by 16. The remainder is the next high-
er order hexadecimal digit.

3. Continue dividing quotients by 16 and
using the remainders for each succeed-
ing hexadecimal digit until the quo-
tient becomes less than 16.

4. The final quotient (less than 16) is
the high order hexadecimal digit.

For example, convert 510 (decimal) to hexa-
decimal notation:

3

[

1. 16 S
n

le(nl-‘
[o W] o

-
F

14 is the remainder and represents a low
order hexadecimal digit of E.

1
2. 16 31
16

al
unl

15 is the remainder and it represents the
next higher order hexadecimal digit,
F.

3. The quotient in the preceeding division
is 1, which is less than 16. The 1,
then, is the high order hexadecimal
digit.

4. 510 (decimal) = 1FE (hexadecimal)

Conversion of a decimal fraction to a
hexadecimal fraction is applicable mainly
if you are working with floating point
operations. This conversjion process is
presented here primarily for reference
purposes. To convert a decimal fraction to
a hexadecimal fraction:

1. cChange the decimal fraction from its
decimal-point form to an equivalent ten
thousandths fraction.

2. Multiply the numerator of the fraction
obtained in step 1 by 65,536.

3. Divide the product (oktained in step 2)
by 10,000, rounding off to the nearest
unit.

4. Convert the decimal numker obtained in
step 3 to an equivalent hexadecimal
mimber. (You can use the preceeding
method described in this section.)

5. The low order hexadecimal digit is four
places to the right of the hexadecimal
point (if a four place decimal fraction
was converted). Insert any necessary
zeros to the left of the high order
hexadecimal digit to obtain a four
place fraction.

For example, convert .1245 (decimal) to
a hexadecimal fraction, as follows:

1. .1245 =_1245

10, 000
2. (1245) (65536) = 81,592,320
10,000 10,000
3. 81,592,320 = 8159 (rounded off)
10,000
4. a. 8159 = 509 with remainder of 15.°

16

Therefore, F (15 decimal) is the
low order hexadecimal digit.

b. 509 = 31 with remrainder of 13 (D in

1 hexadecimal).
c. 31 = 1 with remainder of F
16 -

d. The last quotient was less than 16
and is therefore the high order
hexadecimal digit.

e. Therefore, .1245 (decimal) is
approximately equal to .1FDF,

Notice that the decimal fraction used
(.1245) is the result of converting .1FE to
a decimal fraction in the Hexadecimal to
Decimal Conversion section. But the answer
obtained when .1245 is converted back to
hexadecimal is .1FDF. The differences
occur because rounding was used in each
conversion process. Hence, .1FDF rounded
off one place higher is .1FE.

2030 FETOM (9/1/66)

1-33

Introduction

Conversion of a decimal fraction to a
hexadecimal fraction is equivalent to con-
version of a decimal fraction to a binary
fraction. That is, the hexadecimal frac-
tion obtained can be converted to a binary
fraction. Hence, .1FE is equivalent to the
binary fraction .00011111 1110.

It is of some interest to note why the
65536 factor is used in the conversion
process. A four place decimal fraction is
four decimal digits (the numerator) divided
by 10,000 (the denominator).
or, .1234 = 1234 x 10~% = 1234

10,000

Similarly, each hexadecimal fraction is a
numerator times some power of 16. The
hexadecimal fraction place values are (in
decimal notation):

21, 1, i, 1

16 256 4096 65536, etc .

In the conversion process, then, a four
place decimal fraction is approximately
equal to some numerator over 65536:

DDDD = XXXX = Hexadecimal Digits
10,000 65,536 10%
1-34 (9/1/66)

(Note that 104 = (F+1)%, in the fraction on
the right.) The hexadecimal numerator is
found in terms of decimal digits (XXXX) and
converted to an equivalent hexadecimal
number.

If decimal fractions of more than four
places are to be converted to hexadecimal
notation, a factor larger than 65536 must
be used.

For example, to convert a five place
decimal fraction to a hexadecimal fraction,
use 16% instead of 65536 in the conversion
process. Also, the resulting hexadecimal
point's position is determined by the power
of 16 used. A five place hexadecimal frac-
tion (rounded off) results from conversion
of a five place decimal fraction. Notice,
however, that zeros may have to be inserted
to the left of the hexadecimal digits. The
number of zeros added between the signifi-
cant hexadecimal digits and the hexadecimal
point is:

Number of inserted 0's = power of decimal
base used minus numker of hexadecimal
digits in result.

Introduction

INFORMATION FORMATS

» The smallest addressable unit of storage - the byte ~ is
made up of eight information bits plus a parity bit.

¢ Fixed-length information is carried in fields that are:
1. One half word (two bytes) long,
2. One word (four bytes) long, or
3. One double word (eight bytes) long.

o Fixed-length fields are addressed at their leftmost byte
which must be located at storage locations whose addresses
are divisible by:

1. Two for half words.
2. Four for words.
3. Eight for double words.

o If fixed-length fields are not addressed according to the
preceeding rules, a specification exception (program check)
occurs.,

* A variable-length field, regardless of its length, can start
at any main storage address.

the output of ALU. In general, succeeding
descriptions and figures in this manual do
not show the P bit position. Its presence
is assumed unless otherwise noted.

The basic information unit used by
System/360 is the byte. The byte is the
smallest addressable unit of main storage.
A byte is composed of eight information
bits plus, for checking purposes, a P
(parity) bit. Bit positions of a byte are:

A two-byte field is a half word. (Each
byte in the half word has its own parity
bit.) Numbering of bit positions for a
half word proceeds left to right (0 to 15)
through both bytes (Figure 1-12).

P O 1 2 3 4 5 6 7

Each byte bit-position can have a value

of 0 (off) or 1 (on). The P bit is used to High Order Byte Low Order Byt
maintain odd parity. If an even number of : ¢ 4 o rder Brte
bits 0 through 7 are at a 1 value, then the Bit Positions—{ 0 1 2 3 4 5 6 7(8 9 10 11 12 13 14 15

P bit is set to a 1 value. The P bit is
set to 0, however, if an odd number of bits
0 through 7 are set to 1. For example, if
bits 6 and 7 (an even number) are at a 1
value, then the P bit is 1:

Figure 1-12. Half Word

A four-byte field (two half words) is

Bit position P 0 1 2 3 4 5 6 7 called a word. Bit positions are numbered
left to right, 0 to 31 (Figqure 1-13).
Bit value i1 0 0 0 O O O 1 1
A Word

If, however, bits 5, 6, and 7 (an odd
number) are at a 1 value, then the P bit is Half Word Half Word
0: Bit positions |0 718 1516 2324 3

Bit position P 0 1 2 3 4 5 6 6 Byte Byte Byte Byte

Bit value 0O 0 0 0 O 0 1 1 1

Figure 1-13. Word
The P bit does not always accompany a

Eight bytes (two words) comprise a dou-

byte. For instance, parity is not carried
through the ALU (in System/360, Model 30)
but it is generated for the result byte at

ble word. Bit positions are numbered left
to right, 0 to 63 (Figure 1-14).

2030 FETOM (9/1/66) 1-35

Introduction

Double Word
Word Word
Half Word Half Word Half Word Half Word
Bit Positions —~0 7(8 15/16 23}24 31{32 39(40 47148 57158 63
Byte Byte Byte Byte Byte Byte Byte Byte

Figure 1-14. Double Word

The sizes of fixed-length fields are
defined in terms of a half word, a word, or
a double word. All instructions and many
data fields are fixed in length. Instruc-
tions, for example, are always one, two, or
three half words long.

Certain address restrictions must be
followed when fixed-length operations are
per formed. The rule is that fixed-length
information must reside on the correct
boundaries in main storage. Fixed-length
information is addressed at its high-order
(left-most) byte location. This address
must be divisible by (Figure 1-15):

1. Two for half words.

2. Four for words.

3. Eight for double words.

Byte | Byte | Byte | Byte | Byte | Byte { Byte | Byte { Byte
0000 | 0001 | 0002 | 0003 | 0004 | 0005 | 0006 | 0007 | 0008

Half Word Half Word Half Word Half Word

Word Word

Double Word

Figure 1-15. Boundary Restrictions

In other words, the low order byte of
the address for the fixed-length informa-
tion must have:

1. Its low-order bit set to zero in order
to address a half word.

2. Its two low-order bits set to zero in
order to address a word.

3. Its three low-order bits set to zero in
order to address a double word.

If any one of these boundary restric-
tions is violated, a program check occurs.
This check is called a specification excep-
tion. Hence, it is the responsibility of
the programmer to make sure that these
boundary restrictions are not violated.
(The specification exception does not cause
a machine check.)

1-36 (9/1/66)

These boundary restrictions apply to
fixed-length information only. A variable-
length operand, even if it is a half worgd,
word, or double word in length, can start
at any main storage location.

The bit settings in one byte can
represent:

1. Special (or conditional) information,

2. A binary nmumber (or part of a binary
number),

3. An alphabetic or special character in
zoned format,

4. A single decimal digit in zoned format,

5. Two decimal digits in packed decimal
format,

6. The characteristic and sign, or part of
the fraction of a floating point num-
ber.

Item 1 relates to cases in which a number
(or part of a number) or character
(alphabetic, special, or numeric digit) is
not represented by the byte. Rather, the
setting of a bit or bits indicates that a
particular condition does or does not exist
or that a certain action is or is not
allowed. For example, the first eight bit
positions of a PSW are called the system
mask. A bit in this byte when on (value of
1) indicates that a certain operation is
allowed. (What the mask bits specifically
indicates is not pertinent to this descrip-
tion.) When the same bit is off (value of
0), it indicates that the operation is not
allowed. Hence, each of these bits rep-
resents a condition and not a number or a
character.

Items 2 through 5 in the preceding list
are described in the following paragraphs.
For information about item 6, refer to the

Floating Point Arithmetic section.

Introduction

FIXED POINT NUMERIC FORMATS

e Fixed point numeric fields contain representations of binary
numbers.

e The high order bit of fixed point numeric fields is the sign
bit; it has a value of:

1. O for a positive field.

2. 1 for a negative field.

Fixed-point numeric fields represent binary f———-—d f——oeee—n

1
numbers. The high-order bit indicates the | s | integer | Word
sign of the field. Positive numbers are L L—o §- 3
represented in true binary form with the 0 31

sign bit set to 0. Negative numbers are
carried as two's - complements of their

true binary form with the sign bit set to In some operations, such as convert-to-

1. Fixed-point operands are usually half decimal, one of the operands is a double

words or words: word.

r—

| s T integer i Half word Fixed-length instructions (all part of

L L] standard instruction set) are in the RR,
0 15 RX, or RS format.

ZONED FORMAT

e The EBCDI (Extended Binary Coded Decimal Interchange) code
and ASCII (American Code for Information Interchange) can be
used in the System/360 eight-bit byte environment.

e The four high-order bits of a zoned-format byte contain the
zone; the four low-order bits contain the digit.

* The zoned format is used primarily for character sensitive
I/0 devices.

e The sign of a zoned-format numeric field is contained in the

four high-order bits (0 through 3) in the low-order byte of
the field.

The EBCDI (Extended Binary Coded Decimal primarily with the EBCDI code. (For furth-

Interchange) code is designed for use in er information about ASCII, refer to IBM
eight bit environments. Any one of the System/360 Principles of Operation, Form
characters shown in Figure 1-16A can be A22-6821.)

represented by one eight bit byte. (The
bits in a byte can be set to any one of 256

different combinations.) For example, the Information carried in the EBCDI code is
EBCDI code for the letter A (see Figure in zoned format. That is, bits 0 through 3
1-16A) is: contain the zone portion of the code while

bits 4 through 7 contain the numeric por-
tion. Hence, the numeric character 4 in

Bit position 01234567 EBCDI code (see Figure 1-16A) is:
Zone Portion Numeric Portion
Bit value 11000001

]
Bit position 012 3j485¢67
The ASCII (American Standards Code for
Information Interchange) is another code Bit value 11110100
that can be used by System/360. 1In this
publication, however, we will deal

2030 FETOM (9/1/66) 1-37

Introduction

Bit Positions 0, 1

Bit Positions 2,3 it Positions2,3
g oulonse,d

V-
Digit Punches

Y
Digit Punches

Bit Positions 4,5,6,7

_
. /
| A A
--)

l(———— Zone Punches ———bl

| Bit Positions 0,1 ~ [Bit Positions 0,1
s, j——————————

Bit Positions 2,3 o o lae | 1 [Bit Positions 2,3

N

Digit Punches

Digit Punches

Bit Positions 4,5,6,7
y -

Bit Positions 4,5,6,7

.
5
P "
| -_ |

Zone Punches -——-b‘

@ 12-0-9-8-1 ® No Punches ® 12-0 ® 0-1

@ 12-11-9-8-1 ® 12 (D) 11-0 11-0-9-1

® 11-0-9-8-1 @ n (@) 0-8-2 ® 12-11

@ 12-11-0-9-8-1 12-11-0 @ 0 This code can also be used for the lozenge (H).

Figure 1-16A. Extended Binary Coded Decimal Interchange Code

1-38 (9/1/66)

Introduction

Control Characters

PF Punch Off BS Backspace PN Punch On
HT Horizontal Tab IL Idle RS Reader Stop
LC Lower Case BYP Bypass UC Upper Case
DEL Delete LF Line Feed EOT End of Transmission
RES Restore EOB End of Block SP Space
NL New Line PRE Prefix
Special Graphic Characters
¢ Cent Sign * Asterisk > Greater~than Sign
+ Period, Decimal Point) Right Parenthesis ? Question Mark
& Less-than Sign ; Semicolon : Colon
(Left Parenthesis 1 Logical NOT # Number Sign
+ Plus Sign = Minus Sign, Hyphen @ At Sign
| Vertical Bar, Logical OR / Slash + Prime, Apostrophe
& Ampersand + Comma = Equal Sign
| Exclamation Point % Percent " Quotation Mark
$ Dollar Sign _ Underscore
Bit Pattern Hole Pattern
Examples Type Bit Positions
01 23 4567 Zone Punches Digit Punches
PF Control Character 00 00 0100 12-9-4
% Special Graphic 01 10 1100 0-8-4
R Upper Case 11 01 1001 11 119
a Lower Case 10 00 000} 12-0- 1
Control Character, 00 11 0000 12-11-0 -9-; 8-1
function not yet |
assigned |

Figure 1-16B. Key to Figure 1-16A

Zoned information is used by character-
sensitive I/0 devices. For example, a
print record is sent to a 1403 printer in
the zoned format. Each specific byte bit-
combination represents one character to the
1403, If the 1403 receives an
unrecognizable code, then it does not print
a character for that position of the print
record. Hence, it is important that infor-
mation is sent to the 1403 in a recog-
nizable (to the 1403) form. WNote that some
I/0 devices are not character sensitive.
For example, no matter what the bit pattern
of a byte is (correct parity assumed), it
can be sent to and handled by a disk stor-
age or magnetic tape unit. The disk or
tape unit stores the bit pattern, which may
or may not represent a specific character
in the ASCII or EBCDI code.

When a signed decimal numeric field is
carried in zoned format, the sign of the

field is in the four high-order bits of the
low-order byte (Figure 1-17). Decimal
numeric fields are in the zoned format when
read into storage from a character-
sensitive 1/0 device or when sent from
storage to a character-sensitive 1/0
device.

High Order Byte Low Order Byte
0 3[4 710 3|4 710 3|4 7
Zone Digit Zone Digit Sign Digit
0000 0000 1100 =+ 1 0000
1111 to 1 fto mi=+ to
1001 1001 1101 = - 1001

Note: Sign Bit Combinations are for EBCDI Code

Decimal Numeric Field in
Zoned Format

Figure 1-17.

2030 FETOM (9/1/66)

1-39

Introduction

PACKED DECIMAL FORMAT

e In the packed-decimal format, representation of two decimal
digits is carried in each byte (except the low order byte).

e The sign of a packed decimal field is carried in the four
low-order bits of the field's low-order byte.

e Valid binary codes for each decimal digit are in the range

0000 to 1001 (0 to 9 decimal).

s Zoned-decimal fields can be converted to packed-decimal
fields by use of the Pack instruction; packed-decimal fields
are converted to zoned-decimal fields by use of the Unpack

instruction.
| |
High Order Byte | Low Order Byte
Digit Digit Digit Digit Digit Digit Digit Digit Digit Sign

Notes: EBCDI Signs,

1100 = plus

1111 = plus

1101 = minus
All digit values are in the range: 0000 to 1001 (0 to ¢ decimal)
Figure 1-18. Packed Decimal Format
If the decimal feature is installed in the bytes. All of the decimal feature

2030, decimal arithmetic operations can be
performed when the operands are in the
packed-decimal format. Each byte (except
the low-order byte) in a packed-decimal
field has bits that represent two decimal
digits (one digit in the four high-order
bits, a second digit in the four low-order
bits). For example, the number 19
(ignoring the sign) is represented as 0001
1001. Because the information is decimal,
the only valid digits are 0 to 9 (0000 to
1001 in binary). The sign of the packed-
decimal field is carried in the four low-
order bits of the low-order byte (Figure
1-18).

Zoned-decimal fields can be used to form
packed-decimal fields by use of the Pack
instruction (Figure 1-19). The Unpack
instruction is used to form zoned-decimal
fields from packed-decimal fields (Figure
1-19).

Packed-decimal fields are variable in
length and are composed of from 1 to 16

1-40 (9/1/66)

instructions are in the SS (storage to
storage) format. Hence, all packed-decimal
operands are handled in main storage rather
than in one of the general registers.

Pack Operation

[Z.'DlZ.'D]S,'ﬂthreebyfes

'
[0 10 [D !5 |mobytes

Unpack Operation

three bytes

Key:

Z zone
D digit
S sign

Figure 1-19. Pack and Unpack

Introduction

BASIC PROGRAMMING

INSTRUCTION FORMATS AND LENGTHS

¢ Register-~to-register (RR) instructions are one half-word

long.

» Storage-to-register (RX and RS) and storage-immediate (SI)

instructions are two halfwords long.

e storage-to-storage (SS) instructions are three halfwords

long.

s Instructions must reside on half word boundaries in main
storage (i.e., low-order bit of instruction address equals

zero).

Instructions specify the operation to be
done and the locations of the operands that
are to participate in the operation. Data
referenced in an instruction can be in:

1. A general purpose register,

2. A floating point register, or

3. Main storage.

When an operand is in a general reg-
ister, then that register is specified by a
four bit field in the instruction. RR
(register-to-register) instructions are one
half word long and have the format:

r v T 1
jop Code | R1 | R2 |
[4 L 1 J

0 7 8 11 12 15
Here, only one halfword is needed for the
entire instruction.

Data in main storage is addressed by the
sum of a base and a displacement, or, in
some instructions, by the sum of an index,
a base, and a displacement. The base is
the value in the 24 low-order bits (bits 8
through 31) of a general register. Simi-
larly, the index is the value in the 24
low-order bits of a general register. The
displacement is a 12-bit field contained in
the instruction. Base-displacement
addressing is indicated in an instruction
by:

4 bits 12 bits
T T . 1
|Base |pDisplacement |
| —— 1 j]

The four bits in the base field are the
address of one of the 16 general registers.

When (during instruction processing) the
actual address is generated, the number in
bits 8-31 of the general register is added
to the number in the instruction's dis-
placement field. (The desired base has
previously been placed, by program control,
in the specified general register.)

Note, however, that a maximum of 16
low-order bits of the generated address can
be used in Model F30 to address a main
storage location. Models C30, D30, and E30
use even fewer bits. These restrictions
are imposed by the main storage capacities
of the models used.

Because instructions that specify oper-
ands in main storage must use the base-
displacement (or index-base-displacement)
method of addressing, they must be longer
than one halfword. The formats are:

1. RX or RS, both of which are two
halfwords long:

Bits-- 8 4 4 4 12

r T T T T
|op Code | R1| X2| B2| D2
L 1 1

1 i

s e

2. SI which is two half words long and
contains one of the operands (the I or
immediate operand):

Bits-- 8 8 4 12

T T
|0p Code | 12
L L

[v+]
-
o
g
[W—

3. SS which is three half words long:

Bits-- 8 4 4 4 124 12
SEYTTTYTTY YT YT ™Y
|Op Code|Ll|L2|B1|D1|B2|D2|
| NS R WU Sy W S S |

[m—————

2030 FETOM (9/1/66)

Introduction

In these formats:

R specifies a general register that con-
tains an operand.

X specifies a general register that con-
tains an index.

B specifies a general register that con-
tains a base.

D is a displacement in the instruction.

I is an immediate operand in the instruc-
tion.

OPERATION CODE

L is the length of a variable-length
operand.

Because instructions are considered
fixed-length information, they must be
located at halfword boundaries in main
storage. That is, the address for any
instruction must have its low-order bit set
to a value of zero. If this low-order
address bit is a one, a specification
exception occurs when the instruction is
addressed.

e Bits 0 and 1 of an op (operation) code specify:

1. Instruction length in halfwords, and

2. General locations of operands.

* Bits 2 and 3 of an op code specify the type of data:

1. Fixed- or variable-length,

2. Decimal, binary, or floating point.

e Bits 4 through 7 of an op code specify the operation (such

as add or compare).

The high-order byte of every instruction
is the op (operation) code:

Bits 0 through 7

r~ T]
|0p Code |Remainder of instruction|
L i i

Bits 0 and 1 specify the instruction length
and the general location of data:

Instruction General

Bits 0 Length Location

and 1 (half words) of Data

00 1 Both operands in
general or floating
point registers

o1 2 One operand in main
storage

10 2 One operand in main
storage

11 3 Both operands in main

storage

1-42 (9/71/66)

Bits 2 and 3 specify the type of data to
be operated on (i.e., fixed- or variable-
length; decimal, binary, or
floating-point). Bits 4 through 7 indicate
the operation (such as move, subtract, or
maltiply).

Op codes are frequently represented in
hexadecimal notation rather than by eight
binary digits. For example, the op code
for a fixed-point add instruction in RR
format is 1A in hexadecimal notation.

Introduction

ADDRESSING GENERAL OR FLOATING POINT REGISTERS

e The four floating point and the sixteen general registers
are in the local storage of any System/360 Model 30.

¢ The instruction's op code indicates whether general or
floating point registers are specified by the instruction.

The sixteen general registers can contain

fixed-point binary operands while the four
floating-point registers can contain only

floating-point operands. All sixteen gen-
eral and the four-floating point registers
are in local storage.

The addresses, in instructions, that are
used to specify general registers 0, 2, 4,
and 6 correspond identically to the four
floating-point register addresses. The op
code of the instruction, however, specifies
whether a general or a floating-point reg-
ister is to be used in the operation.

The general registers, as the name gen-
eral implies, can be used for purposes
other than containing fixed-point operands.
For example, a general register can contain
a base or index used in address generation.
(Note, however, that when general register
zero is specified as a base or index reg-
ister, the base or index is zero, no matter
what the actual content of general register
zero is.)

An example of specification of general
registers in an instruction is shown in the
following fixed point binary add instruc-
tion:

MAIN STORAGE ADDRESSING

Op Code R1 R2

r T T 1
0001 1010|0110 |[0100 |
L i L

- -

This instruction calls for addition of the
contents of general register 0100 (4 in
hexadecimal) to the contents of general
register 0110 (6 in hexadecimal).

An example of an add normalized
floating-point instruction is:

Op Code R1 R2

r T T 1
[0011 1010 |0110 | 0100 |
1 i 1 -

Here, the contents of floating-point reg-
ister 0100 (4 in decimal) is to be added to
the contents of floating-point register
0110 (6 in decimal). The op code indicates
a floating-point operation, so that the
floating-point registers, and not the gen-
eral registers, particirate in the opera-
tion.

e Storage addresses are generated by adding a displacement

value to a base value.

e The general register that contains the base portion of the

address is called the base register.

» The instruction can contain a displacement value as well as
the address of a general register that contains the base

value.

(Sometimes the instruction also contains the address

of a general register that contains an index value.)

* Only registers 1-15 can be used as base registers or index

registers.

e If register 0 is specified as the base register or index

register, its contents are ignored.
or index value of 0 is used.

Instead, a base address

* The generation of storage addresses does not change the

instruction or the base register contents.

2030 FETOM (9/1/66)

Introduction

To use a 24-bit address in the instruction
for each operand would consume storage
space that could be used for other purpos-
es. In the smaller models of System/360
(such as the Model 30 with approximately 8K
storage), the amount of main-storage space
is definitely limited. One solution would
be to use 24-bit addresses on the larger
models such as Model 70 and to use shorter
addresses on the smaller models. This
would mean that programs used on the var-
ious System/360 Models would no longer be
compatible because of the different address
lengths. So we must look for another solu-
tion that will reduce the length of the
instructions and still maintain compat-
ibility.

There are other features desirable in
main storage addressing besides a simple
reduction in the length of instructions.

It is also desirable that, each time the
program is loaded into the computer, the
program can start at a different address
without having to change the addresses in
each instruction. This is known as program
relocation, which is a valuable tool in
IBM's latest programming systems.

Besides the features of program reloca-
tion and shorter instructions, it is also
desirable to be able to index instructions.

Assume that System/360 programs are
written in sections. Each section is 4096
(decimal) bytes in length. (0Of course
programs that are less than 4096 bytes can
be written as one section.) The beginning
of each section is wcalled the base address
for that section.

Consider the case of a program that
requires 12,000 bytes. By sectioning it
into 4096 byte groups, we have three pro-
gram sections with a base address for each
section., For the following example, the
program starts at main-storage location
2,048. (The program could also be started
at other locations.)

r T BJ 1
jSection 1 |Section 2|Section 3]
L 1 1 4
+ t t]

I | | |
—— ; I

| -]

| Base |

| Addresses |

| |
Location Location]

2,048 14,047

As can be seen in this example, the 12,000
byte program starts at location 2,048 and
runs through location 14,047. The first
two sections are each 4096 bytes long while

1-44 (9/1/66)

the remainder of the program (the last
3,808 bytes) is in section 3.

Now that the program has been sectional-
ized and base addresses are known, how can
this help in addressing main storage?

Because each section is a maximum of
4096 bytes long, any byte in a section can
be located by adding to the base address a
number in the range of 0-4095. This number
is called the displacement. That is, each
byte is displaced from the base address
from 0 to 4095 places.

From To
) S, --4,095

£ r'&

r - K r 1

| Section of Program|

L { 6 4
9 7

t

|

|

|

I

l———-—-Base Address

Suppose that the program we have been
using as an example is moved so that it
starts at location 8,192.

T T]
Section 1|Section 2|Section 3|
I L J

=y

t
|
|
|

Location
16,384

— ——
—— — gy

Locat ion Location
8,192 12, 288

The base address for Section 1 is now 8,192
and the base addresses for Sections 2 and 3
are 12,288 and 16,384. The displacement
for each byte in the program has not
changed. The last byte of section 1 is
still displaced from its base address by
4,095,

The preceding demonstrates the ease with
which a System/360 program can be relocat-
ed. To relocate a Systenv360 program, the
base addresses are changed while the dis-
placements remain the same.

Main storage addresses are 24 bits long.
This allows for compatibility throughout
the range of storage capacities for
System/360 models, as well as for address-
ing up to about 16 million bytes. Because
a program can start anywhere in main stor-
age, the base addresses for the program
must be 24 bits long. (During actual
addressing, no Model 30 uses all 24 bits.)

The displacement range for any particu-
lar base address is 0-4095. To express

Introduction

this range requires 12 binary bits. (You
can calculate this by converting 4095 to
hexadecimal and then to binary.)

16| 15-—————eeeeeeF

16| 255-—————- F

16 | 4095--F
I

I

|

I I

I |

I |

0 | | I
| | |

| I |

111 1 11

1 11311 11

Any byte in main storage can be located
by adding a 12-bit displacement to a 24-bit
base address.

The use of a base address and a dis-
placement makes it easier to relocate a
program each time it is loaded into the
computer. However, we also want a shorter
instruction. To put both the base address
and displacement in the instruction would
make the instruction longer. It would also
mean that each instruction would have to be
changed (base address) every time the pro-
gram is relocated. The manner in which the
Systemv/ 360 handles this is to carry the
base address in one of the general reg-
isters. When a general register contains a
24 bit base address, it is referred to as a
base register. The address of the base
register and the 12 bit displacement are
carried in the instruction.

Let's take a look at a typical instruc-
tion used to add an operand in main storage
to an operand in one of the general reg-
isters. When only one of the operands is
in main storage, the instruction is two
halfwords in length. To add a main storage
operand (source operand) to a general reg-
ister operand, (destination operand) sever-

al items are necessary. They are:

1. B8 bit Op Code

2. 4 bit General Destination
Register Operand
Address Address

3. 4 bit Base Source
Register Operand
Address Address

4. 12 bit Displacements

The instruction format for this opera-
tion

r T T T T -
|0 718 11]12 15|16 19|20 31}
Op	Gen		Base	Displace-
Code	Reg.		Reg.	ment
	Addr.		Addr.	
L L L) S . J

Bits 12-15 of this instruction could be
used for further modification of the main
storage address. We will, however, ignore
them for the present.

Given a displacement of 100110110010 and
base-register 11 (whose contents are shown
below), the effective storage binary-
address is 010010001001110100100001.
24-LOW-ORDER-BITS,

r
|

r T { T ™ T T T

| 0000]0000]0100}1000]1001|0011}0110]1111

L i 1 i 1 4 1

SR

General Register 11 Contents

Remember that you add the 12 binary bits
in the displacement to the low-order 24
binary bits of the base register.

The address generated by adding the
displacement and tase address is used for
addressing main storage. The original
instruction and the base register's
contents remain unchanged.

As previously mentioned, only general
registers 1-15 can be used as base reg-
isters. 1f general register 0 is specified
as the base register, the base address is
assumed to be zero, regardless of the con-
tents of register 0.

r T 1
] O | 1022 |
L 1 J
L ¢
I |
l o
Base Displacement
Register

For this example, the contents (in decimal)
of register 0 is 2048.

Given these address fields in the
instruction and the contents of register 0,
the effective storage address is 1022.
Because register 0 is specified as the base
register, a base address of 0 is used. The
contents of register 0 are ignored.

All storage addresses are generated by
using base and displacement. In some
instructions, however, a third factor is

used. The third factor is called the index
value. It is contained in a general reg-
ister.

2030 FETOM (9/1/66)

1-45

Introduction

In those instructions that include an
indexing factor, the address fields have
the format:

== === T T 1
| Index |Base |Displacement]
|Reg. |Reg. | |
| Addr. jAddr. | |
L L i P

4 bits 4 bits 12 bits

The effective storage address is generated
by adding:

1. Displacement,
2. Contents of the base register, and
3. Contents of the index register.

For example, suppose the address portion of
an instruction is:

INSTRUCTION FIELDS

» There are five basic instruction formats:

and SS.

1
61711012 |

- o
- o

Register 6 contains the value 2048, and
register 7 contains the value 6024:

1. The effective storage address is 9084.

2. The address portion of the instruction
is unchanged.

3. The values in the base and index reg-
isters are unchanged.

The storage address is generated by adding
the contents of the base register (6024)
plus the contents of the index register
(2048) to the displacement value given in
the instruction (1012). The values in the
specified registers and the displacement
value in the instruction remain unchanged.

RR, RX, RS, SI,

* In most operations, the first operand is replaced by the
contents of the second operand or by the results of the

operation.

e The number in the length code (L) in the SS format is one
less (when actual machine language is used) than the true

length of the data field.

Instructions are 1, 2, or 3 half words
long, depending on the locations of the
operands.

RR FORMAT: A 1--half word instruction is
used when each operand is in a general
register or in a floating-point register.
An RR format instruction has:

1. An 8-bit op code.

2. A U-bit register address for the first
operand (destination).

3. A 4-bit register address for the second
operand (source).

The RR (register-to-register) format is:

¥ T T
|Op code | R1 | R2 |

———————de A

Bits 0 and 1 of the op code indicate the
length of the instruction and the location

1-46 (9/1/66)

of the operands. For the RR format, bits 0

and 1 are both at a 0 value.

The second byte of the RR format is
divided into two fields: R1 and R2. The
R1 field gives the register address of the
first operand while the R2 field is the
address of the second operand. The R suf-
fix numbers in the address fields of the RR
formats (and all other formats) indicate
whether the operand is the first or second
(and in some cases, the third) operand.
For most operations, the results replace
the first operand.

RX FORMAT: Instructions that are two half-
words in length have one of three different
formats. As you recall, if bits 0 and 1 of
the op code are either 01 or 10, the
instruction is two halfwords in length.
Furthermore if bits 0, 1 of the op code are
set to 01, they indicate a specific format,
known as the RX format:

Introduction

r T T n Attt Sentba
|Oop Code | R1 | X2 | B2 | D2 |
| |Gen. |Index |Base |Displace-)
| |Reg. |Reg. |Reg. |ment |
. i L i i 3

In the RX format, the effective address
of the second operand is generated by
adding the contents of the base register
and the index register to the displacement.
The RX format is used for storage to reg-
ister operations. The destination register
address is specified by the R1 field.

| Sttt At Sutatesis St]
| abp | 3] 7| u | 1024 |

L L L i L 3

For the preceding RX format instruction,
the storage address is generated by adding
the 24 low-order bits of the contents of
registers 7 and 4 and the displacement
value of 1024. The storage (source) oper-
and is added to the contents of register 3
and the sum is placed in register 3.

RS FORMAT: Storage-to-register instruc-
tions in which the storage address does not
include an indexing factor are called the
RS format. The format is:

r —_
|Op Code | R1
1

| R,

SR

T T T
| R3 | B2 | D2
1 1 i

The RS format (two half words long) is
identified by a 10 in bits 0 and 1 of the
op code. The R3 field in the RS format
specifies the general register used for the
third operand. (In some RS instructions,
the R3 field is ignored.) An example of an
instruction that uses the R3 field is Load
Multiple. During execution of a Load Mul-
tiple instruction, data in main storage is
loaded (or placed) into general registers.
Loading begins with the register specified
by the R1 field and continues consecutively
until the register specified by the R3
field has been loaded. For example:

f T B i -T b |
jopcode | 4] 74| 0| 0100 |
t 'y i i 1 P

In this Load Multiple example, the
effective storage address is 0100. This is
because register 0 is specified as the base

register (whose contents are ignored during
address generation).

Here, registers 4 through 7 are loaded
with the data from main storage. Because
each register can hold one full word, reg-
isters 4-7 are loaded with the data in
storage location 0100 through 0115
(decimal). (Each storage address is used
to address one byte of data.)

SI FORMAT: An SI format instruction is
also two halfwords in length. This format
is used when one operand is in main storage
and the other operand (called the immediate
operand) is carried in the instruction
itself. The SI format is also identified
by a 10 in bits 0 and 1 of the op code,
just like the RS format. The SI format is:
Op Code 12 Bl D1

In the SI format, the storage operand is
the first operand. 1Its effective address
does not include an indexing factor. The
immediate operand is fixed in length and is
one byte long.

An SI format instruction example is Move
Immediate. Execution of this instruction
moves the immediate operand byte (I2) from
the instruction to the storage location.
The immediate operand remains unchanged in
the instruction after completion of the

operation. For example:

— T T———"7T T 1
Op Code | I2] 0] 1000 |
. L [1 1 4

In this Move Immediate instruction, the
contents of the I2 field are placed in
storage location 1000.

Because bits 0 and 1 of the op code have
a value of 10 for both the RS and SI for-
mats, the remaining bits of the op code
indicate whether the instruction is in the
RS or the SI format.

SS FORMAT: 1In the four previous formats,
the operands are fixed-length. Variable-
length operands are specified by the SS

(storage-to-storage) format instructions:

r T T T T T 1
|Op Code | L | B1] D1 | B2} D2 |
| I i 1 1 1]
Length Location of Location of
Code 1st Operand 2nd Operand
(destina- (source)
tion)

2030 FETOM (9/1/66)

1-47

Introduction

Because both operands are in storage, operand is one byte long, the length code
the SS format instruction is three is zero.
halfwords long, and is identified when bits
0 and 1 of the op code contain 11.
So far we have been treating the length

In the SS format, an indexing factor is code as one B-bit binary number. However,
not included in the generation of storage we are dealing with two operands. Do they
addresses. The second byte of the SS for- both have to be of the same length? The
mat is the length code which consists of 8 answer is: not always. The lengths depend
binary bits. The maximum value that can be on the particular operation. If we are
expressed with 8 binary bits is 255 concerned with moving a data field from one
(decimal). area of storage to another, we only need

one length code. If, however, we are

Because all operands are at least one adding one storage field to another, then
byte long, a length code is used to tell we need to know the length of both oper-
how many additional bytes are needed. For ands. For arithmetic SS operations, the
instance, a length code of 15 indicates length code is split in two:

that the operand is 16 bytes long. If an

r -T TS T T T 1
|Op Code | L1 | L2 | Bl | D1 | B2 | D2)
L i 1 | . 1 1 3
t t
| |
| |
| |
Length of-4 Length of
first second
operand operand

With the length code split into two
4-bit fields, the maximum length of arith-
metic variable-length operands is 16 bytes.
The effective length of variable-length
fields is one more than the length code.

1-48 (9/1/66)

Int roduction

INSTRUCTION SEQUENCING AND BRANCHING

¢ Unless otherwise specified,
sequentially.

instructions are processed

e Instructions are fetched from main storage during I-time and

executed during E-time.

The instructions of the stored program are

read out of main storage and then executed,
one at a time. Each instruction is decoded
in the control section of the Central Proc-
essing Unit (CPU).

After being decoded in the control sec-
tion of the CpPU, the instruction is execut-
ed. Arithmetical or logical operations are
performed in ALU. During processing of
every instruction, there are two periods of
time. The time during which the instruc-
tion is read out (fetched) from main stor-
age and interpreted is I-time
(Instruction-time). The operation speci-
fied by the instruction is performed during
E-time (Execution-time). Data is the name
generally given to information read out of
main storage during F-time. Instructions
are read out of main storage during I-time.
An instruction may be treated as data and
changed if it is read out during E-time.

In the System/360 there is no clear
division between I-time and E-time. That
is, before the instruction has been com-
pletely read out and analyzed by the con-

Instruction Address Field in PSW

trol section, some part of the execution
may have already been started. But for
simplicity, we can think cf I-time as teing
separate from E-time.

The instructions of a stored program are
generally read out and executed in a
sequential manner. The sequential manner
of instruction fetching and execution can
be changed by instructions known as branch
instructions.

Recall that instructions are generally
thought of as having twc kasic parts. The
op code of the instruction is used to tell
the computer what to dc¢ (such as add or
branch). The other portion of the instruc-
tion generally tells the computer where
data is located. For this reason it is
called the address portion.

An instruction may ccntain information
other than data addresses. The address of
the next instruction tc ke executed can ke
specified by a branch instruction. (In
some instructions the data to be operated
on can be contained in the instruction.)

e The Program Status Word (PSW) is a double-word containing 8
bytes (64 bits) of control and status information.

¢ The current PSW is maintained in machine circuitry.

* The address of the next sequential instruction to be fetched

from main storage is contained in bits 40-63

the PSW.

In the System/360 there is a doubleword of
information used to indicate the status of
the program as well as to control the pro-
gram. This doubleword is called the Pro-
gram Status Word (PSW). As in all double-
words, the bits of the PSW are numbered 0
to 63, from left to right. The PSW
includes status information such as:

1. The location of the next instruction.

2. Whether an arithmetic operation has
resulted in a positive or negative

(24 bits) of

answer. (Possibly the operation ended
with a zero balance or an overflow.)

The current PSW reflects the status and
controls the prograr currently keing exe-
cuted. The current PSW is not stored in
any of the 16 general registers or addres-
sakle locations in main storage. It is
kept in some internal areas of the
System/360 that are not addressable by the
program. Although the current PSW may be
scattered throughout the CPU, it is consid-
ered as one double word of information.

2030 FETOM (9/1/66)

1-49

Introduction

The location of the next instruction to
be fetched from main storage is indicated
by bits 40-63 of the PSW.

PSW

r -7
jo 39|40 63
L 1

b e ot s s o il

|
|
|
-
24-Bit Instruction Address

The instruction address portion of the
current PSW is updated for each instruction
that is fetched and executed. That is, if
an RR type instruction is fetched from
location 1000, the instruction address
portion of the current PSW is updated. The
location of the next sequential instruction
is 1002 because an RR-format instruction is
one halfword (two bytes) long. Thus the
instruction address portion of the PSW is
updated to 1002.

Instruction Branching

After the RR type instruction at loca-
tion 1000 has been executed, the instruc-
tion address portiocn of the PSW (which
contains 1002) is used to fetch the next
instruction. If the instruction at loca-
tion 1002 is the RX (twoc halfwords long)
type, the instruction address portion of
the current PSW is then changed to 1006.

Because instruction length is always a
multiple of halfwords, the instruction
address portion of the current PSW is
updated by some rultiple cf two (excert
after execution of a branch). The instruc-
tion address in the current PSW is
increased bty 2, 4, or 6 depending on bits 0
and 1 of the current instruction's op code.
For example, if bits 0 and 1 of the current
instruction's op code ccntain 11, the
instruction address in the current PSW is
increased by 6.

e A branch instruction is used to make program decisions.

e A branch instruction provides a way to leave one instruction
sequence and branch to another instruction sequence.

e The instruction address field of the current PSW is changed
to the branch-to-address when the program branches.

Decision blocks in a program flow chart are
represented ny a diamond shaped symbol.

The use of this symbol in a program rep-
resents a decision as to what instruction
to use next. Should the program continue
with its present sequence of instructions,
or should it branch out to another sequence
of instructions? Sometimes the program is
trying to decide which of two or more new
sequences to branch to.

As you know, the instruction address
portion of the carrent PSW is used to fetch
the next sequential instruction. However,
whenever a branch is executed, the contents
of the instruction address portion of the
current PSW are replaced by the address of
the instruction being branched to.

1-50 (9/1/66)

For example, if an RX instruction (at
location 1000) is fetched, the instruction
address portion of the current PSW is nor-
mally changed to 1004, TIf however, the
instruction at 1000 says to branch to loca-
tion 2000, the instruction address rortion
of the current PSW is changed to 2000.

Here, kits 40-63 of the current PSW
might be updated to 1004 and then changed
to 2000. The action depends on the parti-
cular branch instruction used. However, at
the time of the branch, the address of the
branch-to location is placed in bits 40 to
63 (instruction address rportion) of the
current PSW.

Introduction

Condition Code Field

* The condition code occupies bits 34 and 35 of the current
PSW.

* The 4 combinations of the condition code are 00, 01, 10 and
11.

* The condition ocode indicates the results of certain instruc-
tions (such as add, subtract, or comgare).

* Some instructions do not affect the condition code.

The condition code is located in bits 34 The condition code reflects the results
and 35 of the PSW. with these settings:
Condition Arithmetic
34,35 Code Results
0-——---33 : : 40 63 00 zero balance
- T 3 -1 1 01 < zero (negative)
] | C | Instruction]
| | |] 10 > zero (positive)
| | C | Address |
L 1 1 4 11 overflcw
condition Code The condition code is set at the end of
algebraic add or subtract operations
The condition code can have any one of (either decimal or binary). The condition
four bit combinations: code retains its setting until the end of
the next instruction that can change it.
1) 00
Another use of the condition code is to
2) 01 indicate the result of a cormpare operation.
A compare operation consists of corparing
3) 10 the first operand to the second operand.
The condition code is set to indicate the
4) 11 result. Neither operand is changed. The
condition code is set and indicates whether
The condition code is set to one of its the first operand is equal to, less than,
four combinations after an instruction has or greater than the seccnd operand, as
been executed. Then it is placed in the follows:
condition code portion of the current PSW.
Not all instructions affect the condition condition Code compariscn
code.
00 equal
One of the uses of the condition code is
to indicate the result of arithmetic opera- 01 low
tions, such as add or subtract. There are
four possible results of an algebraic add 10 high

or subtract:
Note that a condition code setting of 11

1) Positive number, is not possible after a compare operation.
Note also that the condition code is used

2) Negative number, to indicate more than just the result of an
algebraic or comparison operation. The

3) Zero balance, or actual meaning of the ccndition code
depends on the results of the operation

4) An overflow. that caused it to be set,

2030 FETOM (9/1/66) 1-51

Introduction

Condition Code Branching

¢ The instruction that tests the condition code is called

Branch on Condition.

e Kranch on Condition can have either the RX or RR format.

» The R1 field is used as the mask field to test for a speci-
fic setting of the condition code (one bit set in mask
tield) or a multiple condition code setting (two or more

bits set in mask field).

e A mask field of 0000 results in a NO-OP instruction.

e A mask field of 1111 results in an unconditional kranch

instruction.

One of the instructions of the System/360
is an instruction called Branch-on-
Condition. This instruction causes the
system to examine the condition code and
branch if the condition code setting
matches that of a code in the Branch-on-
Condition instruction.

The Branch-on-Condition instruction can
be either in the RR or the RX format. In
either case, the Rl field is coded so that
the condition code can be tested. The
Branch on Condition (RR format) instruction
is:

T T
| R1 |
4

4

r 3
| 07 R2 |
L J

The branch-to address is in the general
register specified by the R2 field. The RX
format is:

| 47 X2 | B2 | D2

f T 'll'— T '
L 1

e e o

Effective
address is the
branch-to
location

The R1 field in the Branch-on-Condition
inStruction is referred to as the mask

field. The condition code is tested by
being matched against the mask field.

The mask field is tested against the
condition code according to the following
chart:

Mask Field Condition Code
1000 00
0100 01
0010 10
0001 11
1-52 (9/1/66)

Any of the possible ccndition code
settings can be tested by setting the
appropriate bit of the mask field. 1If bits
8-11 of a Branch cn Condition instruction
contain 1000, a branch occurs only if the
condition code has a setting of 00. If the
condition code is 01 and the mask field is
0010, a branch does not occur.

Sometimes the four possiktle settings of
the condition code are referred to as deci-
mal digits:

Condition Code Deciral Equivalent

00 0
01 1
10 2
11 3

The kits of the Branch-on-Condition
instruction's mask field correspond to the
condition code settings in a left to right
fashion.

gmm—m———=-11

0,1, 2, 3<-——--Condition Code

To test for a specific condition code
setting, the corresponding bit of the mask
field must contain a 1.

If the mask field ccntains 0000, ncne of
the possikle condition code settings can
cause a match and a branch can not occur.

If the mask field contains 1111, all or
any of the possible condition code settings
match corresponding mask bits. Because the
condition code always contains at least one
of the four possible settings, a mask field
of 1111 always results in a branch.

In summary, the branch on condition
instruction:

Introduction

a. Can be used as a NO-OP instruction, when
its mask field is 0000.

b. Can test for a specific result (such as
an equal compare) when one of the bits
of the mask field is set on.

SYSTEM/360 AND INTERRUPTIONS

Supervisor Concepts

c. Can test for a multiple result (such as
an equal or low compare) when two or
more bits of the mask field are set on.

d. Can be used as an uncoditional branch
when its mask field is 1111.

e Control programs perform such functions as program loading,

storage protection assigning,
ruption handling,
cations handling.

e One control program (the supervisor),
core storage at all times.

in general,

I/0 operation handling, inter-
job flow handling, and operator communi-

remains in

e Basic functions of the supervisor program are I/0 control

and interruption handling.

A program iS a sequence of instructions
designed to solve a problem, For example,
a payroll problem program could:

1. Get an employee's record,

2. Calculate gross and net pay, and

3. Put the results out in the form of a
pay check.

The payroll program then gets the next
employee's record and repeats the process.
This sequence of instructions continues
until all employee’'s records are processed.
Admittedly, this is a simplification of a
payroll problem. Most programs, however,
are similar to this payroll example in that
they can be broken down into the three
operations:

1. Get record.
2. Process record, and
3. Put record into an output file.

These problem solving programs are
referred to as problem programs.

Process

Prokblem Program logic

Another example of a Problem Program is
an assembly program. Here the proklem is
different, but the three kasic operations
are the same. The problerm consists of:

1. Getting a symbolic (socurce language)
statement,

2. Processing it by translating the state-
ment into machine language, and

2030 FETOM (9/1/66) 1-53

Introduction

3. Putting the results in the output file
(object program).

Get source language
statement

Process statement by
translating into
machine language

Put results in
object program

During recent years, data processing
machines have been developed with faster
and faster internal processing speeds. As
a result, the execution times for these
problem programs has been continually
reduced, but with no corresponding reduc-
tion in the time it takes for an operator
to load-in the next problem program and
manually set-up input data. In some data
processing installations, the average "set
up” time is about equal to the average
"execution” time. 1In other words, the data
processing system is idle about half the
time, while the operator is "setting up”
for the next problem program. Clearly this
is an inefficient way to control an instal-
lation.

In an attempt to reduce this idle time
and keep the system running, programmers
began to use stored programs to control the
execution of problem programs. These pro-
grams are called Control Programs. (Other
names used are "Monitors"™ and
"Supervisors".) These Control Programs
were at first written only for the require-
ments of a particular installation. Later,
as the similarities between control pro-
grams became obvious, IBM began to supply
generalized control programs which could ke
tailored to the requirements of each
installation.

The simplest type of control program is
used to supervise the loading of problem
programs; it might operate in the following
manner:

1. An input tape is prepared. This targe
contains the problem programs and asso-
ciated data (Figure 1-20).

2. The operator loads the control program
into main storage from a second tape.

3. The control program loads the first
problem program and then passes control
(via a branch) to the problem program.

1-54 (9/1/66)

4. The problem program reads in its data
and performs its assigned task.

5. When the probler rrcgram is finisheqd,
it does not issue a halt instruction.
Instead it passes ccntrol (by
branching) kack to the control program.

6. The control program then loads in the
next problem program and passes control
to it.

7. This operation continues until all
proklem programs have been executed.

Read in under Supervisor Control

PROBLEM
PROGRAM

DATA

Read in under Problem Program Control

SUPERVISOR

Main Storage

Read in under Operator Control

Supervisor

Prograr—Lcading Control Pro-
gram

Figure 1-20.

Notice several things about the use of a
control program in the preceding examgle:

1. The system never halted Lbetween joks.

2. The control program remained in main
storage during proklem program execu-
tion.

3. The control program served as a link
between jobs. 1Its cnly function was to
bring in a new problem program as each
job was finished.

4. The proklem programs handled their own
input-output operations (Figure 1-21).

Introduction

MAIN STORAGE

Control _ _ .
Data ——3
CONTROL
PROGRAM
PROBLEM
PROGRAM

Rd Prog. C

J—————f

Prog. B Executed

Rd Prog. A

Control Prog. g

Problem Prog.
Prog. A Executed

Rd Prog. B

I/0 Operations Handled by
Problem Program

Figure 1-21.

This is one example of the use of a
somewhat limited control program. Here,
the entire control program is in main stor-
age. Other functions, however, can be
included as part of a control program. One
such function is the initiation of input-
output operations. The problem program is
mainly interested in processing data. The
actual read and write operations necessary
to transfer data between input-output
devices and main storage can be handled by
the control program (Figure 1-22).

Problem Program Control Program

i -
[—
e — —
[
READ I/O
—
*\~\ 'Nh
- — —
- —_—

PROCESS

Figure 1-22. Control Program Handling I/0

In this I/0 handling function of a con-
trol program, control passes back and forth

between the problem and control program
during the execution of the probler pro-
grame

In the first control program example,
the only time the control program was in
control was Letween jobs. Now, however,
the control program not only reads in new
problem programs, but it alsc (during the
execution of the problem program) is used
to start the necessary 1/C units for input-
output data (Figure 1-23).

The control progranm can ke given other
functions as well. Of course, the more
functions that a control program has, the
more majin storage space it requires,
thereby leaving less available storage for
problem programs. This prcklem is solved,
to some degree, by placing those sections
of the control program that are used infre-
quently on a high speed fast access 1/0
device, such as a disk stcrage unit. Only
those sections that are necessary to super-
vise the running of protlem programs are
kept in main storage. The portion of the
control program that resides in main stor-
age is known as the Supervisor. The super-
visor program calls in (fror disk to main
storage) other sections of the control
program when necessary.

Control programs have come into general
acceptance because of the need to reduce
machine idle time and manual intervention
and to increase the overall efficiency of a
data processing installaticn.

MAIN STORAGE

CONTROL
PROGRAM

PROBLEM
PROGRAM

1/O for Prog. A Data

Control Prog, Rd Prog. A Rd Prog. B
Problem Prog.

EXECUTE PROGRAM A

Figure 1-23. Control Program Sequencing

2030 FETOM (9/1/66)

1-55

Introduction

Interruptions and the PSW

e An interruption terminates the current sequence of instruc-
tions and causes a machine forced-branch to the supervisor

program.

e An interruption results in storing of the current PSW in
main storage, and fetching of a new PSW from main storage.

* Processing resumes at the instruction address specified by
the instruction address portion of the new PSW, which is now

the current PSW.

» There are five classes of interruptions.

Each has both an

0ld and a new PSW location in main storage.

Because there is no halt instruction in
System/360, a problem program, when fin-
ished, must be able to branch into the
supervisor so that a new problem program
can be loaded. Also when a machine or
program check occurs, an automatic branch
to the supervisor is usually desired.

These automatic branches into the super-
vior are called Interruptions. That is,
the current sequence of instructions is
interrupted and an automatic branch is
taken to a new sequence of instructions.
Both machine checks and program checks can
cause automatic branches or interruptions.
Also, when a problem program is finished,
it signals the supervisor via an interrup-
tion.

An interruption is similar to a branch.
However, it does much more than a branch
instruction. A branch instruction can only
cause the instruction address portion of
the current PSW to be replaced.

Effective
Address

Address

e = |

[}
!
]
T
] Instruction
]

pom e e oy

When an interruption occurs:

1. The current PSW is placed in main stor-
age where it is called the old PSW, and

2. A new PSW is brought out of main stor-

age, and it becomes the current PSW.

1-56 (9/1/66)

[—————————

|
{01d PSW fet= (1) ===,

I
|
| t-———i | |
J——

| b} | S —
| |New PSW|-4-(2)-—-———4Current PSW|
‘ | S | I | RS
| S —— J

Main Storage

Assuming that the instruction address
portion of the new PSW contains 1096, the
first instruction processed after the
interruption is at address 1096.

There are five distinct classes of
interruptions:

Can be caused by pressing
the Interrupt key on the
system ccnsole.

1. External

Ccaused by the Supervisor
Call instruction.

2. Supervisor

3. Program Caused by a program check.

4. Machine Caused by a machine check.

Caused Lty an Input/Output
operation.

5. 1I/0

Each of the five classes of interrup-
tions has its own rain storage locations
for new and 0ld PSW's as follows (decimal
notation used):

Interruption 0Old_ PSW New PSW
External 0024 0088
Supervisor 0032 0096
Program 0040 0104
Machine oous 0112
I/0 0056 0120

For example, a machine check causes the
current PSW to be placed in location 0048
and a new PSW to be brocught out from loca-

Introduction

tion 0112. Notice that these locations are
all divisible by eight because PSW's are
doublewords, and must reside on doubleword
boundaries. (It is interesting to note
that each new PSW is located 64 storage
locations higher than the corresponding old
PSW.)

Although an interruption may be initiat-
ed by an instruction (such as when the
supervisor call instruction initiates a
supervisor interruption), the actual stor-
ing and loading of the PSW is done automat-
ically by circuitry.

Interruptions occur only at the end of
an instruction and never in the middle of
one. The current instruction is completed
before an 1/0, external, or supervisor call
interruption is taken. 1In the case of
program and machine interruptions (which
indicate programming and circuit errors,
respectively), the interruption still
occurs at the end of execution of the
instruction. However, in these two cases,
the end may be forced by:

1. sSuppressing the instruction's execution
when a programming error is detected
during instruction fetch time, or

2. Terminating its execution when a pro-
gramming or machine error is detected
during execution time (Figure 1-24).

The branch is effected automatically by
internal circuitry. The current PSW is
placed in a fixed location in main storage
and becomes the old PSW. The old PSW gives
the specific reason for the interruption
and also provides a return to the inter-
rupted program. A new PSW is fetched from
a fixed location in main storage and
becomes the current PSW. The new PSW pro-
vides an entry into the correct routine in
the supervisor programe.

e | T ") 1
|01d PSWje-———y———e—Ja. Gives reason |
e for interruptionj

b. Provides return |
to Problem |

— s — e, O
P s s o e

Program |
F]
e |
|Current PSWje--—-~Controls
e ——d Program
|
| .
|New PSWje—m—ad —euu— ~-Provides entry
————— intc supervisor
program

PSW INSTRUCTION LENGTH FIELD: Once an
instruction has been read cut of main stor-
age, the instruction address portion of the
PSW is updated and specifies the next
instruction's address. Interruptions can
occur only after an instruction is fin-
ished. Therefore, the instruction address
portion of the old PSW does not contain the
address of the last instruction executed.
Instead, it contains the address of the
next instruction that would have been exe-
cuted if the interrupticn had not occurred.

when the interruption is completed, the
supervisor may elect tc return to the point
of departure from the problem program. It
does this by examining the ©cld PSW. In
some cases, the problem program instruc-
tion, performed just before the interrup-
tion, may have to be performed again.
Because the instruction address portion of
the old PSW is updated Lkefore the interrup-
tion occurs, and because instruction
lengths vary, the supervisor needs addi-
tional information to derive the instruc-
tion address. This additiocnal information
is contained in bits 32 and 33 of the old
PSW, and is called the instruction length
code.

[

Address

b e — e —
o w
|
o o0
p—— ———+

1
}|Instruction
|
|
|
1

o e e oy
O

'
|

|
L-Bits 34, 35~--Condition

Code

—— T, —— . -

lmee—-Bits 32, 33:
Instruction
Length Code

2030 FETOM (9/1/66)

1-57

Introduction

When the supervisor retrieves the old
PSW to determine where to re-enter the
problem program, the instruction length
code indicates what value must be subtract-
ed from the old PSW instruction address
field to produce the address of the op code
of the last instruction executed before the
interruption occurred. The instruction
length code is valid only for certain tygpes
of interruptions. The supervisor program
must determine if this information is to be
used.

Bits 32-33 of the PSW are set to 01, 10,
or 11 (depending of the length of the
instruction) before the current PSW is
stored as the old PSW.

PSW Bits 32-33 Instruction Length

01 1 Halfword
10 2 Halfwords
11 3 Halfwords

For example, the instruction length code
in the PSW is set to 10 (2) for an RX for-
mat instruction.

If the instruction address portion of
the old PSW contains 4000 (decimal) and the
instruction length code contains 11, the op
code of the last instruction prior to the
interrupt is located at 3994 {decimal).

A program routine must be provided for
each of the five classes of interruptions.
Each of these interruption handling rou-
tines process the interruptions in a dif-
ferent way. It is not always important to
be able to determine the last instruction
executed before the interruption. In the
case of program, machine, or supervisor
interruptions, an instruction in the prob-
lem program caused the interruption.

In the case of external and I/0 inter-
ruptions, the problem program did not cause
the interruption. As a result, it is unim-
portant to the supervisor program what
instruction was executed last in the prob-
lem program. After the interruption rou-
tine is completed, the next segquential
problem program instruction (address in old
PSW) is processed.

PSW INTERRUPTION CODE FIELD: Another field
in the PSW that is of value to the supervi-
Sor program is the interruption code field.
It is held in bits 16-31 of the PSW.

1-58 (9/1/66)

0 15 16 31 40 63
3 T T T T T]
{Inter- I I		Instruc-			
	ruption				tion Ad-
	Code			dress	
L 1) T W 1 J

t t

1|

[

Pl cs

| t-—-———Condition

] Code

|

| .
leee———————1Instruction

Length Code

When an interruption occurs, the current
PSW is stored in cne of five locations
reserved for old PSW's. It is at this time
that the interruption code of the current

PSW is set.

r .
| Interrurtion
| Occurs

L Al

I

|

|
| S 1
| Set Instructicn

|
| Length Code and |
| Interruption Code |

e e o o

v } ' 1
| Store PSW in |
| old PSW location |
i - J

|

!

|
T g 1
| Fetch |
| new PSW |
t J

The five classes of interruptions tell
the supervisor only the general reason for
the interruption. For instance, if the new
PSW is brought out of location 0040, then
the interruption was caused by a program
check. The supervisor still needs to know
what type of program check occurred. This
is the function of the interruption code in
the PSW. By examining the interruption
code in Lits 16-31 of the old PSW, the
program check routine in the supervisor can
tell specifically whether it was a specifi-
cation, addressing, or some other program
exception. In the case of I/0 interrup-
tions, the interruption code carries the
address of the channel and I/0 unit that
caused the I/0 interruption. (Figure
1-24).

Introduction

For example, when a program interruption
is caused by a fixed-point overflow, the
interruption code of the old PSW contains
0000000000001000. (Refer to Figure 1-24.)

For brevity's sake, the interruption
code is often represented as 4 hexadecimal
digits:

Binary Hexadecimal
0000000000001000 0008

There are five old PSW's in main stor-
age. How does the supervisor know which
one to use? The answer is, that each of
five new PSW's point to different routines
in the supervisor. These routines in turn
use the old PSW location that corresponds
to the particular class of interruption.
For example, the program check routine in
the supervisor uses the old PSW at location
0040, while the supervisor call routine
uses the old PSW at location 0032,

Interruption 01ld PSW New PSW

External 0024 0088
Supervisor 0032 0096
Program 0040 0104
Machine oous 0112
170 0056 0120

In the case of an interruption caused by
a machine check, the PSW that was controll-
ing the program prior to the interruption
is stored automatically in location 0048.
Then the doubleword at location 0112 is
brought out and becomes the current PSW.
This PSW directs the system to that area of
the supervisor program that handles machine
checks. The machine check handling routine
of the supervisor is written so that the
doubleword at location 0048 is processed as
the old PsW.

In the case of an interruption caused by
a program check, the current PSW at the
time the interruption occurs is stored
automatically as the old PSW at location
0040. Then the doubleword at location 0104
is brought out and becomes the current PSW.
This PSW directs the system to the supervi-
sor routine that handles program checks.

The program check handling routine of the
supervisor is written so that the double-
word at location 0040 is processed as the
old PSW.

In the case of an interruption caused Ly
the Supervisor Call instruction, the cur-
rent PSW is stored in location 0032. Then
the doukleword at location 0096 is brought
out and tecomes the current PSW. This PSW
directs the systemr to that portion of the
supervisor that handles supervisor calls.
One way a problem program could notify the
supervisor that the program is finished is
to issue a Supervisor Call instruction.
Thus the last instructicn of a problem
program would prokably be a Supervisor Call
instruction.

If the Interrupt key on the system con-
sole is pressed, an external interruption
occurs. In this case, the current PSW is
automatically stored at location 0024, For
an external interruption, the doubleword at
location 0088 is brought out and kecomes
the current PSW.

I/0 interruptions generally occur at the
end of an I/0 operation. Most 1/0 opera-
tions are overlapped with processing. The
I/0 interruption signals the supervisor
that the I/0 operation is finished. An I/0
interruption causes the current PSW to ke
stored at location 0056. The new PSW at
location 0120 is brought out and kecomes
the current PSW. This PSW directs the
system to that section of the supervisor
program that handles I/0 interruptions.

Problem Prog.-+ (e ——— (rem—
| |
| |
| |

Supervisor---— » tem—l
Proge. 1 4 t
|

Supervisor Call

—n —

t
|
| Supervisor
|
|

Interruption Handles I1/0
Interrupt
|
Supervisor I/0 Operation
Starts I1I/0 Ooverlarped
Operation With Processing

2030 FETOM (9/1/66)

1-59

Introduction

Interruption Source Interruption Code Mask | ILC Instruction
ldentification PSW Bits 16=31 Bits Set Execution
Input/Output (Old PSW 56, New PSW 120)

Multiplex Channei 00000000 aaaacaaa 0 x Complete
Selector Channel 1 00000001 aaaaaaaa 1 x Complete
Selector Channel 2 00000010 aaaaaaaa 2 x Complete
Selector Channel 3 00000011 aaaaaaaa 3 x Complete
Selector Channel 4 00000100 aaaaaaaa 4 X Complete
Selector Channe!l 5 00000101 aaaaaaaa 5 x Complete
Selector Channel 6 00000110 @aaaaaaa 6 x Complete
Program (Old PSW 40, New PSW 104)

Operation 00000000 00000001 1,2,3 Suppress
Privileged Operation 00000000 00000010 1,2 Suppress
Execute 00000000 00000011 2 Suppress
Protection 00000000 00000100 0,2,3 Suppress/Terminate
Addressing 00000000 00000101 0,2,3 Suppress/Temminate
Specification 00000000 00000110 1,2,3 Suppress
Data 00000000 00000111 2,3 Terminate
Fixed-Point Overflow 00000000 00001000 36 1,2 Complete
Fixed-Point Divide 00000000 00001001 1,2 Suppress/Complete
Decimal Overflow 00000000 00001010 37 3 Complete
Decimal Divide 00000000 00001011 3 Suppress
Exponent Overflow 00000000 00001100 1,2 Terminate
Exponent Underflow 00000000 00001101 38 1,2 Complete
Significance 00000000 00001110 39 1,2 Complete
Floating-Point Divide 00000000 00001111 1,2 Complete
Supervisor Call (Old PSW 32, New PSW 96)

Instruction Bits 00000000 rrrrrrrr 1 Complete
External (Old PSW 24, New PSW 88)

External Signal 1 00000000 xxxxxxx]1 7 x Complete
External Signal 2 00000000 xxxxxx 1x 7 X Complete
External Signal 3 00000000 xxxxx 1xx 7 x Complete
External Signal 4 00000000 xxxx1xxx 7 x Complete
External Signal 5 00000000 xxx1xxxx 7 x Complete
External Signal 6 00000000 xx¥xxxxx 7 x Complete
Interrupt Key 00000000 x Ixxxxxx 7 x Complete
Timer 00000000 Ixxxxxxx 7 X Complete
Machine Check (Old PSW 48, New PSW 112)

Machine Malfunction 00000000 00000000 13 x Terminate

Notes:

a = |/O Device Address

r = Bits 8-15 of Supervisor Call Instruction

x = Unpredictable

Figure 1-24.

1-60

(9/1/66)

Interruption Code and Action Chart

Introduction

Load PSW Instruction

* The Load PSW instruction is used to return to the problem

program after an interruption.

* The Load PSW instruction is in the SI format.

is ignored.

The I2 field

* A doubleword is loaded into current PSW circuitry (from
locations in main storage) by the Load PSW instruction.

After the end of the I/0 interruption rou-
tine in the supervisor, it is desirable to
return to processing the problem program.
Simply branching back to the problem pro-
gram would not be desirable. A branch
instruction only affects the instruction
address portion of the PSW. Other parts of
the PSW are also important in controlling
the processing of a program. For one
thing, the condition code setting in the
controlling PSW for the I/O interruption
routine would not necessarily be the same
as it was before the I/O interruption
occurred. It would be best to be able to
give control back to the problem program
with the same PSW the problem program was
using when the I/0 interruption occurred.

This can be done in the System/360 with
an instruction known as Load PSW. This
instruction is used by the supervisor to
load the old PSW back in the system's con-
trol section. This is the last instruction
in the supervisor's interruption handling
routine. Note that this return (by replac-
ing the PSW) to the problem program is done
by means of an instruction (load PSW) and
is not automatic, as is an interruption.

““““ r b}
|0ld PSW | |Problem Programj
Leye————e J L -4
| t t
] | (D | (D)
| | |
I | I
| gt 1,
L->| Current PSW |
(3) ¢ T 4
¢ I
| () |
| I r
| |Supervisor
r—————1 t->|Interruption
| New PSW| |Handling
[IS 4 (1)|Routine

|
(3)| Load PSW
L

R e et . . St o, T et i

As can be seen from the preceding
diagram, interruption action is as follows:

1. At the time of the interruption, the

current PSW (which is controlling the
problem program) is stored in the old
PSW location. This is done automat-
ically by machine circuits. The old
PSW interruption code gives the reason
for the interrupticn. The instruction
address portion of the old PSW indi-
cates the point at which the prokblem
program was left.

2. A new PSW is then brought out of stor-
age and becomes the current PSW. This
new PSW points to the first instruction
of the interruption handling routine
which is part of the surervisor pro-
gram.

3. After the interruption has been taken
care of, the last instruction of the
interruption handling routine is Load
PSW. Processing this instruction caus-
es the o0ld PSW to kecome the current
PSW, and a return is made to the prob-
lem program.

The Load PSW instructicn is of the SI for-
mat :

T T -
| B1 | D1
i i

b o ol

r T
|Op Code | I2
L i

In the Load PSW instruction, the I2 field
is ignored.

1) T N - === l 1
| 82 | 12 | B1 | D1 |
i 1 L L J
t ¢ ~—
| | '
Load PSW | |
Op Code | |
in Hex | |
| |
Ignored |
|

Effective address of double
word that is to be loaded as
the PSW. Note that the
current PSW at the time this
instruction is fetched is
not stored anywhere and is
therefore lost.

The Load PSW instructicn can be used ky
a supervisor program to change the current

2030 FETOM (9/1/66)

1-61

Introduction

PSW. The main use of the Load PSW instruc-
tion is toO return to the problem program
after an 1/0, supervisor call, or external
interruption has been serviced. It could
also be used to load the PSW for a new
problem program after the new program has
been read into the machine by the supervi-
SOr programe.

Supervisor Call Instruction

To return to a problem program after an
I/0 interruption has been serviced, the
effective address generated by the B1 and
D1 fields of a Load PSW instruction should
be 0056 (38 in hexadeciral). Refer to
Figure 1-24.

e The Supervisor Call instruction (RR format) is used by the
problem program to pass control to the supervisor program by

causing a supervisor call interruption.

e« The R1 and R2 fields of a Supervisor Call instruction are
placed in the interruption code field of the supervisor call

old PSW.

The supervisor call interruption is used by

the problem program to pass control to the
Supervisor program. There are a number of
reasons why the problem program might want
to call the supervisor program. Two of the
major reasons are:

1. To tell the supervisor program that the
problem program is done. The supervi-
sor might then read in a new problem
program and load its PSW.

2. To request the supervisor program to
start an I/0 operation for the problem
program.

The Supervisor Call instruction is of
the RR format:

The Supervisor Call instruction causes a
supervisor call interruption. The eight
bits of the R1 and R2 fields are placed in
the interruption code of the old PswW.

L 1 k] v 3
] oa] R1L | R2 |
L L i 3
\—M/
I"i T T 3
Location | jold PSW | |
0032] |] |
L 1 1 t 3
r T T 1
| |16 31 |
el -1 3
Current PSW
Location 0096 New PSW
1-62 (9/71/66)

Because the bits of the R1 and R2 fields
are stored as the interruption code, they
can tell the supervisor program the reason
for the interruption. Resulting actions
vary, depending on who wrote the supervisor

program. For instance:
r~ T - 1 .
| OAa | 0} 0 | Supervisor
1 L i J
\’\1’\/ call Instruction

This interruption code
might be used to signal a supervisor pro-
gram that the problem program is finished.

Given the following supervisor call
instruction (in hex), the binary bit struc-
ture that would be place in the interrup-
tion code of the o0ld PSW is 11010000 (bits
16-31 of the old PSW in location 0032):

oA D

- —

—
|
L

1
o |
P

Introduction

Masking Interruptions

* Some interruptions are prevented from occuring by mask bits

in the current PSW.

* The system mask is in bits 0 to 7 of the PSW.

These kits,

when zero, prevent (mask) external and I/O interruptions.

* The machine check mask is bit 13 of the PSW.
Machine checks are not

allows machine errors to be ignored.

When off, it

normally masked off except as a diagnostic aid.

e The program mask is stored in bits 36 to 39 of the PSW.

when zero,
gram checks from causing interruptions.

these bits are used to prevent 4 of the 16 pro-

s Eleven program check interruptions and the supervisor call

interruption cannot be masked off.

Sometimes, it is not desirable to allow an
interruption. Consider, for example, an
I/0 interruption. In the System/360 it is
possible to have simultaneous I/0 opera-
tions on two or more channels. When one
operation is completed, an I/0 interruption
usually occurs. The PSW is stored to give
the supervisor program the reason (which
I/0 unit) for the interruption. This old
PSW also gives the supervisor program a way
in which to return to the interrupted prob-
lem program. If another I/0 interruption
is allowed before the first one has been
completely handled, the old PSW (from the
problem program) is lost. The supervisor
program would then not be able to return to
the problem program via the Load PSW
instruction.

r]
1st I/C Interruption-->|Proktlem Program|
L]

Location 0056]

|01d PSW|<——mm—mmam -
| W 4

| 1
rm——d————
|Current PSW]|

— 2
t 2

|
I

-

|[New PSW|
L.......‘,_.._J

!
| r -
| |I/C Interruption
t >|Routine in
| Supervisor
|Program

|

jLoad PSW
r : >|from 0056

L S

e e e e e e e e b

If a second I/0 interrupticn were allowed
to occur before the Load PSW instruction is
executed, the current PSW at this point
would be stored in location 0056. This
would cause the o0ld PSW (also in location
0056) from the problem program to be dest-
royed.

SYSTEM MASK: How does the supervisor pro-
gram prevent this second undesirable I,/0
interruption until it has processed the
first one? It does this by proper use of
mask bits in the PSW.

2030 FETOM (9/1/66) 1-63

Introduction

Machine Check Mask

0 7 1316 31 36 39 40 63

r v ¥ 2 NGNS SR s S

|] |Inter- |I | | JInstruc- |

| | | ruption|L | C] | tion |

] | | code |C | C| | Address |

L) § i 1 1 i i J
* L

System Program

Ma sk Mask

Notice that:

1. Bits 0-7 are the system mask bits.

2. Bit 13 is the machine check mask bit.

3. Bits 36-39 are the program mask bits.
When any one of these mask bits is set

to zero, the corresponding interruption is

masked or prevented. Let's first consider

the system mask bits. These eight bits can

be used selectively or collectively to mask

I70 and external interruptions as follows:

PSW Bit Masks Interruption from

Multiplexor Channel
Selector Channel
Selector Channel
Selector Channel
Selector Channel
Selector Channel
Selector Channel
External

NoOoUnME WO
AUV & W

(Note that the only system mask channel-
bits applicable in a Model 30 are bits
0, 1, and 2.)

To prevent (mask) all I/0 and external
interruptions, bits 0-7 of the current PSW
must contain zeros.

Notice that there is only one 1I/0
interruption. However, each of the six
selector channels and the multiplexor chan-
nel can be selectively prevented from caus-
ing an I/0 interruption.

A system mask of 00111110 masks some 1/0
and all external interrupts. A system mask
of 10000001 prevents 1/0 interruptions by
all selector channels.

The system mask that determines whether
or not to prevent any 1/0 or external
interruptions is in the current PSW. 1In
the case of an 1/0 interruption, the
address of the device and channel causing
the interruption is stored in the interrup-
tion code of the old PSW.

To prevent a second I/0 interruption
before a first one has been completely
processed, the system mask of the new PSW
should contain zeros.

1-64 (9/1/766)

Fror Prckler Program

| A |
|FF | |
| ISR S—

t
|
|
!

1
|
' |
|]
| |
| 014 PSW i. |
| |
| |
| . ===
System Mask in Hexa- |FF | jcurrent
| decimal |] | PSW
] [W W |
o} 7 2. |
] |
| |
1= |
100 | | ===)

| PR p— |

New PSW To Supervisor Program

One more point should be made concerning
the system mask. When it contains zeros,
I/0 and external interruptions remain pend-
ing. As soon as the syster mask is set to
ones, another interruption can be taken.

The last instruction in the I/0 inter-
ruption routine of the supervisor program
is Load PSW. The old PSW in main storage
location 056 (decimal) is brought out and
becomes the current PSW. Once this is
done, I/0 interruptions can once more occur
because the syster mask cf the problem
program's PSW probably contains all ones
(FF). Of course, a system mask of all ones
allows not only I/0 interruptions but also
external interruptions.

MACHINE CHECK MASK:

r T T ™ T T T g 3
|] |Inter- | I |] |Instruc- |
|] |ruption| L | C | |tion |
]] jcode] €} C | |Address {
L L . i i | . &]

t t ¢
System Machine Program
Mask Check Mask Mask

(bit 13)

A machine check interrurtion can be
masked by means of bit 13 of the PSW. If
this bit contains a zero, machine checks
are ignored, and no machine interruption
can occur. Of course, this is not the
usual state of the wmachine check mask Lkit.
It is usually set to one, so that any
machine check will cause an interruption.
The Check Control switch, on the system
console, when set to the stop position,
causes an error stop (even if PSW bit 13 is

Introduction

set to zero) rather than an interruption
when a machine check occurs. The usual
mode of operation is to have this switch
set to the process position and PSW bit 13
set to one. This means that when a machine
check (such as even parity) occurs, an
error stop does not occur. Instead an
interruption occurs.

In summary then, there are three basic
courses of action when a machine check
occurs:

1. A machine check interruption (the PSW
is stored in location 0048 and a new
PSW is fetched from location 0112.)

2. An error halt when the Check Control
switch is set to the stop position.

3. The check is ignored if PSW bit 13 is
zero and the Check Control switch is
set to the process position.

Depending upon the settings of switches
on the system console, other actions can
occur when a machine check occurs. These
actions are described in Appendix B of this
publication.

There is one other item of information
concerning machine checks. It is called

log-out. Unless the machine check is being
ignored, information concerning the status

of internal circuitry is automatically
placed in storage starting at machine loca-
tion 0128 (decimal). This log-out occurs
prior to loading of the machine new PSW
that is used to control the program error
handling routine.

Just how much information is contained
in a log-out and what it means depends on
the particular model of System/360. Howev-
er, log-out always occurs prior to a
machine interruption. This log-out infor-
mation reflects the status of the machine's
internal circuitry. As such, it is mean-
ingful only to someone who has a knowledge
of the machine's internal circuitry.

For a Model 30, the maximum log-out area
used includes main storage locations 128,
129, 130, 131, 133, 134, 135, 137, 138, and
139 (decimal).

PROGRAM MASK: Program checks (such as a
specification exception) can also cause an
interruption. On a program interruption,
the PSW is stored in location 0040 and a
new PSW is fetched from location 0104.
Certain program interruptions can be masked
off by use of bits 36-39 of the PSW.

r T T T T T T -1
| | JInter- | I |] | Instruc- |
| | |ruptiocn| L | C | | tion
| | | Code | €| C | | Address]
L A n i 1 L L J

t t U
System Machine Program
Mask Check Mask Mask

(Bit 13)

There are 15 possible exceptions that
can cause a prograr check (see Figure
1-24). On occasion, four of these may not
be considered as progran checks. The four
exceptions are:

1. Fixed-Point Overflcw
2. Decimal Overflow

3. Exponent Underflow
Concerned with
Floating Point
4. Significance

When one of the general registers is
being used as a counter in a program, it
may be desirable to test the counter for an
overflow. In such cases, an overflow
should not ke treated as a program check.
As a result, the program mask in the PSW is
available to the programmer to mask program
check interruptions caused by four excep-
tions, as follows:

36 39
p———————
{0000 |
[—d
t b
) _ RN
Fixed Point----4 | | L----Program Mask
overflow || Significance
Il
Decimal 1 Exponent
Overflow Underflow

All other programming exceptions (such
as specification) are always treated as
programming errors and always cause a pro-
gram interruption.

It is important to know which classes of
interruptions cannot be masked. They are
the supervisor call interruption and pro-
gram interruptions caused by all but the
four programming excepticns indicated in
bits 36-39 of the PSW.

2030 FETOM (9/1/66)

1-65

Introduction

Systemv/360 Status Bits

* Three bits in the PSW are used to control the System/360
mode or state.

* The ASCII mode bit (PSW bit 12) determines if decimal opera-
tions are done in EBCDIC mode (0) or ASCII mode (1).

e The wait state bit (PSW bit 14) determines if the System/360
is in the running (0) or wait (1) state.

¢ An external or I/0 interruption causes the System/360 to go
from the wait state to the running state.

e The problem state bit (PSW bit 15) determines if the
System/360 is in the problem (1) or supervisor (0) state.

s Privileged instructions can be processed only when the sys-

tem is in the supervisor state.

A program interruption

occurs in the problem state, if execution of a privileged

instruction is attempted.

PSW
0 63
r T T -
| | | I
Lee i L]

of bits 12-15, you are already familiar
with bit 13. It is the machine check mask
bit.

ASCII MODE BIT: Bit 12 is the ASCII rode
bit. ASCII is an information interchange
code adopted by the American Standards
Association to be used for data communi-
cation. The ASCII mode bit determines the
mode in which decimal operations are done
(i.e., in EBCDIC or ASCII mode). 1If bit 12
of the PSW contains a one, the ASCII sign -
(+ and -) codes and zones are internally
generated, rather than the EBCDI codes.
For example,
The number 1 in EBCDIC is:

1111 0001

Zone Numeric

The number 1 in ASCII is:
0101 0001
zone Numeric

When processing data with the instruc-
tions of the decimal feature, the following
are the standard signs generated:

1100

Plus
EBCDIC
Minus

1101

1-66 (9/1766)

If bit 12 of the PSW contains a one, the
signs that are generated when using the
decimal feature are:

1010 Plus
ASCII

1 011 = Minus

For example, +107 is:

If PSW D D D S

bit 12

is 0 0001 0000 0111 1100 EBCDIC
If PsSwW

bit 12

is 1 0001 0000 0111 1010 ASCII

When a packed decimal field is converted
kack to the unpacked format by the Unpack
instruction, the zone bits that are insert-
ed depend on the ASCII mode bit in the PSW.
For instance, +107 in EBCLIC node is
unpacked as follows:

v T 1
Packed |0001 0000|0111 1100]
L -1 3

T - T k]
Unpacked 1111 0001}1111 0000|11000111 |
L i 1 J

Zones and sign inserted if PSW Lit
12 is 0 (EBCDIC Mode)

If +107 is unpacked when in ASCII mode, the
following results are oktained:

r T 1
Packed 0001 0000|0111 1010}
L . i 4

Introduction

r D RS 3
Unpacked |[0101 0001}0101 0000}10100111 |
L A L 4

Zones and sign inserted if PSW 12
bit is 1 (ASCII Mode)

If the wait bit (PSW bit
14) contains a one, instructions are no
longer fetched and executed. Instead the
Systemv/360 waits until an interruption
occurs and changes the PSW. The new PSW
would normally contain a zero in bit posi-
tion 14.

WAIT STATE BIT:

Only the occurrence of I/0 or external
interruptions can change the status of the
CPU from wait to running state. Machine,
program, and supervisor call interruptions
can occur only when the CPU is in a running
state.

PROBLEM STATE BIT: The Model 30 can be
executing either the supervisor program or
the problem program. Accordingly, the
system is in either the supervisor state or
the problem state.

All instructions can be executed when in
the supervisor state. However, certain
instructions are not allowed in the problem
state. For example, all I/0 instructions
must be issued by the supervisor program.

Privileged Instructions

Bit 15 of the PSW is called the proklem
state bit. When bit 15 of the PSW is zero,
the instruction associated with that PSW is
part of the supervisor program. When bit
15 of the PSW is cne, the instructicn asso-
ciated with that PSW is part of the problemn
program. Thus, regardless of which PSW is
used, kit 15 identifies the state of the
System/360.

The program state bit allows the system
to be sure that those instructions reserved
for the supervisor state are executed only
by the supervisor program. If the problem
program attempts to execute an instruction
reserved for the supervisor state, a pro-
gram interruption occurs.

Normally:
1. Bit 15 is set to a 1 in the old PSW's

in main storage.

2. Bit 15 is set to a 0 in all five new
PSW's in main storage.

The old PSW indicates the next problem
program instructicn, while each new PSW
indicates a supervisor program instruction.

* Privileged instructions are those which can be executed only
in the supervisor state (bit 15 of PSW is 0).

e An attempt to execute a privileged instruction in the prob-
lem state (PSW bit 15 set to 1) results in a privileged
operation exception (a program interruption).

Not all privileged instructions are des-
cribed here. However, you should be aware
of the considerations that determine which
instructions are privileged.

For example, the supervisor program has
more control over changing PSW fields than
has the problem program. The following
table indicates how certain PSW fields can
be changed:

Bits Field Changed By
0-7 System Mask The Set System
Mask instruction
16-31 Interruption An interruption
Code
32-33 Instruction An interruption

Length Code

34-35 Condition Many
Code instructions
36-39 Program The Set Program
Mask Mask instruction
40-63 Instruction Execution of
Address Frogram

Notice that some of the PSW fields can
be changed by an instruction. oOther fields
can be changed only by changing the entire
PSW. Basically, there aré two ways of
changing the entire PSW. One is by way of
an interruption. The cther is by way of
the Ioad PSW instruction. It would not be
desirable to allow the proklem programmer
to use the lLoad PSW instruction because
this instruction changes all parts of the
PSW. The problem program should not have
that much control over the machine. Cnly
the supervisor program should retain this
control. As a result, Load PSW is a privi-

2030 FETOM (9/1/66)

1-67

Introduction

leged instruction. It can only be used in
supervisor mode (when bit 15 of the PSW is
0). The programmer could use the Load PSW
to change any part (or all) of the PSW when
the system is in supervisor mode. This
instruction can be used to return to the
problem program after an interruption has
been serviced.

S — 1 SR 1
| Supervisor| |Problem|
| | Load PSW==-—=-- >|

| Program | |Program|
b 1 | O ;|

The problem program can “branch" to the
supervisor program by way of a supervisor
call interruption.

[————————) S

Supervisor	<	Problem
	Supervisor callj	
	Interruption	
Program		Program

[J

——— . 1 v

Set System Mask Instruction

Notice, however, that a branch instruc-
tion is not used because it can not change
the problem state bit (bit 15) in the PSW.
The problem program cannot use the Load PSW
instruction because it is a privileged
operation. The problem program can only
use the Supervisor Call instruction to go
from the problem state to the supervisor
state (PSW bit 15). Of course, this
assumes that the new PSW in location 0096
(for supervisor call interruptions) has a
zero in kit 15.

Besides the Load PSW instruction, there
are two other instructicns which can change
the PSW. They are: Set System Mask and
Set Program Mask. The Set Programr Mask is
not a privileged instruction. BHence, the
problem programmer can use it to change the
program mask portion of the PSW. Actually
the Set Program Mask instruction changes
bits 34-39 of the PSW (which include the
PSW condition code field).

e The Set System Mask instruction is used by the supervisor
program to change the PSW system mask field.

s Set System Mask is a privileged instruction.

* Set System Mask is in the SI format, but the I2 field is

ignored.

The Set System Mask instruction is a privi-
leged instruction. Recall that the system
mask affects I/0 interruptions, but
Systenv360 is designed to have the supervi-
sor handle all I/0 operations. For this
reason, the Set System Mask instruction and
the four I/C instructions are privileged

operations. The Set System Mask instruc-
tion is:

r T -1 T 1

| 80 | 12 | B1 | D1 1
L i 1 A]

" This instruction is similar to the Load
PSW instruction in that the I2 field is
ignored.

—

r -1 v
| 80 12 | B1 | D1
[1 S ¥

N S——

Effective address
of byte that replaces
the system mask in
the current PSW

Set System
Mask Op —1
Code in Hex

Ignored

1-68 (9/1/66)

Given the following Set System Mask
Instruction (in hexadecimal), the binary
bit structure that is placed in bits 0-7 of
the current PSW is 11110000.

T

1) Bl v
|80 | 00 | O | 002} Set System
I | |] | Mask
L -l N NI S |
0 7
| Sttt | r 1
| System Mask]| 0000 | 0O)
R, J 0001 | FF |
0002 | FO]
0003 | OF i
0004 | AA |
b= 4
| Main Storage|
L J

Introduction

Set Proqram Mask Instruction

e The Set Program Mask instruction is used to change the set-
ting of the condition code and the program mask in the cur-

rent PSW.

e Set Program Mask is in the RR format and the R2 field is

ignored.

The Set Program Mask instruction (RR
format) is:

r T 3
] O4] R1L | R2 |
L 1 1
t + ¢
| |]
| | |
Set] | Ignored
Program | |
Mask op--—J |
code in |
hex]
L

-
Bits 2-7 of this register replace the con—j
dition code and program mask bits (34-39)
of the current PSH.

Example (note that B register is ignored):

————yTTesr T,y
Instruction] o4 | A | B |
L L L]
r T T 1
Reg B | FF | FF | FF | FF |
[N § i i 3
r T T T 1
Reg A | OF | OF | OF | OF |
L 1 i 1 Fi
L
001111
PSW
r T T A T =T g)
System		Inter-	I	C	Prog.}	Instruc-
Mask		ruption} L	C	Mask	tion	
		Code	€1		Address	
L i L i 1 i -4 J
34 39

Bits 2-7 (001111) of reg A are placed in
positions 34-39 of the PSW. (Notice that
the contents of general register B are
ignored.) This action replaces the condi-
tion code and the program mask. With a

program mask of all ones, any fixed point
and decimal overflows would be treated as
errors and a program interruption would
occur.

Let's try another exargle. Given the
following Set Program Mask instruction, the
binary bit structure of Lbits 32-39 of the
current PSW after the instruction is exe-
cuted are as shown., Bits 32-33 are the
instruction length code.

—
Instruction (in hex)-~-+{ 04 B A
(I

Gen. Reg A

r]
Gen. Reg B +| OF OF OF OF]
L " 4
r 1
Bits 32-39 ofww—w—-= ————={0 101010 1§
L ’ J
PSW before
32 39
T ‘ :)]
Bits 32-39 of———==——->|0 100 11 1 1}
L i

PSW after

Remember that the program mask is used
to determine which program checks can cause
interruptions. For examgle, with a program
mask of all zeros, a fixed point or decimal
overflow is not treated as a programming
error and a programr interrugtion does not
occur. Instead, an overflow sets the con-
dition code to 11. This is normal regard-
less of the program mask. But now an
interruption does not occur and the proklem
programmer can use the branch-on-condition
instruction to test for overflow.

2030 FETOM (9/1/66)

1-69

Introduction

STORAGE PROTECTION

e A four bit storage key is associated with each main storage

block of 2048 bytes.

* A protection key is held in bits 8-11 of the PSW.

* Every time a storage modification cycle is attempted, the
associated storage key and the PSW key are compared.

» If the two keys are not the same (and the PSW protection key
is not zero), a protection exception occurs, causing a pro-
gram interruption so that the storage modification cycle is

not taken.

Any information in main storage can be
modified or completely changed. The five
new PSW's in storage locations 0088-0127
can be changed. It is desirable to allow
the supervisor program to modify these new
PSW's. However, the problem program should
not modify this same area. It is undesira-
ble to have any part of the supervisor
program changed by the problem program.
What is needed is some means by which the
supervisor program can change any area of
main storage while the problem program can
change only its own assigned area. The
System/360 has a storage protection feature
which prevents a program from altering main
storage contents in specified areas of
storage. Storage protection is a special
feature in System/360 Model 30.

To implement the storage protection
feature, each main storage block of 2048
bytes has a key associated with it. This
storaqe key is four bits long and can con-
tain any number from 0 to 15. Storage keys
need not be assigned in any order. Any of
the 16 keys can be used regardless of stor-
age size.

For example, storage keys for a system
with 8K main storage could be:

r 1
| 6144 - 8191 |— 13-

5 1

| 4096 - 6143 | 5

1 4

r 1

| | Storage Keys
| 2048 - 4095 |—— 11—

i 4

T]

| 0 - 2047 | 0

L 1

A 16K main storage unit would need eight
storage keys if each 2048 byte increment
were assigned a different key.

Besides the storage key associated with
each block of 2048 bytes, there is a Pro-
tection Key in bits 8-11 of the PSW;

1-70 (9/1/66)

r T TTTY T-T™T T 1
System		AM	Intexr-	I	C	Prog.	Instruc-
Mask		WP	ruption	L	C	Mask	tion
]		Code Ict		Address			
L i | R o =k 1 J

]

|

]

|

.

Protection
Key

Any time the main storage unit takes a
storage modification cycle, the storage
protection feature is in operation. A
storage modification cycle is one in which
the information brought out of main storage
is not regenerated. Instead new informa-
tion is placed back intc the same rain
storage location. The fetching of an
instruction is not an example of a storage
modification cycle, because the instruction
is placed back into storage without modi-
fication.

The operation of the stcrage protection
feature is as follows:

1. On every storage modification cycle,
the protection key in the PSW is com—-
pared with the storage key associated
with the block of main storage in which
information is addressed.

2. A protection excepticn results in a
program interruption if the two keys
are not identical.

3. If the PSW protection key is zero, any
main storage area can be modified
regardless of its storage key. An
interruption does not occur.

For example, if the prctection key in
the PSW contains a six and a storage modi-
fication cycle is attenpted in an area
whose storage key is five, a program inter-
ruption occurs.

If the key in the PSW is zero and the

Introduction

storage key is six, however, a program
interruption will not occur.

Whenever a program interruption occurs,
the interruption code, placed in the old
PSW, indicates the reason for the interrup-
tion. When a storage protection mismatch
occurs, a protection exception is indicated
in the interruption code of the old PSW
(see Figure 1-28).

Assuming that the PSW has a protection
key of six, the 2K blocks of main storage
labeled A, C and D can be successfully
modified because their storage keys match
the PSW's protection key:

-

|A |—6
-}
|B 1—5
e
|C j—¢6 Storage Keys
e
| S

Set Storage Key Instruction

If the PSW protection key is zero, how-
ever, all four areas can ke modified.

Thus, when the PSW has a protection key
of zero, the current rrcgram can success-
fully modify data anywhere in main storage.
A protection key of zero would probably be
in a PSW used by a supervisor program that
has a storage key of zero.

» This instruction is used to change storage keys associated

with each 2048-byte block of storage.

s Set Storage Key (RR format) is a privileged instruction.

The protection key in bits 8-11 of the PSW
cannot be altered except as a result of
changing the entire PSW. The entire PSW is
changed only by the Load PSW instruction or
by an interruption. However, the storage
keys for each block of 2048 bytes can be
changed by an instruction known as Set
Storage Key (RR format). This instruction
sets the storage key for one block of 2048
bytes:

-— -
o
o <]

b — 4
-]
[

To set all the storage keys for a 16K
main storage unit would require execution
of eight set storage key instructions.

The desired storage key (0-15) is in
pits 24-27 of the general register speci-
fied by the Rl field. The remainder of
register R1 is ignored. The 2048 byte
block of storage in which the storage key
is to be set is determined by the address
in the general register specified by the R2
field.

T 3
| 08 I 31 5|
i]

t

'
|
| |
!
!

Set This register
Storage has the address
Key Op-—————=d of the 2K block
Code

——— e, . e, T oy

Key is in this
register

Storage addresses in the System/360 are
24 bits long. General register capacity is
32 bits. As discussed greviously, storage
addresses are placed in the low-order 24
bit-positions in a general register (it
positions 8-31). Because we are concerned
only with 2048-position blocks of storage,
and not specific storage addresses, we have
to examine only those bits that define
2048-position blocks. This inforrmation can
be determined from bits 8-20. Address bits
8-20 for an 8K storage system are:

8 20

0000 0000 0000 O addresses 0000-2047
0000 0000 0000 1 addresses 20u48-4095
0000 0000 0001 O addresses 4096-6143
0000 0000 0001 1 addresses 61u44-8191

2030 FETOM (9/1/66)

1-71

Introduction

A specification is given to the program—
mer that requires the general register's
four low-order bits (28-31) to be zero.
Thus, the structure of data in the general
register, as far as the set storage key
instruction is concerned, is:

27 28 31

0 78 20 21

r Y v T 1
| Ignored|wWhich 2K block|Ignored| 0000 |
L L L L J

Any address can be used, as long as the
four low-order bits are zero. This means
that the storage key can be set using any
address that is divisible by 16.

Given the following, the storage key of
block D is set to 1:

| SO Sttt S |
Instruction | 08] 3] 5 | thex)
i i | . 4
r]
Register 3] 000004 10 | (hex)
L J
& L]
Register 5 | 000001400 | (hex)
L J
Storage Block Key
A 61u44-8191 0
B 4096-6143 0
C 2048-4095 0
D 0000-2047 1

General register 5 contains the hexa-
decimal address 140. This means that bit-
positions 8-20 of register 5 are zero.
Thus block D, the first block of 2048, has
its storage key set to 1.

The set storage key instruction is a
privileged operation. It may be issued
only when bit 15 of the PSW (problem state
bit) is zero. In a typical
supervisor-controlled operation, the
supervisor causes a problem program to be
read into main storage. The supervisor
sets the storage keys for the area of stor-
age used by the problem program. The
supervisor assembles the PSW to be used by
the problem program. This assembled PSW
has a protection key that matches the stor-
age key associated with the problem pro-
gram.

Once the function of loading a problem
program into main storage and assigning the
keys for storage protection is done, the
supervisor passes control to the problem
program with the Load PSW instruction which
specifies the assembled PSW (Figure 1-25).

The protection key in the PSW used by
the supervisor program is zero. This

1-72 (9/1/66)

allows the supervisor program to modify
data anywhere in main storage. The main
storage area occupied by the supervisor
program has a storage key of 0. This means
that unless a program has a key of 0 in its
PSW, it will not be able to modify or
change information in the area being used
by the supervisor program.

Each block of 2048 Ekytes does not have
to have a different nurber set in its stor-
age key. However, each program in main
storage should have a different storage key
assigned in order to protect one program
from another. For instance, the supervisor
program may take up one ktlock of 2048 Lytes
which is assigned a storage key of 0. This
storage key would most likely be assigned
by the supervisor program just after it is
read into the system. The problem program
is then read into the machine under super-
visor control. This program (Figure 1-25)
takes up three blocks of 2048 bytes each.
Each of these three blccks is assigned the
same storage key (1) by the supervisor
program. The PSW for the problem program
is given a protection key that matches its
storage keys. This allows the problem
program to alter itself if necessary, but
prevents it from altering another problem
program or the supervisor.

So far, we have only discussed the con-
cept of two programrs in the computer: a
supervisor program and a rroblem program.
There may, however, be two or more problem
programs in storage at the same time.

Storage Protection

Keys ———
|

e — |

| Problem | |

| |

|Proklem B |--2-yStorage Prok. Y

] | | Keys Prog. B————==2

ooy |

| Problem | |

| | |

| Problem A |--1-] Prob.

| |] Proge A-————e—e 1

pr————{ |

I | |

| Supervisor| |

|

| Program | --154 Supervisor-—-0

| I——— |

In the preceding diagram, each proktlem
program has a different storage key. The
protection keys used by each program are
also different. Each matches its program's
storage key. Notice that the supervisor's
protection key does not match its storage
key. Because the supervisor's protection
key (in its PSW) is zero, it does not have
to match a storage key. It can unlock any

Introduction

area of main storage and alter its contents
if necessary.

Assume: 1. That the problem program takes 5,000 bytes and begins at
location 2048,
2. That the supervisor is in locations 0000 ~ 2047 and has a
storage key of 0 and a protection key of 0.

Read Problem)
Prob. _ ___)_Program is
Prog. Read Into
Loc . 2048-7047
Set Storage N
Key of 2048-
4095 to 1
I t A storage key of 1 was chosen for this problem
Set Storage program. Actually any key from 1-15 could
Key of 4095~ > have been used. (0 is already being used by the
6143 to 1 supervisor program.)
I
Set Storage
Key of 6143~
8191 fo 1 J

A bl
"PS;IT'B:Sforage "Assembled" 2. Protection key of 1 to match the storage key
— — —-- PSW Would > associated with this program.

to be Used By €
Prob. Prog. Probably be 3. AMWPy‘ % I\
"Load PSW" Prob.

. Control Allow Running
Using the — — — — Passes to the Machine State State
Assembled Problem Prog. Interruption
PSW 4. Instruction address of 2048.
6144 - 8191 1
Problem
Program 4096 - 6143 1

2043 - 4095]

Supervisor Program

0000 - 2047 0]

Figure 1-25. Using Storage Protection

. System mask of all ones to allow interruptions.

2030 FETOM

(9/1/66)

1-73

Introduction

Insert Storage Key Instruction

e The Insert Storage Key (RR format) instruction is used to
examine the current value of a storage key.

* Insert Storage Key is a privileged instruction.

The insert storage key (RR format) instruc-
tion does not change any storage keys. 1Its
purpose is to inspect or examine a storage
key.

Op Code R1 R2

-
09 | & 3
]

-

4
This register
has the address

t
.‘
| of the 2K block

— —— —

Insert The Storage Key
Storage is inserted into
Key Op this register
Code

Here, the storage key of the block
addressed by the contents of the register
specified by the R2 field is inspected.
This storage key is then inserted into bits
24-27 of the register specified by the R1

PROGRAMMING SYSTEMS

field. Bits 28-31 of this register are
made zero and bits 0-23 rermain unchanged.

Examples
Storage Block Key
2048-4095 1
0000-2047 F
Instruction 0943
Register 3 before 0 0 0 O O FOO
Register 3 after 00O00O0 OF 0O
Register 4 before 8 7 6 5 4 321
Register 4 after 87 65 4310

Notice that the storage key (1) of block
2048-4095 is inserted into bits 24-27 of
register 4 while bits 28-31 are made zero.
The remainder of the register is unchanged.
The storage key remains unchanged for the
storage block referenced.

* Programming systems are designed to lessen the programming
effort required to produce application programs.

* Each programming system requires that the machine system
have certain minimum features and I/0 units.

* Three basic cateqories of programs are:
1. Control,
2. Processing, and
3. System service.
A wide variety of programming support is
provided for use with IBM System/360:
1. Operating System/360,
2. Basic Operating System/360,
3. Basic Programming Support, and

4. System/360 Model 20 programming sup-
port.

All are designed to minimize the time
and effort required by the user to produce
and process programs. (Operating
System/360 is summarized in IBM Operating

1-74 (9/1/66)

System/360 Concepts_and Facilities, Form
C28-6535; Basic Programming Support and
Basic Operating System/360 are summarized
in IB] stem/360 Basic Programming Support
and IBM Basic Operating System/360 Program-
ming Systems Summary, Form C24-3420.)
System/360 Model 20 progranmring suprort is
not applicable to Model 30 and therefore is
not described here.

BPS (Basic Programming Support) is a
programming systemr used without dependence
upon any other program. Each BPS program
serves a specific and limited application
for minimum card and/or tape configu-
rations.

Introduction

By contrast, BOS (Basic Operating
System/360) and Operating System/360 fur-
nish centralized control for all programs.
In these systems, programs are stored on a
tape reel (usually file protected) or a
disk pack, thus providing a high degree of
program security. (That is, frequent oper-
ator handling of programs, that otherwise
would be stored on cards, is not required.)
At the direction of the user, these resi-
dent programs are retrieved and brought
into storage by the control program when
needed. This overall control results in
automation of system operations with a
minimum of operator intervention.

Choice of a particular programming sys-
tem is dependent upon many factors. The
user determines the main storage size and
I/0 configuration required by his applica-
tions. He chooses a programming system
that gives him the most effective use of
his system. Choice of a programming sys-
tem, however, may influence, to some
degree, the amount of storage and types of
I/0 units he will need.

Each programming system requires a cer-
tain amount of main storage. For example,
BOS (Basic Operating System/360) 8K Disk
requires a System/360 with at least 8,192
bytes of main storage. An autotest program
can be obtained to assist the user in test-
ing programs in the BOS 8K Disk environ-
ment. This autotest program, however,
requires that the system have at least
16,384 bytes of main storage.

Also, each programming system requires
some minimum machine configuration. If,
for example, BOS 16K Disk is used, the
system configuration must include, besides
other I/0 units, at least one IBM 2311 Disk
Storage Drive. BOS 16K Tape, however,
requires magnetic tape units.

Generally, within a programming system
(though not in all systems) are three basic
categories of programs:

1. Control,
2. Processing, and
3. System service.

A control program handles functions that
are not directly related to problem solv-
ing. Such functions are control of protlem
program loading and control of 1/0 opera-
tions. The control functions achievakle Lty
any programming system depend upon the
facilities of the programming sSystem and
the system configuraticn (number and tyrpes
of I/0 units and features).

Processing programs operate under con-
trol of the control prograr and are more
directly aimed at specific applications
(such as sorting and merging data) than are
control programs.

System service programs are, in general,
used to:

1. Create and maintain libraries (refer to
the Libraries section of this manual).

2. Edit programs (refer to the Linkage
Editor Section of this manual), and

3. Generate the system [i.e., Set up the
overall program (including control and
proklem) in main storage and in exter-
nal storage devices (such as disk) so
that desired functions can be
performed)].

The particular characteristics of each
programming system are not described here.
Rather, a general descripticn related to
certain control, processing, and system
service program components is presented.
Note also that the following topics do not
necessarily apply to all programming sys-
tems and do not include all possible func-
tions of the programs described. What is
presented is general programming system
information that you are likely to encoun-
ter.

2030 FETOM (9/1/66)

1-75

Introduction

CONTROL PROGRAM

Supervisor

® The entire supervisor may be in main storage during problem
program runs, or it may have its primary routines in main
storage and less frequently used routines in an external

storage medium.

s The checkpoint/restart facility provides for recording pro-

gram information at intermediate points so that,

if a higher

priority program requires processing, the checkpointed pro-
gram can later be started at the intermediate point rather

than at its beginning.

The supervisor performs such functions as:

1. Interruption handling (supervisor call,
external, etc.)

2. Channel scheduling (i.e., schedule I/O
requests for each channel; initiate I/0
operations; handle 1I/0 interruptions),

3. I/0 device error recovery,
4, oOperator communication,

5. Program retrieval (from external stor-
age, such as disk storage),

6. End-of-job indication (thereby turning
control over to a job control program
which may then load the next problem
program).

Depending upon the programming system
used, the entire supervisor may be in main
storage during problem program processing.
In other programming systems, the most
frequently used routines of the supervisor
are normally in main storage, while infre-
quently used routines are kept in resident

IPL (Initial Program Loader)

storage (such as on magnetic tape). These
infrequently used routines are loaded into
a transient main storage area when needed.
(The transient area may be used by a numkter
of routines, but usually only by one rou-
tine at a time.)

In some cases, a single, generalized
supervisor is used by all groblem rrograms.
In other situations, the supervisor is
tailored to a specific arplication and run
with only certain problem programs. The
method used is usually determined by the
particular programming system and, in some
cases, by the applicaticn (probler) pro-
grams.

In some supervisors a checkroint/restart
facility is provided. Here, records of
program conditions are made at intermediate
points during job processing. These
records are usually stcred on magnetic tape
or disk. If a higher priority program then
requires processing, the checkpointed
records are retained so that the original
program can later be restarted at an inter-
mediate step rather than rereating the
entire program run.

e IPL loads the supervisor into main storage at the start of

system operations.

This program loads the supervisor into main
storage when system operation is initiated.
(N6t all programming systems have a control
program component called IPL.) IPL is
loaded from an I/0 unit by dialing that I1/0
unit's address into the load-unit switches

1-76 (9/1/66)

(on the system console) and pressing the
start key.

IPL may initially clear all of main
storage (except the area used by IPIL)
before loading the supervisor.

Introduction

Program Loader

e The program loader loads problem programs into main storage.

When a distinct component called program
loader is used, it generally performs the
function of loading problem programs. In
some programming systems, the functions of
the program loader are handled by the
supervisor or some other control program
component.

Job _Control

e Job control, between job runs, prepares jobs to ke run.

Job control prepares jobs to be run. It
performs its functions between jobs and is
generally not in core storage while a job
is being run. It may perform such func-
tions as:

1. Assign actual I/0 device addresses to
the appropriate symbolic names used in
the program to be run.

PROCESSING PROGRAMS

Lanquage Translators

2. Set program switches according to the
requiremrents of the rrogram to ke run.

3. Indicate that program execution is to
begin.

¢ Language translators convert source programs to object pro-

grams.

e Programming languages used with System/360 are:

1. Assembler,
2. COBOL,

3. RPG,

4. FORTRAN, and

5. Programming Language/I (PL/I).

Langquage translators are programs that
convert sSymbolic (source) programs into
machine language (object) programs. Two
terms are frequently used to describe the
conversion process: assembling and compil-
ing.

In general, assembling means to produce
one machine language instruction for each
symbolic source statement written by the
programmer; compiling means that more than
one machine language instruction is pro-
duced for each input source statement.

The distinction is not always clear.
For example, when source statements written

in the assembler language are translated,
one machine language instruction is gener-
ally produced for each input assembler
statement. However, macro instructions can
be written by the programmer and each of
these effectively results in several
machine lanuage instructions that can ke
used by the object program.

Depending on the programming system, one
or more of the following programming lan-
guages can be used:

1. Assemkler, which is a flexible, symbol-
ic language that is machine-oriented

2030 FETOM (9/1/66)

i-77

Introduction

and applicable to both commercial and
scientific problems,

2. Report Program Generator (RPG), the
principal function of which is to accau-
mulate data from existing files and
generate reports from this data,

3. COBOL, which is applicable mainly to
commercial problems,

4. FORTRAN, which is specifically directed
to the solution of scientific problems,
and

5. Programming Language/I, which is used

in both scientific and commercial prob-
lems.

Sort/Merge Programs

e Sort/merge programs sort and merge data
disk or magnetic tape.

Sort/merge programs, in general, provide
for sorting files of random records or
merging multiple files of sequenced records
into one sequential file. Records can be
sorted or merged into ascending or descend-
ing sequence, and an individual segquence
can be specified for each control-data
field. (A control-data field is a group of
contiguous bytes within a data record. The
data in this field, in effect, is compared

Utility Programs

Depending on the prcgramming system, a
specific "level" of a programming language
is usually used. For example, the basic
assembler language does not include all the
capabilities of the assembler language.

The basic assembler is used, for exarmple,
with the BPS (8K Card) Card Assembler. The
assembler language, however, can be used in
the BOS (8K Disk) programming system. It
is interesting to ncte that a program writ-
ten in the lkasic assemkler language can
generally be translated and run by a pro-
gramming system that ncrmally uses the
assembler language. However, the reverse
is not usually true because the assemkler
language has greater capabilities than the
basic assembler language.

files contained on

with the data in the ccrresponding field of
every record in a file to determine the
sorted or merged sequence cf the records.)

Programs are provided tc sort/mwerge
files that are on disk or on magnetic tape.
The user provides specifications (or
parameters) that define the job to be run
and the data input.

e Most utility programs can be categorized as:

1. File-to-file (such as card to tape),

2. Multiple file-to-file (such as multiple disk to

printer), or

3. Initializing (such as preparing a disk pack for use).

IBM provides several types of utility pro-
grams to perform:

1. Transfer of information from one I1/0
- device to another (file-to-file).

2. Transfer of information among several
170 devices (multiple file-to-file).

3. Initialization of a tape or disk vol-
ume. (A volume is the portion of a
single unit of storage media that is
accessible to a single read/write
mechanism. For example, a reel of
magnetic tape on a 2400 series magnetic
tape drive or a disk pack on a 2311
disk storage drive is a volume.) An
initialize-disk program, for example,

1-78 (9/1/66)

is used to write standard home address-
es and track description records and to
make a disk surface analysis to iden-
tify defective recording surfaces (if
any).

In some progranming systems, either
batch or SPOCL file-to-file utilities can
be processed. Batch file-to-file utilities
are run independently when no other program
is being run. SPOOL (Simultaneous Peri-
pheral Operations On Line) utility programs
are designed to maximize total job through-
put. For example, if one rrogram does not
require the full 1I/0 capacity of the sys-
tem, other peripheral orerations can con-
currently use the I/0 facilities that would
otherwise be idle. Alsc, a program that

Introduction

normally uses slow speed I/0 devices (such
as printers, card readers, and card
punches) can direct its output to high
speed 1I/0 devices (such as magnetic tape or
disk units). Later, a SPOOL operation can
transfer this data from the high-speed to a
low-speed 1/0 device if concurrent programs
do not need this pair of I/0 devices.

Autotest

* An autotest program provides testing facilities for applica-
tion programs.

Autotest programs provide debugging capakbi-
lities for assembled program decks as they
are test-run. 1In general, the user can
batch (run several programs, one after
another) a number of individual test jobs
and get extensive diagnostics and testing
services with just one loading procedure.

SYSTEM SERVICE PROGRAMS

Linkage Editor

* The linkage editor links together and relocates okject pro-
gram segmentS (routines).

This program edits the output of language erencing of program routines. For example,
translators and produces executable phases a subroutine may have tc ke inserted into
(an entire problem program may be a phase) another routine before the program can be
in a library (see Libraries). The linkage run. Cross-references (specified by the
editor relocates programs Or program sec- programmer) between the routines are ysed
tions and links together separately assem- by the linkage editor to establish the
bled sections. Linking is the cross ref- correct relationships between the routines.
Libraries

Core Image Library

s The core image library, on disk or magnetic tape, contains
program phases in a form identical to that which they have
when in core storage.

The core image library (not a program) is a 3. Linkage editor,
- grouping of programs, each comprising one
or more phases. Each phase is the image of
(i.e., identical to) its form in main stor- 4. Language translators,
age. (The core image library is on magnet-
ic tape or disk.) Programs that may be in

the core image library are: 5. Library maintenance programs, and
1. User problem programs, 6. Sort/merge programs.
2. Job control, The desired program is moved from the

core image library (on tape or disk) to
main storage when it is to be processed.

2030 FETOM (9/1/66) 1-79

Introduction

Macro Library

* The macro library (on tape or disk) contains a number of
series-of-instructions each of which can be referenced by a

macro-instruction statement.

The macro library (on disk or tape) con-
tains instruction routines; each routine
can be referenced by a macro-instruction
statement. Macro-instruction statements
cause the assembler language translator
program to retrieve a specially-coded sym-
bolic routine from the macro library, modi-
fy the routine according to the information
in the macro instruction, and insert the

Relocatable Library

modified routine into the source program
for translation into machine language. IBM
provides specially coded routines as part
of a macro library and the user can, in
some programming systens, define his own
macro-library routines. He can then ref-
erence these routines through macro-
instruction statements that he defines
himself.

e The relocatable library contains object modules (program
sections) that can be located into various areas of core

storage.

This area (on tape or disk) is used to
store object (machine language) modules (a
separate program section that can be
combined with other sections) in relocata-
ble format. Relocatable means that the
module can have its addresses (with ref-
erence to main storage) changed, and hence
it can be placed in various areas in main

Library Maintenance Programs

storage. Note that some programs, due to
the manner in which they are written, can-
not be relocated. The okject modules
stored in this library can be corbined with
other object modules (that are either in
the relocatable library or are read in from
an I/0 unit) by the linkage editor when it
edits a program in the core image likrarye.

e Library maintenance programs provide services to enter or
delete library sections, to print out the contents of a
library, and to rearrange library sections.

These programs are used to:

1. Enter or delete phases (in the core
image library) and macro definitions
(in the macro library),

Load System Progqram

2. Translate informaticn from a particular
library to printed (or displayed) or
punched output, and

3. Reallocate and condense libraries.

* When used, the load system program generates (or sets up for

use) a minimum resident system.

This program may be used to create a mini-
mumn resident system. The system created
may be used to generate other specialized
systems, or the load system program itself
may be used to produce specialized systems.

1-80 (9/1/66)

Many times it is unnecessary to use the
load system program. In this case, system
generation is accorplished by other means
which depend upon the programming system
used.

Functional Units

CHAPTER 2. _ FUNCTIONAL UNITS

SYSTEM CLOCK
» The basic timing pulses for the IBM 2030 are generated by
the system clock.
e A crystal oscillator drives a four-stage latch ring.
e lLatch ring outputs travel via transmission lines to the SLT
large cards.

e Specific timing pulses are created at the large cards by
mixing the latch ring pulses.

Clock Start Clock 1
- Delayed Osc A A

Four latches are connected to form an over- NotClock3 | S
lapped latch ring for creating the basic Llock4 | r
clock pulses (Figqure 2-1). A free-running Clock Reset o)
crystal oscillator provides the pulses that - Delayed Osc (5 R
drive the latch ring circuit. The latch
ring circuit is reset with the clock 4

latch on. When the clock is to start, the
clock start latch is turned on. This
allows clock 1 latch to turn on. The
latches turn on in progression. Clock 2

Clock 2

M

P2

latch turns on before clock 1 latch turns + Delayed Osc Q

off, clock 3 latch turns on before clock 2 Not Clock 4 D

latch turns off. The result is four over- .
lapping timing pulses called P1, P2, P3, Clock Reset 6)

and P4. These four pulses are sent via +Osc AR
transmission lines to the large cards. N

{Figure 2-2) At the large cards, logic D

circuits combine the P-pulses to develop

the specific timing pulses needed at the
large cards. These pulses are shorter than Clock 3
the P=pulses and are called T1, T2, T3, and A P3
T4. Use of the transmission line distrib- Not Clock 1 N
ution system, allows the subdistribution - Delayed Osc | D
centers to be close to the logic. Thus, | e
ringing and noise are minimized. Clock Reset o)
- Delayed Osc ["A R

i

+ Delayed Osc

ozZz>

Clock 4

Not Clock 2 o) P4
Clock Reset —— R
_.FL__.
+Osc A
N
D

Figure 2-1. Clock Pulse Generation

2030 FETOM (9/1/66) 2-1

Functional Units

N 500 nanosecond, overlapped P1, P2, P3, and
P,f:::::Z:Z N P4 pulses. These pulses are brought
S ¥ﬁ—;i together at the large cards to form timing
gru) P2 F: /\, Transmission Lines ~ pulses that are 250 nanoseconds long.
ocC N
Cirevits fca— % s
P3 & /
// - Osc or - Delayed Osc |/ I h l 1 r —I
P4
, — |
+ Osc or + Delayed Osc l | j J | l | [_
P1 I 500 ns l l l
FT T TS T TS T T T T T T T a
I |
! Line ! P2 I
: Sense l
: Amp. —L T2 Pulse Al [b3 ‘———-I I———
|
! Pulse | (T2 Pulse Al to C1 | = — Seton By Mach Reset Key
| A -~ s
\ Driver : P4 | | l_
| —I— T2 Pulse A2 |
! Line f
1 Sense | T ——{_} 250ns I
: Amp | L 1 s !
i | = L 1
e e e e e e e e - - J T I l
3 1
Distribution to T4 I
Other Large Cards r_
Figure 2-3. Clock Timing (1 us clock)
— The 750 nanosecond clock operates the
To Additional same as 1 microsecond clock. However, the
Large Cards timings are shorter. The oscillator oper-

ates at 2.67 megacycles per second. This
produces 375 nanosecond P-pulses, and 187.5
nanosecond T-pulses (Figure 2-4).

Figure 2-2. Clock Pulse Transmission

The system clock operates on either a r————;som-——ﬂ
750 nanosecond or a 1 microsecond clock
cycle depending on the type of core storage = Osc or - Delayed Osc I L 1 []
unit in the 2030. The M2 core storage unit
operates on a 2 microsecond read/write + Osc or + Delayed Osc [] .1 M1 r
cycle, and therefore it requires a one
microsecond system clock (Figure 2-3). For r————j
the one microgecond clock, tge oscillator P1 373ns

runs at 2.0 megacycles per second. Turn-on
and turn-off of the clock latches produce P2

P3

Set on By Mach Reset Key
P4 —‘_!ﬂ/ |__—| l_
n o s [

j¢——750 ns ——»

T2] []
3]]
T4 1 C

Figure 2-4. Clock Timing
{750ns clock)

2-2 (9/1/66)

Functional Units

CLOCK CONTROL

¢ The clock is reset with P4 on and P1, P2, and P3 off.

e Clock start line allows oscillator pulses to reach the clock
latch ring.

¢ The clock always stops with P4 on and P1, P2, and P3 off.

The clock oscillator runs continuously as
long as power is on. when the 2030 is
reset, clock latches P1, P2, and P3 are
off, and clock latch P4 is on. Raising the
clock-start line allows oscillator pulses
to reach the latch ring. As long as the
clock-start line remains up, the latch ring
continues to run. When the clock-start
line drops, the latch ring continues until
P4 turns on and P3 turns off. At this
time, the latch ring stops until the clock-
start line is raised again. The clock-
start line is controlled by the clock-start
latch which must be on to start the clock.
The clock-start latch is turned on by
either the Start key or the Load key (SLD
Figure 5-03C). With the clock-start latch

REGISTERS

on, the clock-start line may be blocked to
prevent further clock cycles. For example,
when the Power-off key is pressed, the
power—-off latch turns on. This blocks the
clock start line which stops the clock at
the end of the current cycle. The clock
may be reset immediately by a machine
reset. This line resets P1, P2, and P3 off
and P4 on (SLD Figure 5-08A). Machine
reset also raises the clock-reset line to
reset the clock control latches such as the
clock-start latch, the clock-start-control
latch, and the load-key latch (SLD Figure
5-03C). Thus the clock-reset line prevents
the latch ring from being restarted after
it is reset.

* The 2030 uses storage latches for registers.

e Polarity hold latches and a0l latches are used.

*» Most register input and output data movement is controlled

by the read only storage unit.

* Data may be moved into or out of a register manually.

Registers in the 2030 are used for storing
addresses, status information, and data.
Many registers have multiple functions; the
function used depends on the operation
being performed. These registers are made
up of storage latches of either the polari-
ty hold or AOI type. In the polarity-hold
latch, the output line follows the data
line when the control line is active
(Figure 2-5). This means that information
on the data line is set into the polarity-
hold latch when the control line is raised.
Notice that there is no actual reset of
this latch. It is reset by raising the
control line while at the same time,
leaving the data line down. The I, J, U,
v, T, 3, L, and D registers are all samples
of registers using polarity-hold latches
(SLD Figure 5-05C).

° Data PH
~Control

Data] I I I
I N B
M M

L—This spike will be seen on a scope when

"Control" attempts to turn the latch off.

Control

Output

Figure 2-5. Polarity Hold Latch

2030 FETOM

(9/1/66) 2-3

Functional Units

The second type of latch used for reg-
isters is the AOI latch which is made of
several logic blocks tied together to form
a latch (Figure 2-6). This latch is used
when multiple inputs are required, and when
a single reset function is desired. The
F-register (SLD Figure 5-04C), the MC-
register (SLD Fiqure 5-07A), and the S-
register (SLD Figure 5-07B) are all
examples of AOI latches used as registers.

®Turn on A

A-1
Time T4 ’
——

A-2 [e]]
@ Latch on
Turn on B
Reset N A3

L
@ Latch Back

@ T4 and Turn on A or B turns latch on.

@ Turn on of latch sends Latch Back
pulse to switch with (not) Reset to
keep latch on.

@ Reset deconditions A-3 to turn latch
off.

Figure 2-6. AOI Latch

The information to be placed into a
register may come from any one of several
points in the CPU. Likewise, information
in the register may be directed to several
points in the CPU. In Figure 2-7, the
input gating is shown for two sources,

READ ONLY STORAGE_AND MICROPROGRAM

while the output gating is shown for one
destination. Keep in mind that for this
example, there are actually 9 PH latches,
nine sets of input gating, and nine sets of
output gating. In this example one input
comes from the main storage unit. The
second input comes from the Z-bus which is
the output of the arithmetic and logic
unit.

Z-bus O Bit

Z-bus Set R A

Storage Data Out O Bit .

Memory Set R A "O" Bit

Set R-register

(control) _ ~pH---A
R-register
(8 Bits + Parity.

One position shown)

Gate R to A -Bus
Read Only Storage
Control

Gate R to A - Bus OR
Manual Control

A [A-bus Zero Bit

Figure 2-7. Register Control

The polarity hold registers are reset by
raising the control line while keeping the
data input lines down. A machine reset
would cause most registers to be reset off.
To prevent parity errors, the machine-reset
line resets the parity latch on in most
registers. One exception to this reset
system is the F register where all posi-
tions except the 1A latch are reset on.

The F-register is part of the interrupt
mask system. Resetting all positions,
except the 1A latch, on allows external
interrupts to occur after the machine has
been reset.

e ROS (Read Only Storage) is a nondestructive read out storage

device.

s Microprogram is a machine control program and is punched in

special cards called ROS Cards.

s ROS cards are placed in the ROS device and are selected to
read out a logical functional operation for the machine.

2-4 (9/17/66)

Functional Units

Before we learn the details of the ROS and
microprogram lets look at some of its gen-
eral concepts.

The ROS in the 2030 is a CROS (Capacitor
Read Only Storage) device which uses the
capacitor as a storage device. If we have
a capacitor at a selected spot, we say
there is a bit, or the condition is a 1.

If we do not have a capacitor at a selected
spot, then we do not have a bit or the
condition is 0. By selecting a set of
capacitors and decoding their bits (1) or
no bits (0) we can control signal lines and
gate inputs and outputs of registers. The
only way the information in ROS can be
changed is by adding or removing capaci-
tors. Therefore, we can only read out of
ROS and the read out is nondestructive as
compared to core storage where the informa-
tion is read out and must be written back

Address Register

Address
Decode
Read Only Storage
Address Drivers I [[I! r l |
Decode ITT TTT

in order to retain it. Figure 2-8 shows
the general operation of ROS. An address
is set into the address register and then
decoded to select a certain position in the
ROS device. An impulse is then sent to the
capacitors. The outputs from the selected
capacitors are sensed and decoded to condi-
tion a circuit which controls the input or
output of one or more registers.

The microprogram is a written program.
The program is divided into words; each
word contains logical statements telling
what function the 2030 should be performing
during this one microsecond cycle. Figure
2-9 is a page from a microprogram. The
microprogram is laid out on CAS (Control
Automation System) CILD's (CAS Logic
Diagram). Each microprogram word is placed
in a logic block on the CLD.

Sense and
Decode
XX- Register
l Allow Information Infor- Infor-
into XX- Register A mation mation
A Out
Information In
Allow Information Out of XX~ Register l_

Figure 2-8. General Operation of ROS

2030 FETOM

(9/1/66) 2-5

9-Z

(99/1/6)

*6-¢ o°Imbt g

abeg g0

—~enD

310)1
IMER

THIS_PaGE FW
SN Tﬂlc’!ﬂ FRL
3 Am Sl W!T I

ATE ROUTINE, THE ORIGIN
Th Bep'Ts uum:x:n ay oM

ADDR
ucmeﬁ'sﬁ' PP
+ ADDR & 3¢ DECAENENTED, I DERE IS STILL'NO
T e TER he ST BECAEMENTED. Thau 55 b
Sust B seT Tl ONE TO Chuse A TINER NTERRLET A
QUT_AT _ANY OF THE ASOVE STEPS END IMER UPDATE
WITH N INTERRUPT INDICATEDs

$0=0 MEANS START NEXT I CYCLE

s "‘N ETWI TO WAIT STATE

$9= ANS CAUSE A TIMER INT IF VHERE WAS NO CARRY OUT
WW IT OF CONTENTS OF ADDR 30

10 == 001 00 === 00;
4;4«.1 L one

UPDATE

DeCONTENTS OF
C REG

Le2
$On1y!

WAIT S‘I?E

e .4 |

Le4XD

140 26!

=3% ORIG' VALUE SET 260
] 37 52

NOTE 1-THIS WORD SETS L=0 IND SSll AS LﬂNG As AN
ADW S\‘ARTXNG Wite 5 I8 To WHEN f
DU S0 WAS JUST ACCES5ED AND IF THERE
OQUT_FROM P€ DECREV:ENY oF

T
1S DONTERTS Ch TINER JHERGORT Has JusT
QCCURRE| hé AooR INT (45 1 e
ACCESSED” § COTENTS 'aRE LERT UncHmnGED

AND BIT '0 XS SE? 10 DNEo IF
CREMENT OF TuE CMTENYS

OCCURRED PROM THE DE
OF ADDR S0y THE I.PDIYE ENDS WITH NO
INTERRUPT INDICATEDe

sl

t L2098
4
8 10

] s . [. . "éj
MESE VORDS MIE IN AL WACHIMES wiETWER TIMER 13 3
OR NOTe HOWEVER. WITHMOUT EXYE.NAL HARDWARE
(CREY; THIS POUTINE CAN NEVER DE ENTEREDS o+
oo
[}
=]
[*1]
(-
[
=]
Pn
(54
]
o026 - 00L&
198
=
l l
18 040
—£p Es
TeL 0, ORDER ADDR”
TINER (52)
1
0 — 01 — 001 10 — 002€
L K 0301
mv s ReL{CORC e
| {2
Ouss 3 100 21 $0083
o 0 Jom D
DetRerenT Ten NITE 1
10 — o024 00 = 001
7007 |
TN ms WRITE
‘J 1970
0455 $001 29¢
oo —iF L ~ =G
TPER I o7 boe
B it
oot P
o L I GA001eCBE
Kow
StNTR ool l
N P]
85 OF UPDATE NORMAL T CYCLE
START
e e
o warr
1200 9717 20% DATE 13/17/65 SHEET 1 aAsny
gy AvE | Ne o L P44 VERETON
Pene D05 INTERVAL TIMER UPDATE
T'cmes S0 (60 cvele)

Functional Units

Carg
CO‘LH“T\

Figure 2-10. ROS Document Layout

In order to place the microprogram into
the 2030, use punch-card size documents
called ROS cards. The microprogram word is
coded and punched into the ROS card. There
are 60 positions for punching in each row
of the ROS card (Figure 2-10).

Each position is one side of the capaci-
tor used in the CROS. Therefore, by punch-

ROS CONCEPTS

ing the card, the microprogram can be
prlaced into the ROS device. Each row is
one microprogram word.

Now that we have some idea what ROS and
microprogram are and how they are used, we
shall go into more detail and explain the
concepts of ROS, how it is used, and how to
read a microprogram.

e IBM System/360 Model 30 is controlled by a microprogram.

e A ROS (microprogram) word controls each machine cycle.

» System control lines and gates are controlled by fields in

the ROS word.

e CROS (Capacitor Read Only Storage) contains the microprogram

in the form of ROS words.

e CROS for the 2030 can contain 8064, 60 bit words.

*» Bit patterns of ROS words are determined by the presence or

absence of capacitors.

* ROS words can be changed by replacing ROS cards.

2030 FETOM

(9/1/66) 2-7

Functional Units

The CROS device is used to hold predeter-
mined information, such as the micropro-
gram, that can be nondestructively read
out. The microprogram is punched in the
ROS cards. Up to 4,032 words (12 words per
card) are used unless a compatibility fea-
ture is installed, then another 4,032 word
CROS module is installed. Each ROS word
contains 60 bits that control the gates and
control lines of the system for each 1
microsecond machine cycle. Gating for each
functional unit is controlled by the bit
combination within a field of a ROS word.
Later we will see where 0111 in bit posi-
tions 23-26 of the ROS word gates the R-
register to the A-register bus.

CONTROL POINTS

The bit pattern of a ROS word determines
the presence or absence of capacitors
within the CROS hardware. A ROS word can-
not be changed by a customer program; how-
ever, the Customer Engineer can change the
information in the ROS words by replacing
the ROS cards.

CROS replaces most of the system control
circuits, as used in previous machines, and
introduces a flexibility to machine design
that we did not have before. This flexi-
bility allows changing the control circuit
for a feature by replacing or adding the
necessary ROS cards.

s The capacitor is the most important component of the CROS.

* A line driver impulses many capacitors.

s Each control point in the 2030 data flow is controlled by a

SAL (sense amplifier latch).

s The bits in the ROS word determine if the line is active or

inactive for that cycle.

Using simplified block diagrams we can
learn the theory anmd operation of CROS. 1In
our development of CROS we will see: (1) a
control point source, (2) a selection
device for the source, and (3) basic opera-
tion of ROS.

The block diagram in Figure 2-11 has the
control points numbered. For example, the
in-gate control point for the G-register is
number 3. By using the statement READ OUT
R, GATE THE OUTPUT THROUGH THE LOGIC UNIT,
AND STORE IT IN S, the use of control
points can easily be seen.

2-8 (9/1/66)

The first part of the logic statement,
READ OUT R, indicates a need to condition
control point 2 (see Figure 2-11). By
adding a latch called a SAL (sense ampli-
fier latch) to this point, we have a method
to allow the R-register bits on the in-bus
(Figure 2-12). We used the capacitive
coupling (a) from a line driver (b) to turn
on the SAL which allows the R-register to
be gated to the in-bus.

Functional Units

C
.
<I> %ne«mj © ®

R-Register G-Register S-Register

Out Bus
@ ® ©
In Logic Out
/\/ Gate Unit Gate
In Bus 7 8
Figure 2-11. Control Points
(. < -
7
(I) In Gate In Gate In Gate
Out Bus >
R-Register G-Register S-Register
2 ® ©
- 7 In | Logic Out J
In Bus Gate Unit Gate
SALL]
1 (a)

[

Line ()
-

e—o| Driver
—

Figure 2-12.

SAL Control

To do the rest of the statement, we must
read in and out of the logic unit and into
the S-register. Figure 2-13 shows that we
do this by adding three more SAL's and
connecting them to the proper control
points. The three added SAL's are also
capacitive coupled to the same line driver

as the first SAL. Thus, the conditions of
our statement have been satisfied. We have
now established a source for our control
points (the SAL's), and a selection for the
source (the line driver and coupling
capacitor).

2030 FETOM (9/1/66)

2-9

Functional Units

C
—
(I) In Gate I { {) l In Gate I 5 In Gate
R-Register G-Register S-Register
Out Bus
2 ® ®
(
7 In [T Logic Out
/\/ Gate Unit Gate
\ In Bus |
o—— | Line
©&——— Driver
. : - S

Figure 2-13. Multiple SAL's

So far we have only looked at SAL's that
were active for our specific statement. In
the block diagram, there are eight control
points and each one has to have a source
and a selective device.

What happens to our statement if we
connect the R-register as shown in Figure
2-14. Beside reading out of R, we will
read into R. There is nothing wrong with
this electronically and it can be a legiti-
mate operation, but the conditions set by
the statement are not satisfied. Assume we
can cut one of the plates off the coupling
capacitor for the SAL that conditions con-
trol point 1 (Fiqure 2-15). Once again the
statement is satisfied.

2-10 (9/1/66)

Now if we connect a SAL for each control
point (Figure 2-16), but cut one plate from
each coupling capacitor we do not want to
use, and impulse the driver, the statement
is still satisfied. Thus, we have a stor-
age device, and each time the line driver
is impulsed, the same operation is per-
formed.

Actually we have a read only storage
device made of capacitors with either one
or two plates using a common drive line.

Functional Units

C
’ /
y 1 Out Bus
1 In Gate In Gate 5 In Gate
R-Register G-Register S-Register
2) [OvrGar @® ©
/ In Gate Logic L_‘ Out
n a Unit Gate
In Bus
-————:] 8
' l SAL
J:SAL SAL SAL SAL
=" T T T
—— Driver v b _ ® l,(,
Figure 2-14. SAL Gate
[d
-
©
Out Bus/
R-Register G-Register S-Register
© © ©
In 7] Logic Out
In Bus / Gate Unit Gate
8
ﬂ —I
SAL I
SAL SAL SAL SAL
—r—
—t A — —~
™ —— Line 7]
—] Driver
—&- 1 ’§ > '8 —&- 4 ¢
Figure 2-15. SAL Selection
2030 FETOM (9/1/66)

2-11

Functional Units

(4 o

R-Register G-Register

:

SAL SAL SAL

S-Register Out Bus
:
In m Logic Out [
Gate Unit Gate

SAL:J - | SAL SAL

[
[

Figure 2-16. Multiple SAL Selection

ROS WORD

I . —o
Line |(——@

Driver —@

< —e

s Fach ROS word is one step of a microprogram.

* The ROS word is made up of a string of capacitor plates

having a common line feeding them.

The statement we have been working with is
one ROS word. If we want to do a different
function or operation, we either have to
replace the first word or add another.
Since we still want to do the first state-
ment again, we add another ROS word and
another line driver (Figure 2-17). This
new word can perform the function READ-OUT
R, TAKE THE OUTPUT THROUGH THE LOGIC UNIT,
AND READ-IN G. If we impulse line driver
one, we take what is in R and put it in S.
If line driver two is impulsed, we take
what is in R and put it in G. By adding
plates to the coupling capacitors and

2-12 (9/1/66)

adding more line drivers, we can create
enough ROS words to perform any function
our data flow can handle.

We know what we want to do but what is
an easy way of doing it? First, let's look
at the plates' connections to the SAL's.

In Figure 2-18 the capacitor plates are
shown connected serially to a SAL. A ROS
board is used to do this in the 2030. The
ROS board is made of laminated fiber board
and the capacitor plates are made of copper
which are laid on the board.

Functional Units

g

1) In Gate (3 ; In Gate in Gate

R-Register G-Register S-Register

+) [Burcae ®

e v In Logic Out
Gate Unit Gate

™ 8

SAL SAL

T

1Y
4 pu
\Ll
-"
« E
' —
4
) —o
17T |
.
v
]
7
o
) F]

T~ Th L

Line [—
Driver
2

Line jp=—
Driver |
1

Figure 2-17. Multiple Drivers

The coupling capacitor plates connected
SAL SAL SAL SAL SAL to a line driver (ROS word) are connected

J:‘ differently. They are laid out in parallel

on a Mylar* strip. Figure 2-19a shows a
Figure 2-18. Sense Pads

ROS word for our block diagram before it is
programmed and Figure 2-19b shows the ROS
word after it is programmed for the first
statement.

In Figure 2-20 the Mylar strips with our
first and second statements programmed are
shown placed over the sense pads. When the
line driver for the first statement is
impulsed, that function is performed. By
adding more ROS words and drivers, more

i[functions can be done.

T

In the 2030, the Mylar strips are called
ROS cards, and each card contains 12 ROS
words. The capacitor plates on the ROS
cards are made of copper strips or silver
inke.

Sense
Pads

O T B S

1
I
I
:

*I'rademark of E. I. du Pont de Nemours & Co. Inc. 2030 FETOM (9/1/66) 2-13

Functional Units

R In R Out G lIn G Out SIn S Out Logic In Logic Out

(q) ROS-Word

(b) ROS-Word Programmed to Perform Logic Function:

Readout R, gate the output through the logic unit and read in S.

Figure 2-19. Programmed ROS Word

SAL SAL SAL SAL SAL SAL SAL SAL
3 I—‘

f-] 2 l— [— 4 5 r 6 l— 7
Rin /)t: ROu AN Gin 2 GOut S In 3_‘5001' Logic A Logic

Line
Driver

1

Line
Driver
> ——

Sense

Pads

Line

Dri
r)l(ver 3

Figure 2-20. ROS Words

2-14 (9/71/66)

Functional Units

ROS CARD

e The primary unit of the CROS is the ROS word.

s The 2030 ROS word is 60 bits wide.

¢ There are 12 ROS words on each ROS card.

Figure 2-21 shows a ROS card. The primary
unit of CROS is the ROS word; in the 2030
each word is 60 bits wide and there are 12
words per card. The words are positioned
on a sheet of Mylar exactly the same size
as an 80-column card. Each bit position is
one plate of a capacitor and the plates are
positioned so they coincide with the normal
punching position of a card. The plates
are connected to a horizontal line running
from the column 1 and to the column 80 end

Capacitor Plate

of the card. This allows the card to be
punched on existing punched-card equipment
such as the 1BM 24, 514, or 1402.

If the plate is punched out, we do not
have a bit. Therefore, if we wish to have
a control line active for a certain ROS
word, we do not punch that position. When
the card is placed next to the ROS board,
the elongated tab on the card contacts the
drive tab on the board.

Figure 2-21. ROS Document

2030 FETOM (9/1/66)

2-15

Functional Units

ROS MODULE AND ROS BOARD

® There are 43 ROS boards per full 4K ROS module.

e Depending on the capacity required,
fewer than 43 boards.

e Each ROS board has 8-ROS card positions.

A 4K ROS module contains 42 ROS boards for
a total of 4,032 ROS words (Figure 2-22)
plus one spare board to be used if a board
fails.

The sense pad for the same bit position
of each word is connected by a vertical
line on the board. This line feeds the
sense amplifier for that bit.

The ROS card is held against the ROS
board by an air bag. Air pressure is
applied to the bag which in turn forces the
card in contact with the board.

Spare Board Board 41 ~

Wl

v’hk!ﬁ'l'ﬁl; lw/f\

Figure 2-22 ROS Module, Front View

2-16 (6/67)

some ROS modules

may contain

The design of the board allows the
boards to be placed in the ROS module so
the drive-line connectors for the even
boards are at the top, and at the bottom
for the odd boards. All sense lines are
routed from one end of the module.

The ROS board has a capacitor plate for
each capacitor plate on the ROS card
(Figure 2-23). The capacitor plates on the
ROS board are called sense pads. Both
sides of the ROS board have identical sense
pad patterns, so we can have 8 (0-7) ROS
cards of 12 words apiece, for a total of 96
ROS words per board.

Functional Units -

ROS DATA FLOW
s The W- and X-registers are used to address ROS.
e A ROS word is read out of each machine cycle.

e The information in some of the SAL's is transferred to con-
trol registers to be held because of timing conditions.

s The outputs of the SAL's and control registers are decoded
and routed to control the function required by the ROS word.

The ROS address registers (W and X cycle. The outputs of some SAL's are need-
registers) are set at the first of the ROS ed longer than the SAL's are set, so the
cycle and the outputs of the registers are information is transferred to control reg-

decoded to select one ROS board and two ROS isters. The output of the remaining SAL's
words on the board. The two words are read and the control registers are decoded and

out and one of the words is selected and routed to allow a logical operation to be
set into the SAL's at a given time in the performed (Figure 2-24).
I l i
—_— — To
ROS Address Read Control Rf)s Machine
Address Decode Only SALS Register Field Control
I Register Storage Decoder Points
[———

Next Address Information

Timing Ring

Figure 2-24. ROS Data Flow

2-18 (9/1/66)

Functional Units

ROS CONTROLS

* The controls for ROS include hardware for:

1. Addressing ROS.
2. Sensing the output of ROS.

3. Timing for ROS.

ROS ADDRESSING (4K MODULE)

e The ROAR (Read Only Address Register), W- and X-Registers,

address is decoded to:

1. Select one out of 42 ROS boards.

2. Select one out of 48 drivers for that board.

3. Select one out of 2 ROS word read from that board.

Figure 2-25 shows the overall addressing
method for ROS. For now, we will take
sections of the total picture and explain
them and then tie them together.

We know that each ROS board has 8 ROS
cards and each card has 12 words of 60 bits
each. Therefore, we have 96 ROS words on
each board, and all are used. 1In a 4K
module the addresses are segquential, board
0 has addresses 0 to 95 (decimal number),
and board 1 has addresses 96 to 191 and
etc. through board 41 with addresses 3936
to 4031. Because of the electrical connec-
tions on a ROS board, a ROAR decode selects
two ROS words. However, only one of these

words is gated to the SAL's. Since there
are 96 words on a ROS board and two words
are addressed each time, 48 drivers are
needed to read out the 96 words.

Figure 2-26 represents the 48 drivers
for one board and the driver's connections.
The drivers are physically located on two
small cards (driver card A and driver card
B) and connected to the ROS board from the
rear side of the ROS module (Figure 2-27).
There are 24 electrically connected drivers
on each small card. Each driver is a one
transistor circuit. Let's consider the
connection to the transistors as shown in
Figure 2-28.

2030 FETOM (9/1/66)

2-19

0z

(99/1/6)

*GZ -7 91nbtg

PPY SOY

‘HbuTsSsa I

TeotbhoT

Bit
Position

Bit
Value

Note:

Each Driver Selects and Reads Out Two ROS Words

Strobe Odd Gate 0to 19
l 2dd Wor Oto 59 Set SA Latches O to 59
A
Odd Gate to 20 to 39
Odd Gate to 40 to 59
% A Even Word SA 0 to 59 Set SA Latches 0 to 59
i Even Gate 0 to 19
o Even Gate 20 to 39
= . —— Even Gate 40to 59
S| ¢ £ A
B A S (— - - — - — - — — —
i; DecodeDecode Decode T-Lines |O | 1
<5 < |
<
2 i A || To~—3—>T15 T0<————>T15
W-Register X-Register /1 ey
e
P(3 |4]|5)1617|P|O|1|2(3]|4[5]|6]|7 l 4
|
voloit|la]o ool |~ A |
gidig|a|&] |=1°°|” { { {
3|« = |
+
T = A |
Check for Not 1 | ®
1or | j
— Not 1 |
*
T | - |
Read Out Time | Gate Read ¢~ T0 |
Check Not 16 Out A Decode | !
For 16 T-Lines | v
Or Not 16 17
16 1]
Check For Mot L Gated Read || T8 |
4096 Out B Decode |||
4096 or .
Not 4096 ; A T-Lines
Read Out Time
T15 |
4096 |
AO — = —— — — — ==
Decode | Board 0
A-Lines - High,Middle| High Gate
A7 ond Low
* | | Gates Middle Gate
g(]) Decode Low Gate
Decode g2 1 Board 0 Board 41 .
B-Lines g3 ' 48 Drivers 48 Drivers Matrix
* Board 41 3x 16 Matrix 3Ix 16
<o | High,Middle) High Gate
ci L g\d Low Middle Gate
c2 ates
\ ! Decod Low Gate
M M c3 , ecode
|

* Lines to Address 2nd ROS Module

On The Se|ected Bourd Example Word 0 (Even) Word 1 (Odd)

S3TUn TeUuoTIdUNg

15

3]

14

10

DRIVER T 8

7

Tl

[T e

©

| |

U

2~ —

CARD 8

DRIVER

Rear View

ROS Module,

2-21

(9/1/66)

2030 FETOM

Rl
]

Functional Units

T
-l o
- ©
- >
szrrHﬂH 14 YLDM_U; .
el
(o]
g?rﬂT YS\,\L.N,_|_|TA .l)Z{FnﬁH - m «r
f I 2 e
Hﬁ g H
gl E,LQMD\ Lot : 3
M g

Figure 2-27.

ze-¢

(99/1/6)

*8Z-7 2anbra

UoT308T8S I3ATAd

Read Qut Time

— Gate Read Out A

A
Not 16(X3)
Not 4096
— Gate Read Out B
A
16(X3)
2(X6) m
4(X5) T-Line [
8(X4) Decode | |
8 AND | |
Not 2(X6) Blocks
Not 4(X5) T0-17
Not 8(X4)
bl
T-Line :
Decode | |
8 AND | |
Blocks | |
T8-T15 [|
32(X2) AO
64(X1) Al
128(X0) [/;-Lir;es 2%
ecode
Not320x2) is AND [AZ
Not 64(X1) Blocks [AS5
Not 128(X0) AO-A7 [Ab
256(W7) — 80
B-Lines
512(wé) Decode | B!
Not 256(W7) 4 AND |B2
Blocks
3
Not 512(Wé) B0-B3 B
1024(W5)
(C-Lines o
2048(w4) Decode | €1
Not 1024(W5) 4 AND | C2
Blocks
t
Not 2048(W4) co-C3 Cc3

Cco

_x

)
-

Driver Card A

80 High Gate

Decode
A0 Ly AND

3)
s

ROS Board 0

Word 00 Word 16 Word 30
Word 01 Word 17 Word 31
L L
)
« 0 « <
R 1%
Word 32 Word 48 Word 62
Word 33 Word 49 Word 63
3) S)
% NS
. ¢ —} I+
Word 64 Word 80 Word 94
Word 65 Word 81 Word 95
|
L «

Driver Card B

Al co
BO Middle B0 Low Gate
Gate Decode Decode
CO_vanD A2 |1 AND

Program Caord

—— Board 1-41

——Board 1-41

— Board 1-41

—— Board 1-41

s3TUn TEUOTIDUNG

Functional Units

1. The Base: Three driver bases are com~
mon. The darkened line that connects
these three drivers is a T input line.
Since one T line feed three drivers,
there must be 16 T lines going to each
ROS board.

2. The Emitter: Sixteen drivers have
their emitters commoned. The darkened
line that connects these 16 drivers is
a driven gate decode line. Notice that
the gate decoders are on the driver
cards. Two decoders are on driver card
A, and one decoder is on driver card B
in reference to each ROS board.

3. The Collector: The output from the.
collector drives two ROS words.

The T-lines for a 4K module are devel-
oped from 16 four-input AND circuits. Only
one T-line is active at a time. Both the
bit and not-bit lines are routed from the
CPU to condition the AND inputs. Three of
the four inputs come from the X-register
positions 4, 5, and 6. The fourth input is
Gate Read Qut A or Gate Read Out B, these
lines are developed from the condition of
X-register position 3 and W-register posi-
tion 3 AND with Read Qut Time. The T-lines
are routed to all 42 ROS boards. Note that
if W3 is on, the second 4K module is
selected and another address decode network
is used. Addresses for the first 4K are
0000 through 4031 (decimal) and for the
second UK are 4096 through 8127 (decimal).

At this time we have one T-line active
and this line conditions the bases of three
drivers on each ROS board. The next
requirement is to condition just one driver
on one ROS board.

Each ROS board has three driver gates
(high, middle, and low). Each gate on a
board is commoned to 16 drivers on that
board. So by activating one gate on one
ROS board, we can select one driver.

The selection of the gate is controlled
by three lines (A, B, and C) which are
developed from the X-register 0, 1, and 2
positions and the wW-register 4, S5, 6, and 7
positions. By looking at Figure 2-28, we
can see that eight A-lines (A0 through A7)
are decoded from the bit and not bit lines
of the X-register positions 0, 1, and 2.

We also have four B-lines and four C-lines.
The B-lines are developed by ANDing the
W-register positions 6 and 7 bit and not-
bit lines. The C-lines use the W-register
positions 4 and 5 bit and not-bit lines
ANDed together.

From Figure 2-28 we can tell that the
high gate for ROS board zero is developed

by ANDed A0, BO, C0. By using the address
table in Figure 2-29, we can determine what
five lines are used to form the three gates
for any ROS board. The lines from the A,
B, and C lines busses are routed from the
bus to the gate decode circuits through a
program card. A program card is nothing
more than a pluggable card to jumper a line
from one place to another.

A0 | Al 1 A2 | A3 | A4] A5 | Ab l A7
o Y — [T9)
= = o [re]
N ™ o —
vl 2§ g 8ls 5
B 28 3 8 4 g 5 8
Co . N
B2 '\l '\I o
> 8 6 3 7B
o ™
B3 8 §| 9 gl 10 §
o |10 1 @ 2 3§
o
B1 13 §| 14 QI 15 8
c
— N —
B2 16 3 17 ml 18 R
o~ N
83 18$| 19 = 20 5|m 3
— o~
- [
BO 21 = 2 gl 23 8
o~ o~ o~
o
81 24 §| 25 é’[26 2
o~ o~ o~
o)
~N ™ wn
R |2 3 27 %I 28 °.\°|29;
o~ o~ o~
Hed —
83 29 §| N 31 5
o~ o~ o
N [32] ~N
BO 32 b 33 £| 34
(32] o~ o™
BI 34§| In| o3y 8
C3 ~N o o
B2 37 sl 38 §| 39 23
o™ o~ o™
- -
B3 s s;’l a3
™ <

Figure 2-29. Address Table

When a driver is fully selected, it
provides the drive to two ROS words. An
even address in ROAR selects that address
and the next high-order odd address. An
odd address in ROAR selects that address
and the next lower even address. As an
example: If ROAR contains the decimal
address 0063, this address and address 0062
are selected. However, only the ROS word
at address 0063 is gated to the SAL's.

These two ROS words are read out to
sense amplifiers.

2030 FETOM (9/1/66)

2-23

Functional Units

SENSING AND DECODING ROS OUTPUT

e There are 120 sense amplifiers used to sense the two ROS words read out of the
selected 4K module.

e There are 60 SAL's (sense amplifier latches) used to store the selected ROS word.

Each ROS word has 60 bits and there are two Note: The second 4K module has another 120

words read in each ROS cycle. Therefore, sense amplifiers which are routed to
there are 120 sense amplifiers. Depending the same SAL and are gated by the

on the condition of X-register position 7, condition of X-4. Remember only one
bit or not-bit, one set of sense amplifiers driver is activated in either module.
(Figure 2-30) are gated to the SAL at a The module selected depends on the
given time (Strobe time) in the cycle. The condition of W-3.

information is held in the latches until
the reset pulse is activated.

+V

i (Even Word)

T-Lin (Odd Word)

1 —~ O
|_.
o

Sense
Amplifier
Bit 59 Even

Sense

Amplifier Bit O Even - 4K Sense

Bit O Even OR Amplifier
Dot Bit 59 Odd

Bit 0 Even - 8K l
—] A

Bit 0 Odd - 4K

Sense
Amplifier
Bit 0 Odd

Latch

Odd Gate 0 to 19 J SAL 0 Bit

1(X1) Odd Gat
e — 3ANSe Odd Gate 20 to 39 i

Strobe Circuits | Odd Gate 40 to 59 — OR
Sthhinchalb A Dot
Bit 0 Odd - 8K

Even Gate 0 to 19

Even Gate 0 Bit
3 AND Even Gate 20 to 39 Bit 0 to 19

Circuits Even Gate 40 to 59

Not 1 (X1)

Figure 2-30. ROS Sensing

2-24 (9/1/66)

Fanctional Units

CONTROL REGISTERS

¢ The outputs of SAL's 3% through 51 are transferred to con-
trol registers.

CCROS cPU
r— — — — — _—— = = = = = = = = = — = = — = —]
s I~ } -+ OF 5 CN Field Parity Check |
Al |
L ! | |
o | |1~—4 I
I_ N [I
| ! | A |
| | { X ~ Bus O Bit |
e
P |
= N SAL |
| \ .
| 33 Bit
| OE — Control Register Parity Check Network |
¥ ——_ __ _ . -L T1 Pulse L =]
¥ N e
| | -L Ctrl Req Reset o N |
| — | | cpsaLosi = (D Reg 0 Bit |
=
|_ N | | Set Control Register ||
| | | _cosALisi A |
l/\f_/_/—l = A OR N I
r\AN — - CD Reg 1 Bit
|—- N | | >— [
| CS SAL 3 Bit
— l i n |
51 |] | I__ |
52 |N | | — A |
|
| 4 OR N
! ' L lsaLs2P gy [CS Reg 3 Bit |
| + A
———T S—— | I
—
l— N | | by CA Field Alternate Decode l
|
| ! SAL 59 Bit |
I 1 |
| | |

Figure 2-31. ROS SAL Output and Control Registers

Because of timing conditions, the informa- The outputs of the SAL's are decoded and
tion in SAL 34 through 51 is transferred to used during the first part of a ROS cycle
another group of latches called control and the outputs of the control registers
registers (Figure 2-31). are decoded and used during the latter part

of the cycle.

2030 FETOM (9/1/66) 2-25

Functional Units

BASIC ROS TIMING

e ROAR is set using a P1 pulse and selected set inputs.

e The CPU CROS GO pulse is used to develop a ROAR decode pulse

and a SAL's reset pulse.

e The SAL's are good by T4 time.

* The control registers are reset during T1 time and set dur-

ing T2 time.

T T2 T3 T4 T T2 T3 T4

0 0

L |

Set W and X Reg

Ti T2 T3 T4

F

Read Out Time Bit

M M mal
T T T
m —]
ml ! .

-

Reset

TD-4 ,_-1 m
-5 !]

—
—

Strobe

Set Control Register

T1 (Normal Reset)

S.A. Input to SAL (i il
il

SAL Output i E l I ﬂ
CROS Driver Input I—E i —E ﬁ__-ﬁ
Control Register Output E

Figure 2-32. ROS Timing, Basic

Figure 2-32 shows the basic timings asso-
ciated with ROS. Each cycle is divided by
the CPU timing T1, T2, T3, and T4. The
figure shows three ROS cycles. The first
cycle represents the time to set ROAR,
because before any ROS word can be read out
and executed, there must be an address in
ROAR. The pulse to condition the set of
ROAR is a P1 pulse, but the information to
set ROAR is active by the first part of T1,
so ROAR is set during T1 time. Once ROAR
has been set and the latches have settled
down, the output of the latches can be used
to bring up the gates and drive lines for
addressing ROS.

2-26 (9/1/66)

This is done at T2 time using the CROS
GO pulse from the CPU. The CROS GO pulse
becomes a line called Read Out Time Bit and
is delayed to bring up the Read OQut Time to
condition the decode of the ROAR output
lines and a Reset pulse for the reset of
the SAL's.

The decode of the ROAR output lines
conditions one driver on one ROS board to
impulse two ROS words. The output, rep-
resenting the bits of the ROS word, of the
capacitors is routed to 120 sense ampli-
fiers. The CPU routes a line called CCROS

Strobe to CROS at T3 time; this line then

Functional Units

is called Strobe and is ANDed with the
condition of the X-register position 1 to
select the correct sense amplifier to be
routed to the SAL's.

The information in the SAL's is good
from about T4 time of the cycle of which
the ROS word was read out until the SAL's
are reset during the next ROS cycle.
Because of timing conditions, some of the
information in the SAL's is needed after

SETTING OF ROAR

reset time. Therefore, at P1, the informa-
tion is routed to the control registers.
The control registers are reset during T1
time of the cycle; they are set during T2
time of the cycle.

Note: Should the clock be stopped at Tu
time, the SAL's would contain the informa-
tion of the ROS word just addressed and the
control registers would contain the infor-
mation from the previous ROS word.

e The address in ROAR may be stored in one of two backup

ROARs.

* The address to be set into ROAR may come from many sources.

N

Selector Multiplexor

Backup ROAR

Indicating WX

GwW Backup W — A

ROAR

o~
(SN}

FWX —=WX

il P P
X6 3 3
A
X7 w wi
7 7

GWX—+=WX

CA—>W
FX K==W
SFG SHJ SHJ
U —=Wwx

~N
~

Figure 2-33. ROAR Controls

Figure 2-33 shows ROAR and two backup
ROAR's, one for selector channel and one
for multiplexor channel.

ent sources. Some of the microprogram
mnemonics are shown in Figure 2-33 and are

CN__ FIELD
PRIORITY

ROAR is set under
control of the microprogram by many differ-

P T4 P

o 0
r-,. A
OR
Address
] L
A Decode

discussed in detail under the microprogram
section.

ROAR is set at T1 time from one of the

inputs. Should the selector channel or
multiplexor channel cause a break-in, the

2030 FETOM

(9/1/66) 2-27

Functional Units

address in ROAR is transferred to either GW
and GX or FW and FX registers at T4 time.
When the channel operation is completed,
the microprogram transfers back to where
the interrupt occurred and the address in
the backup ROAR is transferred to ROAR
allowing the original program to continue.

INDICATING ROAR

* The console lights for a ROS word address are controlled by

an indicating ROAR.

The indicating W- and X-registers are shown
in Figure 2-33. Because of timing consid-
erations, the output from ROAR is gated to
the indicating ROAR latches at T4 time.
Since the clock stops at the end of T4
time, the address displayed is the address
of the ROS word we have just read out.

CROS LOCATION

Figure 2-34 shows the addresses as they
appear on ROS board 0 and 1. Even address-
es are on the left side of a ROS board; odd
addresses on the right. As an

example: address 0017 (decimal) is on ROS
card number 1. Card 1 is the uppermost
card on the right side of board 0. Figure
2-35 shows a 4K ROS module as viewed from
the left side of the console. The ROS
cards are inserted from this side.

From our knowledge of a ROS board and
the fact that words 0000 and 0001 are read
out at the same time, we can see that one
word is read from each side of the ROS
board each cycle.

Figure 2-36 shows the layout of the ROS
card. The drive tabs are located on the
column 80 end of the card. The card is
inserted into the module, drive tab first.
Because the capacitor plates on the cards
must be next to the ROS board, all the ROS
cards that contain words at odd addresses
must first be flipped over before inser-
tion.

2-28 (9/1766)

If all the ROS cards are viewed with
column-80 of the card to the right, then it
follows that the odd addresses are numbered
from the 9-edge to the 12-edge of the card.
The cards that contain the ROS words at
even addresses are numbered from top to
bottom as viewed (Figure 2-37).

ROS Board ROS Board

/
\
/|
\

0 900pTo00 g 007509 9

9025 | o2 0778 | oW\

2\0024®'15/3 10 20\ |4
0045 | 04T ll.l."> 0145 | G\ A3

okl | D> [T gelag—]
Q”b;ﬁﬂx//) \\\\%%%ﬁﬂg

F:\\aﬁidﬂ3 1 14 1ﬁ§77;/
0094 (0093 W ad

Figure 2-34. ROS Document Addresses

Functional Units

® —0 w3500

C 0O~ >

EC6

Pressure :_ EEZ__:
co Switch b == o]
1&2 I
Inverter/Converter 2nd CCROS Unit I 1st CCROS Unit
I:l O F4A Compatibility Storage I Basic Storage
B
5 Q rA |
TB19 O Reset Switch I
Air TBIA
| :
Asm [re2a]
CCROS Unit
T | oc |8
Input
O FT1A 8 I npu 14
QraA : I
A
| T
-TBS I
Air Pump WT I AC B
Line Filter] Input
l_ I 11
O« |
|
Air Plenum
K1 K2 CBI1 or |
MLS [Filter
TB3
Laminar ‘ | Laminar
P P =) Ml v Bus C2 Bus C1 '
Figure 2-35. 1IBM 2030, Left Side

Card Column 11

Figure 2-36.

Bit Punched Out

ROS Document Layout

2030 FETOM

(9/1/66)

2-29

Functional Units

Drive Tab Ena

0000 0023

0 1
0022 0001
0024 /0047

2 3
0046 0025
70048 /0071

4 5
0070 0049
(0072 ‘ (0095

6 7
0094 0073

Figure 2-37. ROS Word Numbering

MICROPROGRAM

e The microprogram is used to control the function of the

2030.

¢ Each machine cycle is controlled by one microprogram word.

e A microprogram word is punched in a ROS card and becomes a

ROS word.

In all computers it is necessary to have
some method to perform a sequence of logi-
cal steps. The 2030 uses a microprogram.
Aithin the microprogram, the microprogram
word is the functional statement. The
microprogram word is punched in a ROS card
to form a ROS word.

A ROS word is selected by the decode of

the address in ROAR (Read Only Address
Register) and the ROS word contents are

ROS Word Control Fields

decoded to activate control points in the
system. The ROS word consists of specific
fields programmed to perform a logic state-
ment. The activated word sends back part
of the next address for ROS to ROAR. Cou-
pled with branch control (machine status
test), the partial address forms the com-
plete address of the next ROS word. To
read and understand the ROS word, we must
know what the ROS word can contain and what
format is used to write the word.

¢ The ROS word used in the 2030 is 60 bits wide.

-o The ROS word is divided into control fields.

The 60-bit ROS word is divided into control
fields (Figure 2-38) and these fields can
be separated into six broad groups:

1. Function control CA, CF, CB, CG, CC,
cvV, CD, CK

2. Main and auxiliary storage CM, CU

2-30 (9/1/66)

3. Branching and ROS address CN, CH, CL

4. Set and reset of status condition CS

5. Alternate AA, AS, AK

6. Parity for different sections of the
control fields

Control Registers

CL CM CA CB

cC

(&

Nd

0

2345|3%

0123012301

0123]01]0

23

Ad
Od
o
N
w

1

0123

N4
AV

0

Options

1234

*gg-¢ sanbta

Parity for the
CN Field

—

Use to Set the

0 Through 5
Positions of

the X-Register
for Next Address

[

SpT3Td TOA3UOD SOY

Parity for the
SALS and
AA, AK Fields

-

Parity for the
ROAR Address

Condjition of the
Status Indicated
in the CH Field
Determines Setting
of the X-Register
6th Position

Condition of the
Status Indicated in
in the CL Field
Determines Setting
of the X-Register
7th Position

Read
Compute
or

Write

——

WOL3d 0€0¢

(99/1/6)

1e-¢

Section of Storage
to Read Qut of;
Alternate Codes
Have Special Uses

—

Called K-Register
Used to Emit
Digits to the
B-Register;
Alternate Codes
Have Special
Functions

——

Parity for the
CK or CA Field
for Certain
Operations

Parity for the
Control Registers
and AS Field

S —

Designate the
Register for
the ALU Output

Source of Data
to A-Register

Source of Data
to B-Register

—

Selects Alternate
Codes in the CK
Field

1

Selects Alternate
Codes in the CS
Field

1

Selects Alternate
Codes in the
CA Field

I

Set and Reset of
S-Register and

the FA, FB
Registers; Alternate
Code Used for
Selector Channel

l

Carry Control for
ALU and ALU
Special Functions

I

Determines ALU
Operation; True
or Complement,
Binary or Decimal

Controls A-Register
Output to ALU

Controls B-Register
Output to ALU

$3TUn TRUOTIOUNG

Functional Units

Notice the control fields vary in numbers
of bit positions. Example: the CU field
is two bits wide and the CD field is four
bits wide. If the field is two bits wide,
we can set and decode four

combinations: 0-00, 1-01, 2-10, 3-11. A
three position field can be set and decoded
in eight combinations, 0-000 through 7-111,
and a 4-bit field has 16 combinations,
0-0000 through F-1111.

FUNCTION CONTROL. The function control
fields (Figure 2-39) are used to control
all data movement in the CPU and the ALU.
ALL DATA MOVEMENT IS THROUGH THE ALU. The

function control fields can be subdivided
into four groups.

1. Source to the A-register and control of
the A-register output to the ALU; CA,
CF.

2. Source to the B-register and control of
the B-register output to the ALU; CB,
CK, CG.

3. Function and control of the ALU; CV,
CC.

4. Destination of the ALU output; CD

Source to the A-register (CA): This 4-bit

CONTROL REGISTER

P|lpP| CD CF | CG | CV | CC
0123 [K|C 0123 | 012 | O1 01 012
FT R|O Z |O |O
T L1 TE|L |L
YA |D|2 JE[H |H
YB |K|3 Q
S 4 TA | SP
H 5 H | XL
Fl 6 S [XH
R 7 R | X
D 8 D
L 9 L
G A G
T B T
A% G \%
V] D U
| E J
| F |
||
F O—-DIAG
FG UV-WX
1401 Mode Activated B MC WRAP-Y
ctivated By .
s 7 YC WRAP~X6
e HJ—B
Q AC FORCE
4 YM
TI YN
YD 1-OE
YE ASCII—~X6
YF INT—=X6X7
YG 0—-MC
GR Y—~WRAP
Kz GS 0—~LOAD
KY Gl 0—~F
KW GJ 1=~FO0
Activated By Activated By Activated By AS=1
AA=1 AK=1 Selected By Hardware
Selected By
Hardware

Figure 2-39. ROS Function Control Fields

2-32 (9/71766)

Functional Units

field is decoded to select the data to be
routed to the A-register. It can be decod-
ed to 16 combinations, but by using the AA
field (explained later), the CA field has
16 alternate sources to select. This makes
32 combinations for the A-register source.

Control of the A-register output

(CF): This 3-bit field controls the method
that the data from the A-register is pre-
sented to the ALU. The field is essential-
ly bit significant. There are eight bits
routed to the ALU from the A-register; we
can block all of them, block the four high
bits, block the four low bits, or allow all
eight bits.

If we block any bits, zeros are routed

to the ALU in place of the blocked bits.

We can also cross the four low bits with
the four high bits or cross and block four
bits. Figure 2-40 shows: 1if the 2 bit is
on, the four low bits are allowed, if the 1
bit is on the four high bits are allowed
and if the 0 bit is on the high and low
bits are crossed.

Cross the | Block the | Block the
A-Register | A-Register | A~Register
Four High [Four Low | Four High
Bits with [Bits Re~ Bits Re~
the Four | place with | place with
Low Bits Four Zeros | Four Zeros
and Allow | and Allow
High Bits | Low Bits
Bit 0 Bit 1 Bit 2
0 0 0 Block A-Register-Route Zeros
to ALU
0 0 1 Block High Bits-Route 0000 and
Low Bits
0 1 0 Block Low Bits-Route High Bits
and 0000
0 1 i Route A-Register to ALU
1 0 0 Conditional Machine Stop
1 0 1 Block High Bits-Route Low Bits
and 0000
1 1 0 Block Low Bits=Route 0000 and
High Bits
1 1 1 Route A-Register Crossing Low
and High

Figure 2-40. CF Field Bit Significant

If both the 1 and 2 bits are off, the
information in the A-register is blocked.
Notice there are two possible conditions
for this, all three bits off or just the
0-bit on. The condition of just the 0-bit
on has been selected as the machine stop
function since it did not serve any other
useful purpose. The stop function is

explained in greater detail later in this
section.

Source to the B-register (CB): This
2-bit field is decoded to select the data
to be routed to the B-register from either
the R, L, D, or K register. The K-register
is the CK field of the ROS word.

The K-register (CK): The K-register is
also called the emit field or the constant
field. This uU-bit field can be decoded to
16 combinations; there are 16 alternate
combinations which are active when the AK
field has a 1 bit.

The primary bit configuration can be
used to emit a digit 0 through F. The same
digit is presented to both the high and low
four bits of the B-register. For example,
the K-register has a 1 in it and the CB
field decodes to route K-register to B-
register, the 1 enters the high four bits
and the low four bits giving us the number
11. By using the CG field, we can route to
the ALU from the B-register the number 01,
10, 11, or 00. The W-register can be set
from the CK field if desired.

The R-register can also be used to
create an address to set in the N-register.
This is explained in greater detail later
in the section.

Control of the B-register output
(CG): This 2-bit field controls how the
data from the B-register is presented to
the ALU. The operation is the same as the
CF field except the B-register cannot be
crossed. We can block the output and route
eight zeros, or block either the high or
low four bits and route zeros where the
bits were blocked. The B-register output
can be routed direct (both high and low
four bits) to the ALU.

Control of ALU (CV): This 2-bit field
decodes to select what type of arithmetic
operation (true/complement and
binary/decimal) is to be performed. The
B-register input to the ALU is the
true/complement side.

(CC): This 3-bit field decodes to con-
trol the carry-in and carry-out to the ALU
and permits the setting of a carry-out into
the carry latch. This field also decodes
to control the AND, OR, and EXCLUSIVE OR
function of the ALU.

MAIN AND AUXILIARY STORAGE CONTROL. The
two ROS fields which control main and aux-
iliary storage are the CM and CU fields
(Figure 2-41) and work in conjunction with
each other. To understand the functions of
the two fields, it is easier to explain the
operation of the two fields together.

2030 FETOM (9/1/66)

2-33

Functional Units

~— 1401 Mode

1401 Mode K—=—Ww

Activated By
CM # 3-7 ——|

Activated By
AA=1
Selected By
Hardware

Figure 2-41. ROS Storage Control Fields

The 3-bit CM field decodes to select the
type of operation - read-compute or write.
The 2-bit CU field decodes to select what
section of storage to operate in: main
storage or auxiliary storage. Auxiliary
storage includes local storage and the
multiplexor storage blocks.

In the 2030, the four basic core storage
cycles are:
Read, Write (R, W)

Read, Compute, Write (R, C, W)

2-34 (9/1/66)

N/

Activated By AS=1
Selected By Hardware

Activated By
AK=1

Read, Store (R, S)

Read, Compute, Store (R, C, S)
Remember from the study of ROS hardware and
timing, that the data from core storage is
not ready for use until the beginning of
the next ROS cycle. Therefore, if a read
call is given, the next cycle must be a
write, a store, or a compute cycle. Also,
a write or store cycle should follow a read
cycle within three ROS cycles. If this
rule is not followed, it is possible to
have an over-run condition of an I/0 unit
on the selector channel. Over-run is where

Functional Units

new data is ready but can not be accepted
before more data is ready. There is an
allow _write_ latch on the 2030 which is used
to recognize whether the last cycle was a
read or a write. If a read is followed by
a read, there will be a position in storage
with all bits missing. This happens
because the position read first had nothing
written into it before its storage address
was changed. If a write is followed by a
write, the second write becomes a compute
cycle because the allow write latch is off
(set to allow a read cycle).

If the read cycle is followed by a write
cycle, the data is set in the R-register
and is routed to the core storage unit from
the R-register during the write cycle. If
the read cycle is followed by a store
cycle, the output from core-storage is not
used. Instead, new information is in the
R-register at the end of the read cycle and
is then written into core-storage during
the store cycle.

If the read cycle is followed by a com-
pute cycle, the output from core-storage
during the read cycle is set into the R-
register. During the next cycle, the
information in the R-register may or may
not be used in the computation. The next
cycle is either a write or a store cycle
and the R-register may contain the original
information or the result of the computa-
tion. In any case, what is finally in the
R-register is written in core-storage dur-
ing the write or store cycle.

The core storage read-write control
(CM): This 3-bit fields is decoded to

determine if the cycle is a read, compute,
or write cycle. A 0 or 2 decodes to a
write cycle (2 is a store but brings up a
write operation), a 1 is a compute cycle,
while 3 through 7 are read cycles.

The section of core storage used
(CU): This 2-bit field decodes to select
which section of core storage is used dur-
ing the read cycle. Write at the same
address. The alternate decodes for the CU
field are activated when writing by the CM
field having a decode of 0, 1, or 2. The
alternate decodes are explained later in
this section.

Note: If the CU field is a 3 (M/LS),
the operation must be checked further to
see if main storage or local storage is to
be used. This is done by checking the two
high-order bits of the G-register which
contain the op code during this time. If
the two bits are 00, the op code format is
RR and local storage is used. Any other
combination of the two bits (01, 10, or 11)
requires the use of main storage.

BRANCHING AND ROS ADDRESS. The complete
ROS address is held in the W- and X- reg-
isters. The W~ registers hold the five
high-order positions of the ROS address and
can be set by a ROS statement CAhh->W
(detail on this ROS statement later) and
the eight low-order positions of the ROS
address are in the X~ register. Normally
the X- register is set from the CN, CH, and
CL fields (Figure 2-42).

2030 FETOM (9/1/66)

2-35

Functional Units

p|l cN |P|P| CH
N1012345[5 |A | 0123

0 0o |o

1 1 1

2 RO | CAhh—W

3| Gw|v2 |Al

4 ST | svo

5 OP | R=VDD

6 AC | OBC R1

7 so | z=0

8 |R2 {s1 |G7

9 52 |s3

: 22 g; «— 1401 Mode

C GO| GI R3

D G2 | G3

E G4 | G5

F G6 | INTR

1401 Mode K—W

Activated By

oM o g L |Fwx—wx

Activated By
AA=1
Selected By
Hardware

Figure 2-42. ROS Branch Control Fields

The 0 through 5 positions of the X reg-
ister are set from the CN field while the 6
and 7 positions are set by decoding the CH
and CL fields. If the condition of the CH
field is satisfied, the 6th position of the
X- register is set to the on condition and
if the condition is not satisfied, the
position is set to 0. The same operations
for the 7 position are used except the CL
field is decoded to determine the on or off
condition.

2-36 (9/1/766)

WRAP=-X6
AC FORCE

i

ASCII—X6
INT—X6X7

Activated By AS=1
Selected By Hardware

Activated By
AK=1

STATUS SET AND RESET. Certain bit posi-
tions in the S-register are controlled by
the CS field (Figure 2-43). The FB and FA
latches for the multiplexor channel are
also controlled by the CS field. The
alternate codes of the CS field are used
for the selector channel.

Functional Units

CONTROL REGISTER

LZ—-S5
HZ—~54
HZ—~54, LZ—~S5
O—54, S5
TREQ—S1
O—+SO
1-SO
O—52
ANSNZ—~S2
<~— 1401 Mode ?:22
0—-S7
1—-S7
K—FB
K—FA
O—-DIAG YH 0
UV-=WX YJ 1
1401 Mode Activated B MC WRAP-Y KS—=R 2
Y - -
CM # 3-7 ¥E WRAP~+X6 KC—R 3
C HJ—=B KD—R 4
Q AC FORCE KK—=R 5
Jl YM GUV GCO |KUV—KCD| 6
Tl YN GR—~GK R—-KK 7
YD 1-OE GR—~GF R—KF 8
YE ASCII—~X6é GR—-GG R—-KG 9
YF INT=~X6X7 GR—=GU R—KU A
YG 0—-MC GR—-GV R—=KV B
GR Y—WRAP K—GH K—~KH C
KZ GS 0—-LOAD GI—=GR R—KS D
KY Gl 0—F K—~GB K—~KB E
KW GJ 1=-FO0 K—~GA K—KA F
Activated By Activated By Activated By AS=1
AA=1 AK=1 Selected By Hardware
Selected By
Hardware

Figure 2-43. ROS Status Field and Parity

ALTERNATE DECODE. When the 1-bit AA field CONTROL FIELD PARITY BITS. There are five

has a 1, the alternate codes for the CA parity bits associated with the control
field are used. If the 1-bit AS field has fields: PN, PS, PA, PK, and PC. (Figure
a 1, the alternate codes for the CS field 2-44) shows the fields and the parity bits

are used. When the 1-bit AK field has a 1, used for each checking circuit.
the alternate CK codes are used (Figure
2-43).

When the 2030 is in 1401 compatibility
mode the AA field needs a 1 in conjunction
with the mnemonic CAhh->W, to set the ROS
address.

2030 FETOM (9/1/66) 2-37

Functional Units

X7 Data CN 0-5
X6 Data
I Generate, X-P Bit J | CN Parity Checking
No Action
r Set W Register I
P Bit
_CHO-3
CLO-3 W-Reg P Bit
CM 0-2 X-Reg P Bit
Cyo-1
CA0-3 WX Checking
CBO-1 LAAA]
CK 0-3
AA SAL
AK SAL Yes No
Good Parity
[SAL Parity Checking | li Control Register Checking I
l WX Check J
CN Parity Check - Ne AN“
[l Inputs .
Good Parity
LSAL Parity Check J I Control Reg Check J
Figure 2-44, Parity Check Bits
The PN parity bit is used to maintain When the CK field is used as a constant
odd parity for the CN field. This bit is in an arithmetic statement, the PK bit is
used with X6 and X7 bits to set X- register not specified. In this case, the PK bit
parity bit when CN is gated to the X- reg- can be 0 or 1; usually 0. In the storage
ister. The PS parity bit is used to main- statement (*aa) or in a statement where K

tain odd parity for the AA, AK, CA, CB, CH, is used to change the W- register (K->W),
CK, CL, CM, and CU fields and the PA and PK the PK bit is used to provide odd parity on

bits. the W- register.

The PA parity bit is used to maintain
odd parity for the ROAR. As an example, if If the CA field is used to set the W-
the address of the ROS word is O1BF register (CAhh->W), the PK bit is used to

(0000 0001 1011 1111), the PA bit must be a maintain odd parity for t