
Processing Unit

System/360 Model 30

Field Engineering

Theory of Operation

PREFACE

This manual contains information about the IBM 2030 Processing
Unit. A companion manual, IBM 2030 I/O Control, Theory of
Operation Manual, Form Y24-3362, should be obtained for
1nformation pertaining to the attachment of I/O devices to the
IBM System/360 Model 30. For maintenance information on the
IBM 2030, refer to the IBM 2030 Maintenance Manual, Form
Y24-3390. The IBM 2030 Maintenance Dia~ram Manual, Form
Y24-3466, contains flowCharts of spec1f1c op-code microprograms
for the basic machine and the IBM 1400 Compatibility Feature.
The IBM 1620 Compatibility Feature Diagram Manual, Form
Y25-3478, conta1ns flowcharts of 1620 emulation.

The following SRL publications contain much useful information
about operation and application of the IBM System/360 Model 30:

Title

IBM System/360 Model 30 Functiona.l Characteristics

IBM System/360 Model 30 Configurator

IBM system/360 Model 30 1401 Compatibility Feature

IBM System/360 Model 30 1620 Compatibility Feature

IBM System/360 Model 30 Operators Guide

IBM System/360 Model 30 Channel Characteristics

IBM System/360 principles of Operation

Fifth Edition, June 1967

This edition, Y24-3360-1, is a minor reV1S10n of
the previous edition, Y24-3360-0, but does not
obsolete it. Minor changes, which are primarily
in the IBM 1620 Compatibility Feature section,
are marked by a vertical line to the left of the
affected text, or by a dot (.) next to the title
of an affected figure. In addition, other non­
technical, typographical corrections have been
made throughout the manual.

Significant changes or additions to the
specifications contained in this publication
will be reported in subsequent revisions or
in FE Supplements.

This manual has been prepared by the IBM Systems Development
DiVision, Product Publications, Dept. 171, PO 6, Endicott, New
York. Address comments concerning the manual to this address.

~International Business Machines corporation 1965

Form

A24-3231

A24-3232

A24-3255

A24-3365

A24-3373

A24-3411

A22-6821

CHAPTER 1. INTRODUCTION. · 1-1

Overall Data Flow • . . 1-1
CPU Data Flow . . • . . . • .• • 1-9
Arithmetic Operations • • 1-13
Fixed Point Arithmetic •••.••.. 1-13
Packed Decimal Arithmetic . . . 1-16
IBM System/360 General Information. . 1-25
Numbering Systems . . • 1-25
Information Formats . • 1-35
Basic Programming • 1-41
Storage Protection. . . • . . . 1-70
Programming Systems • • 1-74

CHAPTER 2. FUNCTIONAL UNITS .. 2-1

System Clock. • . • • . • . • • • 2-1
Registers • . • . . •
Read Only Storage and Microprogram.
Arithmetical Logical Unit (ALU)

• 2-3
• 2-4
· 2-52

M2 Core Storage Unit .•. · 2-57
• 2-91 M2-I Core Storage Unit •.•.••.

CHAPTER 3. PRINCIPLES OF OPERATION. 3-1

Instruction Read-In . • . • . . • • . 3-1
ROS Timing to Core Storage Timing • . 3-1
Break-In-Timings.. • .•.... 3-3
Binary Add. • . •. • ..••.• 3-4
Branch on Condition (RR Format) 3-17
Pack With Indexing. . • • . • • 3-20
Shifts. • . . . • . . •• 3-32
Floating Point. . • • 3-35
Machine Check Handling. . . •• • 3-37
CPU Errors. . • . . .• • ••.• 3-37
Machine Check Register. .•• • • 3-37

List of Abbreviations

ALU
ASCII

Aux Stor

BCD
bin

CAW
CID

CLD
CPU
CROS
CU

dec

EBCDI

EOF

GM
GMWM

IC
I/O
IPL

Arithmetic Logic unit
American Standards Code for

Information Interchange
Auxiliary Storage

Binary Coded Decimal
binary

Channel Address Word
Compatibility Initialization

Deck
CAS Logic Diagram
Central Processing unit
Capacitor Read Only Storage
Control Unit

decimal

Extended Binary Coded Decimal
Interchange

End of File

Group Mark
Group Mark Word Mark

Instruction Counter
Input-Output
Initial Program Loader

Machine Check Microprogram. .
Forced Microprogram Entries .
Parity Check Timings •.

CHAPTER 4. FEATURES ••

Storage Protection. • .
Interval Timer. . • • • .
1401/1440/1460 Compatibility ••
1620 Compatibility ..•..•

CHAPTER 5. POWER SUPPLIES .•

CONTENTS

. . 3-39
3-41

· 3-43

• 4-1

. • 4-1
4-25

• 4-28
4-75

• 5-1

Power-On Sequence (Stepper Switch) .• 5-1
Power-Off Sequence. . . • •. •• 5-5
Power-On Sequence (Mid-Pac) . . • • • 5-7
Power-Off Sequence (Mid-Pac • • • • • 5-7

CHAPTER 6. CONSOLE AND MAINTENANCE
FEATURES. • 6-1

2030 Console. • • 6-1
Upper Indicator Panel . • 6-4
Lower Indicator Panel . . • . 6-9
Indicators on OCP . • . . • 6-13
Pushbutton Controls on OCP. • 6-14
Data and Address Entry Switches • . • 6-15
Display Storage Selection Switch. . . 6-16
Pushbutton Key Controls. . . . • 6-17
Rotary Control Test Switches. 6-23
Meter Panel . . . • •. 6-25

APPENDIX A.

APPENDIX B. •

INDEX

L
LS

MPX
MS

PSW

RBC
ROAR
ROS
RPG
RR
RS
RX

SA
SAL
SI
SLD
SRL
SS

uew

WLR
WM

length code
Local Storage

Multiplexor
main storage

Program Status Word

Read Back Check
Read Only Address Register
Read Only Storage
Report Program Generator
Register-to-register
Storage-to-register
Storage-to-register

Stack Addre's s
Sense Amplifier Latch
Storage-immediate
Simplified Logic Diagram
System Reference Library
Storage-to-storage

Unit Control Word

Wrong Length Record
Word Mark

A-I

· A-3

• X-I

Figure 1-1. IBM System/360 Model 30 with IBM 1052 Documentary Console

Introduction

The first part of this chapter is an intro­
duction to IBM System/360 Model 30 charac­
teristics. Basic System/360 information
(such as data formats and basic programming
concepts) is subsequently described in the
IBM System/360 General Information section
of this chapter. The material in this
general information section covers many of
the topics included in the Field Engineer­
ing systeml360 Introductory programming

OVERALL DATA FLOW

CHAPTER 1. INTRODUCTION

student Self-Study Course. (The self-study
course is a prerequisi te to this publica­
tion.) The general information section is
primarily for reference and review purpos­
es.

The last part of Chapter 1 is an intro­
duction to certain programming systems
concepts with which you should be familiar.

• Overall control of system operations is provided by control
circuitry that interprets instructions and regulates the
actions called for by instructions.

• Three basic areas controlled are:

1. The arithmetic logic unit (ALU)

2. Core storage

3. Channels

• A channel is a control and data link between 1/0 control
units and the processing unit.

• An I/O control unit responds to the channel in a standard
way over the standard I/O interface cable.

Any data processing system performs three
basic operations:

1. Information is entered into the system
by use of an input device, such as a
card reader.

2. The input information is processed.
(processing includes arithmetical and
logical manipulations of source infor­
mation. The processed information is
then usually put into some predeter­
mined format.)

3. The formatted infornation is sent to an
output device, such as a printer or
card punch, which then produces a mean­
ingful record of the processed informa­
tion.

Control of these input, arithmetic,
logic, and output functions must be provid­
ed. This control is achieved by interac­
tion of two factors:

1. A series of instructions (program) that
indicates the operations to be per­
formed.

2. Machine control circuitry that is capa­
ble of interpreting and then directing
performance of the operations called
for ~ the program.

Because speed is an important factor,
each instruction must be obtained quickly
by the machine. In System/360 Model 30,
the program controlling the system is
located in high-speed main storage. (How a
program is initially put into main storage
is not pertinent to this discussion.)

The control circuitry of the system
interprets an instruction fetched from main
storage and directs performance of the
indicated operation. The next instruction
is then obtained from storage and its oper­
at ion is performed. This sequence is
repeated until the job is completed or
terminated at an intermediate step.

In the System/360 Model 30, during the
processing of any instruction. one (or two,
or all three) of three basic areas must be
controlled. (Figure 1-2):

1. The ALU (Arithmetic Logic Unit) in

2030 FETOM (9/1/66) 1-1

Introduction

which arithmetical and logical manip­
ulations of information are performed.

2. Core storage, either (or both) main
storage or an auxiliary storage (that
contains, among other things, areas
devoted to general registers, floating
point registers, and certain controll­
ing information for I/O operations).

3. Channels, which are the main controll­
ing elements in I/O operations (which,
in general, take precedence over non­
I/O operations).

Notice in Figure 1-2 that any
input/output channel is a link between I/O
control units and the control circuitry in
the IBM 2030 (the processing unit for
System/300 Model 30).

IBM 2030 Processing Unit

Control ::====~~~_C~::o_1 ==========~::I __ A_L_U_---..I

Addresses ---~

Instructions and Data- Core
Storage

'------Control-------l.---..., t
'-------Control Data

Control and Data MPX
Channel

Selector Selector
Channel Channel

A CU (Control Unit) is necessary for the
operation of any I/O device attached to the
System/360 Model 30. The CO may be an
integral part of an I/O unit or it may be a
separate unit to which the I/O device is
attached. In either case, the CU has cir­
cuitry that allows it to communicate with a
channel. The data and control information
exchanged between a channel and any CU is
in a standard form: therefore, a channel
can communicate with any CU as long as the
circuitry in the CO is able to operate
through the use of the standard signals
recognized by the channel. A cable that
connects CU's with a channel is called a
standard I/O interface cable.

Note, however, one exeption: The 1050
Documentary Console is not attached, on the
Model 30, to a standard I/O interface
cable.

1 2

Stoodo,d I/O Coot,ol ood Data StOO/dard I/O Interface

Interface ~ '-I------_--'---~l To I/O Control Units
~ To I/O Control Units

Control and Data------,----------------, ,
I/O
Control
Unit

I/O
Unit

I/O
Control
Unit

I/O
Unit

Figure 1-2. Systeml360 Model 30 Overall Data Flow

1-2 (9/1/66)

I/O
Unit

I/O
Control
Unit

I/O
Unit

I/O
Unit

Introduction

ROS (READ-ONLY-STORAGE) CONTROL

• Read-only-storage (ROS) is the basic control circuitry for
system/360 Model 30.

~ontrol circuitry is the guiding or regu­
lating medium of the system. There are,
however, various levels of control. For
example, suppose that a specific byte is to
be read out of main storage. To read out
the specified byte, the following actions
occur :

1. The address of the byte is set into
storage address registers.

2. The output of these registers is used
to specify the storage location.

3. The byte is read out of storage and
placed into a machine register.

AID (ARITHMETIC LOGIC UNIT)

In a sense, the outputs of the storage
address registers control addressing of
storage. However, the storage address
registers themselves are controlled by ROS,
both when the address is initially set into
them, and when it is read out.

In System/360 Model 30, basic controll­
ing circuitry is called ROS
(Read-Only-Storage). Outputs of ROS cir­
cuitry determine which circuit elements
(such as registers) are used and how they
are used for each operation. For informa­
tion about the fUnctions and physical make­
up of ROS, refer to Chapter 2 of this
publication.

• Arithmetic and logical operations are performed on binary
and packed decimal data (if decimal feature is used) by the
ALU.

• Two registers (B and A) provide input to the ALU.

• Control circuitry (ROS) directs, as indicated by an instruc­
tion, both the operation ~o be performed by ALU and how the
data in the B- and A-registers is to be used by ALU.

• Parity is not carried through the ALU circuits. Correct
parity is generated for the resulting byte after the infor­
mation has passed through the ALU.

• Data is sent through the ALU in both true and complemented
form, thereby providing a check of ALU operations.

rhe AW performs:

1. Arithmetic operations of:

a. Adding and

b. sUbtracting.

2. Logical operations of:

a. ANDing,

b. ORing, and

c. Exclusive ORing.

The ALU performs binary addition and
subtraction (i.e., complement addition) on
fixed-point data, two bytes (one from each
operand) at a time. If the decimal feature
is used, additions and subtractions are

performed on packed decimal operands.
Here, each byte contains two packed decimal
digits; one digit is in the four high-order
bits, and the other in the four low-order
bits. (The sign is carried in the four
low-order bits of the low-order byte.) A
packed decimal digit is valid only if the
four bits that represent it are in the
range 0000 to 1001 (binary).

Two registers (the B- and A-registers)
provide the basic information-inputs to
ALU. The original information set into
these two registers can come from a variety
of sources. The sources used depend upon
the operation performed.

ROS output:

1. controls the manner in which the COn­
tents of the B- and A-registers are

2030 FETOM (9/1/66) 1-3

Introduction

sent to ALU. (Some ALU operations do
not require use of two full bytes of
data. For exanple, comparison against
four bits of a mask field requires only
two separate four bit entries into
ALU.)

2. specifies the type of operation to be
performed (true or complement, binary
or decimal, add, AND, OR, exclusive OR)
as indicated by the instruction being
processed.

STORAGE SIZES AND CYCLE TIMES

Parity is not carried through ALU cir­
cuitry. Input line levels are complemented
so that input to ALU is in both true and
complemented form. Exclusive OR circuitry
is used to check that each output line at
an up level has a corresponding complement­
ed line at a down level. Correct parity
for the result byte is generated after the
data has passed through ALU.

• Model 30 uses either a 1.5 or a 2.0 microsecond storage
cycle (i.e., read/write cycle).

• Information is handled one byte at a time in System/360
Model 30 core storage.

• Auxiliary storage is made up of local storage and MPX
(multiplexor) storage.

• The sixteen general registers and the four floating point
registers are in local storage.

• MPX storage contains the multiplexor channel's Unit Control
Words.

rhe IBM 2030 Processing Unit contains core
storage and logic, arithmetic, and control
circuits for IBM System/360 Model 30. Four
models are available; the primary charac­
teristic of each model is its amount of
main storage. The letter prefix in the
model designation indicates the amount of
main storage:

Svstem/360 Model Main storage (in bytes)

C30
030
E30
F30

8192
16384
32768
65536

Each one of the four models has either (but
not both) a 1.5- or a 2.0-microsecond stor­
age cycle (such as read from and then
immediately write into storage).

"Refer to the Data Width column in Figure
1-3 or 'Figure 1-4. Notice that one byte
(eight bits plus parity> at a time is han­
dled in Model 30. This is true for the
general and floating point registers as
well as for main storage. Handling a word
(four bytes) in a general register requires
at least 6 microseconds in the
1.5-microsecond storage cycle system
(Figure 1-3). What is meant here is that
one byte at a time is read from a general
register and then written, for example,
into a main storage location. other
operations, such as computations, may

1-4 (9/1/66)

extend the time, but to read and write in
succession requires at least 1.5 microse­
conds per byte. (Other models of
System/360 [Model 40, Model 50, etc.] han­
dle more than one byte per storage access
cycle.)

An additional core storage area, called
auxiliary storage, is contained in the 2030
(Figure 1-5). Auxiliary storage is a part
of the main storage array. However, auxil­
iary storage is addressed differently and
does not use any of the main storage loca­
tions. The amount of available auxiliary
storage is, in general, dependent upon the
size of the main storage array. Standard
auxiliary storage capacity for each model
is:

Model
C30
030
E30
F30

Auxiliary Storage (bytes)
512

1024
1024
1024

Auxiliary storage is made up of two
areas:

Local storage, and
MPX (Multiplexor) storage.

Local storage contains the sixteen general
registers, the four floating point reg­
isters, and other miscellaneous areas.
Every Model 30 has 256 bytes of local stor­
age.

Introduction

Speed Data Width
Characteristi cs (in microseconds) Bits (Bytes)

Basic Machine Cycle .75 -

Main Storage: 1.5 8 (1)

Model C30 -- 8192 Bytes

Model D30 -- 16384 Bytes

Model E30 -- 32768 Bytes

Model F30 -- 65536 Bytes

Registers Accessible to
Programmer:

Sixteen General Registers * 6 32 (4)

Four Floating-Point Registers * 12 64 (8) Double
Precision

6 32 (4) Single
Precision

System Control:
Read Only Storage (ROS) .75 -

* These registers are in local storage (a storage area that is in addition
to the main storage capacity).

Figure 1-3. CPU Characteristics

The remainder of auxiliary storage is
used to contain multiplexor channel DeW's
(Unit control Words). Each one of these
UCW's contains the information necessary to
control the I/O unit, on the multiplexor
channel, to which the ucw pertains. There
are 32 UCW's, each eight bytes long, in the
MPX storage of Model C30. Bence, a maximum
of 32 subchannels can be controlled from
information in MPX storage in Model C30.
Models 030, E30, and F30 can use up to 96
U~w's in MPX storage as a standard feature.
Models E30 and F30, however, can have the
Additional Multiplexor subchannels optional
feature that allows use of up to 224 sub­
channels. (If this feature is installed,
2048 bytes are used for auxiliary storage.)
If the 1400 or 1620 compatibility feature
is installed, certain parts of MPX storage
are used for purposes other than storing
UCW's.

Speed Data Width
Characteristics (in microseconds) Bits (Bytes)

Basic Machine Cycle 1 -

Main Storage: 2 8 (1)

Model C30-- 8192 Bytes

Model D30 -- 16384 Bytes

Model E30 -- 32768 Bytes

Model F30 -- 65536 Bytes

Registers Accessible to
Programmer

Sixteen General Registers * 8 32 (4)

Four Floating-Point Registers * 16 64 (8) Double
Precision

8 32 (4) Single
Precision

System Control:
Read Only Storage (ROS) 1 -

* These registers are in local storage (a storage area that is in addition
to the main stoll"age capacity).

Figure 1-4. CPU Characteristics (2.0
Microsecond Read/Wrlte Cycle)

Core Storage Array

Main Storage

Model Capacity (in Bytes)

C30 8,192
D30 16,384
E30 32,768
F30 65,536

Auxi I iary Storage

Local Storage MPX Storaae
256 Bytes in Every System/360 Model Number of UCWs
Model 30 C30 32

D30 96
(Contains 16 general purpose E30 96*
registers, 4 floating point F30 96*
registers, and other miscellan-
eous areas.) * Model E30 or F30 can have

224 UCWs if the Additional
Multiplexor Subchannels
Optional feature is installed

Figure 1-5. Core Storage Allocations

2030 FETOM (9/1/66) 1-5

Introduction

CHANNELS

• Up to three channels can be installed in System/360 Model
30:

1. One Multiplexor Channel

2. Selector Channel 1

3. Selector Channel 2

• The multiplexor channel can operate in either multiplex or
burst mode; a selector channel operates only in blrst mode.

Time -_ .. L....:.....ll _~12 _----I......-h_----I......-14 _---I...-15_-.L..:....16------{
Data transfers over }
multiplexor channel

Key:

~ IBBBBI[£] ~

A Data byte from device A to main storage.

B Data bytes to device B from main storage .

C Data byte from device C to main storage

Figure 1-6. Multiplex Mode Operation

The 2030 can have up to three channels:

1. A multiplexor channel (standard
feature)

2. Selector Channel 1 (special feature)

3. Selector Channel 2 (special feature)

The main purpose of the multiplexor
channel is to provide for operation of
lower speed I/O devices in multiplex (data
interleaved) mode (Figure 1-6). In the
multiplex mode, information is transferred
in groups of bytes between the processing
unit and several I/O devices concurrently.
For examp1e, multiplexing service for two
s~rial unbuffered card readers could pro­
ceed as follows:

1. One byte of data is sent from the con­
trol unit of the first card reader to
the processing unit.

2. Next, one byte of data is sent from the
control unit of the second card reader
to the proceSSing um t.

steps 1 and 2 are repeated until a complete
record is transferred for one of the units.

1-6 (9/1/66)

IB B B BI[I]

Servicing for the other unit is then com­
pleted alone.

While some I/O units always operate in
bUrst mode regardless of the channel, buf­
fered units (except the 2520) attached to
the multiplexor channel can operate in
burst mode as well as in multiplex mode.
This capability is provided by a switch
associated with the buffered unit. In
burst mode (Figure 1-7), the data transfer
is completed on a record basis.

Multiplexing operations are not allowed
on the multiplexor channel during the time
that a unit attached to the multiplexor
channel is operating in burst mode. There­
fore, a burst mode uni t should not be
st art ed (on the mul t ipl exor chann el) while
units that are multiplexed are operating.

Selector channels operate only in burst
mode. An I/O control unit obtains control
of the channel and transfers an entire
record (i.e., multiplexing does not occur)
for the associated I/O unit. After the
record is transferred (and if no chaining
for the same unit occurs). another I/O
control unit can obtain control of the
selector channel for record transfer.

Introduction

Time- L-ll ____L.1 _2 -----IfSr------'"_3 ____ --'-1 ~4 J

Data Transfer ~
on Channel l

Complete Record
Transferred for
Unit A

From Time 1 to Time 2,
Unit A is the Only I/O
Device Transferring

Data on the Channel

Complete Record
Transferred for
Unit B

From Time 3 to Time 4,
Unit B is the Only I/O
Device Transferring

Data on the Channel

Figure 1-7. Burst Mode operation

Multiplexor Channel

• Some of the CPU circuits are used by the multiplexor channel
for its operations •

• Certain information used in CPU instruction processing is
stored in local storage during multiplexor channel opera­
tions •

• UCW information is used to indicate how an I/O unit·s opera­
tion is controlled on the multiplexor channel.

• The maximum number of I/O units that can be addressed on the
multiplexor channel is dependent upon:

1. The amount of MPX storage available.

2. The number of shared subchannels used.

3. The fact that a maximum of eight cuts can be attached to
the standard I/O interface cable.

The terms ·concurrent·, ·simultaneous·, and
"multiplex· are used consistently in
system/360 publications. What, however, is
meant by these terms when applied to
System/360 Model 30 multiplexor channel
operations? consider a typical multiplexor
channel data transfer.

In the 2030, certain CPU circuits are
shared with the multiplexor channel.
rherefore, CPU instruction processing oper­
ations are stopped during the time that a
multiplexor channel operation (data trans­
fer or chaining) is in progress. Assume
that an add operation is being executed in
the CPU and that a 1442 card read operation
is in progress. CPU control circuitry,
including certain registers (not the 16
general or 4 floating point registers),
contains information that is updated as the
add instruction is executed. Now suppose
that the I/O cu (Control Unit) of the 1442
requests channel service (i.e., the CU has
a data byte ready for transfer to storage).
The CU can wait to transfer the data byte
for only a certain time period. This time

is dependent upon when the next card column
is read. If the first by~e is not trans­
ferred before the next byte is ready, data
is temporarily lost. (To recover the data,
the operator must reload the 1442 with the
appropriate cards.)

In the CPU, the information needed for
execution of the add instruction is taken
out of CPU registers and placed in local
storage. The ucw (Unit Control Word) that
pertains to the 1442 is then taken out of
MPX storage and placed in the appropriate
CPU registers. The uew is used to indicate
how the byte from the 1442 should be han­
dled (such as where it should be stored in
main storage). As soon as the byte is
processed and the uew contents are updated,
the UCW is stored into MPX storage. The
CPU registers are loaded from local storage
with the necessary add instruction informa­
tion, and the add operation is continued.
The next request for service by the 1442
results in repetition of the operations
just des cribed.

2030 FETOM (9/1/66) 1-7

Introduction

CPU information is not always restored
into CPU registers after a multiplexor
channel data byte transfer. If another
request for I/O data transfer is made soon
enough, then that data is processed. This
operation can occur, for example, when a
high-speed device (such as a magnetic tape
unit) is run on the multiplexor channel.

The maximum number of I/O units that can
be attached to the multiplexor channel
depends upon:

1. The number of available ucw's in MPX
storage.

2. The number (if any) of shared subchan­
nels used.

3. The restriction that a maximwn of eight
adapters (CU's) can be connected to the
standard I/O interface cable.

Item 1 depends upon the model. Up to 32
subchannels (UCW's) can be used in Model

Selector Channels

C30; up to 96 in Models 030, E30, and F30
as a standard feature. Models E30 and F30
can have the Additional Multiplexor Sub­
channels optional feature that provides for
use of up to 224 subchannels. In this last
case, shared subchannels are not allowed.

A shared subchannel is used for multiple
I/O units controlled, one at a time (i.e.,
no nultiplexing between the sharing units),
by a single cu. An example of this type of
configuration is several direct access
mechanisms (such as 2311 disk storage
drives) connected to one CU. Only one UCw
is used to store controlling information
for operation of one of the direct access
mechanisms at a time. Use of certain
unshared ucw's (i.e., a UCW devoted to only
one I/O unit) is excluded if shared sub­
channel addresses are used. For further
information on multiplexor channel address­
ing, refer to Field Engineering Manual, IBM
2030 I/O Control, System/360, Model 30,
Form Y24-3362.

• Data transfer for an I/O unit is completed on a record basis
before another I/O unit can be started on the same selector
channel.

• A selector channel uses its own circuitry (including clock)
to effect data transfers between its attached I/O units and
main storage.

• selector channels use CPU circuitry during starting, chain­
ing, and ending procedures. If any overlapping CPU instruc­
tion processing is also taking place, the CPU instruction
information is stored in local storage until completion of
the selector channel operation.

• Up to 256 I/O addresses can be used to address units on a
selector channel. The actual number of I/O units will pro­
bably be less than the maximum, however, because only eight
adapters (I/O control units> can be attached to a standard
I/O interface cable.

Either of the two selector channels availa­
ble for Model 30 operates in burst mode
only. Only one device at a time can be
actively engaged in a data transfer on a
specific selector channel.

Each selector channel has its own cir­
cuitry for use in data transfers. When a
selector channel data transfer occurs, CPU
instruction processing is stopped only for
the time necessary to transfer the data
byte between main storage and the channel.
Because only one device at a time can be
operated, a separate area for storage of
selector channel UCW's is unnecessary.
rhat is, for each selector channel there is
only one current UCW, which is handled by

1-8 (9/1/66)

selector channel circuitry. Operation
indicated by the current UCW is completed
before another I/O operation can be started
on the same selector channel. Hence, cur­
rent CPU instruct ion info.rmation is not
stored into local storage (as it is during
multiplexor channel data transfers>.

During transfer of a byte of data
between main storage and a selector channel
the CPU clock is not used. Rather , each
selector channel has its own clock to con­
trol operation of storage. After the data
transfer is completed, the CPU clock is
us ed for process ing the CPU instruction in
progress.

Introduction

Note that in selector channel starting,
chaining, and ending operations, CPU con­
trol circuitry is used. For chaining and
ending operations, information related to
the CPU instruction in progress is placed
in local storage.

CPU instruction-processing information
is restored into machine registers from
local storage at completion of the chaining
or ending procedure. Instruction process­
ing is then continued in overlap fashion
with any selector channel data transfers

CPU DATA FLOW

that occur. (Note that during starting of
an I/O operation, the CPU instruction in
progress is an I/O instruction such as
START I/O.)

The eight-bit unit addressing scheme
allows for up to 256 separate I/O addresses
on a selector channel. However, because
only eight cuts (also called adapters) can
be attached to a standard I/O interface
cable, the actual number of I/O units will
probably be less than the maximum addressa­
ble number.

• The series of logical steps used to control infornation flow
between machine elements (such as ALU, machine registers,
and storage) for a particular operation, is called a ROS­
microprogram routine •

• The ROS microprogram is not written by the user o.r problem
programmer; its routines are establisned in circuitry, and
ROS micro instructions are not stored in core storage.

Recall that ROS (Read-Only-Storage) is the
basic control circuitry in the 2030. The
particular series of ROS steps taken to
control an operation is a microprogram
routine. The ROS-microprogram routine for
any specific machine operation is, in
general, dependent upon:

1. The requirements of the operation
(i. e., what machine elements must be
used to achieve the desired results).

2. The logica I ~thOds used by the micro-
programmer.

It is important to realize that the micro­
program is part of the machine circuits and
has nothing to do with the wri ti ng of prob­
lem or control programs. ROS microinstruc­
tions are not stored in core storage. A
description of ROS is provided in Chapter 2
of this publication.

BUSSES

The function of a particular machine
register, as used in a specific operation,
is dependent, to some degree, on how the
microprogram for that operation is written.
Hence, in this chapter, subsequent intro­
ductory descriptions of machine registers
and their general functions do not neces­
sarily apply to all operations. Rather,
the most usual functions are described.

Many times, reference is made to a bit
position in a register. Most registers can
hold one byte (eight information bits plus
one parity bit) of data. Reference to a
bit position within a register is done by
prefixing the bit position with the letter­
name of the register. For example, the
high-order bit in the R register is
referenced by RO.

• Busses are circuits that provide for transfer of information
between various machine elements.

Busses provide the information-paths
between machine elements such as registers,
AW, and core storage. In many operations,
microprogram steps call for transfer of
information from a register to a bus and
from there to another register. For exam­
pIe, an address byte can be incremented by
1, by:

1. Gating the original address byte out of
a register to a bus,

2. Sending the address byte through ALU
while adding 1 to it as it passes
through ALU,

3. Sending the resUlt byte from ALU to
another bus, and

2030 FETOM (9/1/66) 1-9

Introduction

4. Sending the result byte back into the
original register.

Most busses in the 2030 handle 8 infor­
mation bits plus 1 parity bit (one byte).

MACHINE REGISTERS

Some wsses handle less than a byte. The
need for busses of differing capacities
will become more evident when you study
detailed machine circuitry.

• The M and N registers are set with information used to
address core storage locations.

• The R register (storage data register), in general, is:

1. The immediate source register for a byte to be stored
into a core storage location.

2. The immediate destination register for a byte read out
of core storage.

• In genera 1:

1. Information used to address instructions is sent from
the I and J registers to the M and N registers.

2. Information used to address data is sent from the U and
V registers to the M and N registers.

3. Information used to address certain auxiliary storage
locations is sent from the T register to the N register.

• The G register usually contains the operation code.

Any position of core storage can be locat­
ed, for reading or writing purposes, by use
of address information placed in the M and
N registers. Each of these registers can
contain one byte. Hence, a maximum address
of 65,535 (decimal) can be represented by
the 16 bits in the M and N registers.
(That is, the maximum number represented by
16 binary digits is 2 18_1.) This arrange­
ment provides for addressing from 0000 to
FFFF, or a total of 65,536 (decimal) stor­
age locations.

In the 2030, the M and N registers
always have the capacity to hold the bit
structure that represents the address FFFF
(i.e., for Model 30F). However, any
address reference outside of the actual
range of main storage positions available
(M9del 30C has 8192 bytes; Model 300 has
16384 bytes; Model 30E has 32768 bytes) may
cause an addressing exception (a program
interruption) •

other circuits are used in conjunction
with the output of the M and N registers
When auxiliary storage (local or one of the
MPX storages) is addressed. The actual
address is specified in the M and N reg­
isters while these other circuits determine
to which storage area (main, local, or a
MPX) the address applies. The 8 high-order
bits of the address are set into the M
register, while the 8 low-order bits are

1-10 (9/1/66)

set into the N register. The M and N stor­
age address registers are frequently
referred to as one register (viz., the
MN-register).

Addressing compatibility is maintained
with other System/360 Models because of the
base-displacement addressing method used.
Recall that addresses are -derived from a
12-bit displacement plus a 24-bit base.
For example, a program segment that might
be written for a System/360, Model I 65
might use storage addresses in the 500,000
to 504,000 (decimal) range. Here, the base
register used could have 500,000 as the
base address. Displacement values could
then run from 0 to 4,000 (decimal). To run
this program segment on a ~del D30, the
base register could be loaded with the
address 0 (decimal), and the displacement
values left unchanged. Because displace­
ment values cannot exceed FFE (i.e., 12 bit
positions are used for displacement) any
Model 30 can handle any displacement value
in its M and N registers. However, any
base-pIus-displacement value that exceeds
the storage capacity of the System/360
model used may, as previously mentioned,
cause an addressing exception.

In general, data written into (or read
from) storage passes through the R reg­
ister. (One notable exception is that when
data is transferred between a selector

Introduction

channel and main storage, it does not pass
through the R register. Refer to the Field
Engineering Manual of Instruction, IBM 2030
I/O Control, Form Y24-3362.)

Notice in Figure 1-8 that the MN-bus
(really the M and N busses--eight informa­
tion bits plus one parity bit for each bus)
provides input paths to the MN-registers.
The following table summarizes the address
information source inputs to the MN­
registers:

Source Destin- Usual Immediate
Register ation Source of

I M High order address bits for
an instruction byte

J N Low order address bits for
an instruction byte

U M High order address bits for
a data byte

V N Low order address bits for
a data byte

T N Address bits for certain
auxiliary storage locations

Addresses are frequently obtained from
instructions which are in main storage.
Hence, there must be a path, during normal
instruction processing, over which these
addresses can be set into the U, V, I, J,
or T registers. One path is from storage,
to the R register, through the A-register
inputs to ALU, through ALU to the Z bus,
and from there to the appropriate register
(Figure 1-8). This description is not
meant to imply that every time a byte is
sent from storage it follows the path just
jescribed into all registers. The
microprogram specifies which registers are
to take part in the operation, and, as
already pointed out, the microprogram steps
used depend upon the operation being per­
formed.

During instruction processing, the G­
register usually contains the instruction
operation code. Hence, the values of the
bit positions of this register indicate
such items as instruction length and
format.

Many other registers are used. However,
how a register is used is mainly dependent

upon the operation performed. The follow­
ing table summarizes the usual functions of
some important registers in the data flow
(Figure 1-8):

Register Usual Function

I Instruction address (high-order
bits)

J Instruction address (low-order
bits)

U Data address (high-order bits)
V Data address (low-order bits)
L Data length
T Auxiliary storage address
D General purpose data register
R Storage data register
S status (CPU)
G Instruction operation code
H Priority status register
Q storage-Protection key in PSW

(High 4 bits); Storage-Protection
key of block of storage just used
(low 4-bits)

C Interval Timer Count
F External Interrupt: Interval six

direct- control interruptions
(bits 2 through 7).

The Wand X registers hold information
that is used to address ROS. A maximum of
13 bits are needed to address any ROS word.
The W register holds the 5 high-order bits
and the X register holds the 8 low-order
bits. (Note that the W register has only
five bit pOSitions which are W3, W4, W5,
W6, and W7.> In addition, each of these
·registers has a parity bit position.

The FW-FX and GW-GX registers are backup
registers for ROS addresses. The FW-FX
regist ers are used to retain the ROS
address just held by the WX registers when
certain multiplexor channel operations
break into CPU instruction processing. The
GW-GX registers provide backup for address­
es in WX when selector channel one requires
use of ROO (such as in chaining
operations). A similar set of registers
(HW-HX) is used during ROS operations for
selector channel two. For detailed infor­
mation about the WX registers, refer to
Chapter 2 of this publication. Multiplexor
and selector channel operations and reg­
ister usage) are described in Field Engi­
neering Manual of Instruction, IBM
System/360 Model 30. 2030 I/O Control, Form
Y24-3362.

2030 FETOM (9/1/66) 1-11

.... '"Ij
I ~. I.Q

IV ~
ct)

....
..Q I
....... Q) •
0'
0'1 IV 0

W
0

i
IFW

en
~.

0

tj
QJ
rt
QJ

I-Ij
0
€

T. MN Bus (18 bits) MN Bus ~.I PI
{) Address MN

I Decode L~ ~. L;~ ~ -~ r I

~

& & MPX Interface
Machine un /GW GXI

Check
FX

~ L ~ .----- kr-In Out
CK r---

..... i""

II Status Ie
~ » B Bus (9 bits) P

B .. .-----
I

II Decode I ~ L;~ L;~
r Register

.,.

WX Bus
ALU

P (13 bits} A Bus (9 bits},,~ "A Bus j, "
F:·:·:.:::;·;·:.;.;.::::·;·:·:.:.:.:.:.:::::;::::.:.:.:.:.:.:.:.;.:.::::::;::::;::;:;:.;.;.:.:.;.:.;.:.:.;.;.:.;.:.;.:.:.:.:.:.:::::::::::::::;;;;;;;;;.::;:;::;:;;::;.;.;. A

Register

WX
A Bus , I

~,r~ 1. Lf ~~ 1 L) 1 ~ 1 ~~ r
.----I--v.L-....,,1 1 J I T L 0 ~ R plt--------, U

"" I

r "
1

W X PI

I

P
ROS

t
Next

1

I---J Address
SAL r-- Information

.............. -'1""""11"

r
Control
Register

P

: ." .,~y:

Z Bus

F

I..J

From External
Interrupt

To Machine Control Points

.>

r!
Storage

Z Bus(9bits} _________ ~ .. __ _

Native Interface

1

1050 Data I
Register

Wd,eij n Read

1050 Interface

H
;:3
rt
~
0
~
C
0
rt
0
~

Introduction

ARITHMETIC OPERATIONS

• The B-register input to ALU is complemented in certain
arithmetic operations. In some packed decimal operations
the B-register input to ALU is incremented by 6 •

• Each second operand (source) byte is sent to the B-register
during arithmetic operations.

~ertain arithmetic operations require com­
plementation of second (source) operand
bytes. Some packed decimal operations
require addition of 6 to each second oper­
and byte. These two functions are handled
by circuits that affect the outputs of the
B-register (but not the A-register
outputs). Therefore, a source byte is set
into the 'B-register input to ALU and the
destination (first operand) byte is set
into the A-register input to ALO.

FIXED POINT ARITHMETIC

In the following descriptions, actual
circuit functions (including ROS controls)
are not presented. Rather, the general
arithmetic procedures used by ALU are pre­
sented. If you need to review binary or
hexadecimal numbering systems in order to
understand the following descriptions of
arithmetic operations, refer to the Number­
ing systems section in ChaEter 1 of this
publicat ion.

• In fixed-point numeric operands, all bit positions to the
left of the high-order significant digit have the same value
as the sign bit.

• The maximum positive number that can be contained in a
binary field of n digits is equal to 2~-1.

• The maximum negative number (in two's-complement form) that
can be contained in a binary field of n digits is equal to
2- •

Recall that fixed-point binary operands are
stored as half words or words with the sign
indicated in the high-order bit position.
When the high-order position has a value of
0, the binary number is positive. A nega­
tive number has a sign bit at a value of 1.
rhe remainder of the halfword or word is
used to designate the magnitude of the
number. However, all bit positions between
the leftmost significant digit and the sign
bit have the same value as the sign bit.
For example, either of the following are
positive numbers:

+S
o 000 0000 0000 1000

+S
o 111 1111 1111 1000

But, both of the following are negative
numbers:

-S
1 000 0000 0000 0000

-S
1 111 1111 1111 1011

When all of a given number of binary
digits are 1, the largest positive quantity
that can be represented by that number of
digits is given. For example, the maximum
positive number represented by two binary
digits is 11 (decimal 3). The maximum
positive quantity represented by a binary
field can be expressed in decimal notation
by:

1. counting the number of binary digit
positions in the field.

2. Raising 2 to a power equal to the count
determined in step 1.

3. subtracting 1 from the product obtained
in step 2.

Hence, the maximum posi~ive quantity rep­
resented by four binary bits is 2--1 (15 in
decimal) •

Because one of the sixteen bit positions
in a fixed-point half word is used for the
Sign, fifteen bit positions can be used for
the integer. Therefore, the maximum posi­
tive quantity that can be represented in a

2030 FETOM (9/1/66) 1-13

Introduction

fixed-point binary half word is 2 1 5-1
(32,767 in decimal).

In fixed point operations, negative
numbers are carried in two's-complement
form. For example, the true binary form of
the decimal value +26 is changed to a nega­
tive quantity by complementing it:

Decimal Value Sign

+26 0 000 0000 0001 1010

1 111 1111 1110 0101
+1

-26 1 111 1111 1110 0110

Notice that the two's-complement of 11010
(+26) is 00110. The remainder of the bit
positions are at a value of 1 to indicate a
negative quantity.

The maximum negat ive number that can be
represented in a half word is:

S
1 000 0000 0000 0000

Fixed Point Addition

This is the complement of 1 0000000 0000
0000 which should represent a positive
quantity. However, the convention is that
the high-order bit of a half word is 0 when
the quantity is positive. To show 1
0000000 0000 0000 as positive would require
an extra high-order position at a 0 value.
But this is impossible because only 16
positions are provided in a half word.
Hence, in a half word, the absolute value
of the largest negative number is one
greater than the absolute value of the
largest positive number. This concept also
applies to quantities represented in a
word. A summary of the magnitude of binary
numbers that can be represented in a word
is shown in Figure 1-9.

Number I Decimal I 5 I Integer

231 - 1 = 2 147483647 =0 1111111 11111111 11111111 11111111
216 = 65536 =0 0000000 00000001 00000000 00000000
20 = 1 =0 0000000 00000000 00000000 00000001
0 = o =0 0000000 00000000 00000000 00000000

-20 -1 =1 1111111 11111111 11111111 11111111
-2 1 = -2 =1 1111111 11111111 11111111 11111110
-216 = -65536 =1 1111111 11111111 00000000 00000000
-231 + 1 =-2 147483647 =1 0000000 00000000 00000000 00000001
-231 = - 2 147 483 648 = 1 0000000 00000000 00000000 00000000

Figure 1-9. Fixed Point Numbers

• An overflow is indicated when the carry-conditions, out of
the high order digit position and out of the sign position,
do not agree.

An overf low occurs when two numbers are
arithmetically manipulated into an area,
such as a half word, that is not large
enough to contain the result. In fixed­
point operations, an overflow condition is
indicated when the carry out of the high­
order digit position and the carry-out of
the sign position do not agree.

The following addition examples
illustrate fixed point binary addition.
Only eight bit positions are used; the
high-order bit is the sign. Carry condi­
tions and any consequent overflow results
are summarized for each example:

S
1. +57 = 00111001

+35 = 00100011
~ = 01011100 (true form)

1-14 (9/1/66)

a. No carry out of high order digit
position.

b. No carry out of sign position.

c. carries agree: therefore, no over­
flow.

S
2. +57 = 00111001

-35 = 11011101
+22 = 00010110 (true form)

a. carry out of high order digit poSi­
tion.

b. Carry out of sign position.

c. carries agree: therefore, no over­
flow.

Introduction

S
3. +35 = 00100011

- 57 = 11000111
-22 = 11101010 (complement form)

a. No carry out of high order digit
position.

h. No carry out of sign position.

c. carries agree; therefore, no over­
flow.

S
4. -57 = 11000111

- 35 = 11011101
-92 = 10100100 (complement form)

a. Carry out of high order digit posi­
tion.

b. Carry out of sign position.

c. Carries agree: therefore, no over­
flow.

fixed Point subtraction

S
5. -57 = 11000111

-92 = 10100100
-149 = 01101011

a. No carry out of high order digit
position.

b. Carry out of sign position.

c. Carries do not agree; therefore,
overflow.

S
6. +57 = 00111001

+92 = 01011100
+149 = 10010101

a. carry out of high order digit posi­
tion.

b. No carry out of sign position.

c. Carries do not agree; therefore,
overflow.

• The two's-complement of the second operand is added to the
first operand in fixed-point subtract operations •

• An overflow occurs when the carry conditions out of the
high-order digit position and out of the sign position do
not agree.

Fixed-point subtraction is done by adding
the two's-complement of the second operand
to the first operand.

An example is subtraction of +456 from
+678. +456, the second operand, is comple­
mented and added to +678, the first oper­
and.

(-)
+678
+456
+i22

001010100110 (first operand)
111000111000 (2nd operand comp.)
000011011110

OVerflow occurs when the carry out of
the high order dig it posl ti on does not
agree with the carry out of the sig·n posi­
tion. For example:

(-)
32,766

+ 20
-32,786

S
1 000 0000 0000 0001
1 111 1111 1111 1100 (Camp)
o 111 1111 1110 1101

a. No carry out of high order digit
position.

b. Carry out of sign position.

c. carries do not agree; therefore,
overflow.

In any fixed-point binary SUbtract oper­
ation, each second operand byte, as it is
operated on by ALU, is effectively comple­
mented. Recall that data is sent through
ALU in complemented and true form. In the
binary subtract operation, the complement
lines of the second operand byte are added
to the true lines of the first operand
byte. The complement lines are really the
one's-complement of the second operand
byte. To obtain the correct result, a one
is forced (by control circuitry) into the
low-order bit position (bit7) of ALU when
the low-order bytes are added. In this
process, then, the inversion plus the one
in the low-order position effectively
results in addition of the two's-complement
of the second operand byte to the first
operand byte. For example:

1. operation: fixed-point binary sub­
tract.

2. First operand: 00000001

3. Second operand: 11111111

2030 FETOM (9/1/66) 1-15

Introduction

4. Action in ALU:

First operand in true form = a 000 0001
Second opera nd inverted = 0 000 0000
Forced carry = 1
Result = 0 000 0010

The forced carry is automatic only for
the low order byte addition. consider, for
example, subtraction of -1 from +496.
(Half word operands are used.)

1. First operand

2. Second operand

a 000 0001 1111 0000

1 111 1111 1111 1111

3. Operation on low order bytes:

First operand in true form =
Second operand inverted =
Forced carry =
Result low-order byte =

PACKED DECIMAL ARITHMETIC

1111 0000
0000 0000

1
1111 0001

• In packed decimal add or subtract:

4. Operation on high order bytes:

1st operand byte = 0000 0001
2nd opere byte inverted =0000 0000
No forced carry.
Result high-order byte = 0000 0001

5. Resulting half word:

o 000 0001 1111 0001 = +497 (decimal)

6. Equivalent operation in decimal nota­
tion:

+496 - (-1) = +497
If a carry occurs out of the high order bit
position of a result byte, then that carry
is added to the low order position of the
next two-byte addition.

1. An even number of minus signs indicates a true add.

2. An odd number of minus signs indicates a complement add.

Recall that the sign of a packed decimal
field is in the four low-order bits of the
low-order byte. Sign analysis must be made
before any adding or subtracting is start­
ed. The result of the sign analysis indi­
cates whether or not the second operand
bytes are to be compleIrented. When the
system is using the EBCDI code, the sign
bit-combinations are:

Bit Combination Sign Represented

Three
mine how

1. The

2. The

3. The

1100
1111
1101

+
+

conditions are analyzed. to deter-
the operation is to proceed:

operation: add (+) or subtract (-)

sign of the first operand: + or -

sign of the second operand: + or -

1-16 (9/1/66)

An even number of minus signs specifies a
true-add operation, while an odd number of
minus signs specifies a complement-add
operation. The eight possible combinations
are:

operation

add (+)

add (+)

add (+)

add (+)

subtract

subtraCt

subtract

subtract

Sign of
First
Operand

+

+

(-) +

(-)

(-)

(-) +

Sign of
Second
Operand

+

+

+

True or
Complement Add

true

complement

true

complement

complement

+ true

complement

true

Introduction

Packed Decimal True Addition

• Decimal corrector circuits are used to prevent a four bit
binary sum from representing a hexadecimal digit rather than
the desired decimal digit.

values of four binary bits in the range
0000 to 1001 can represent decimal digits
in the range 0 to 9. Addition of two four­
bit binary numbers results in a total that
represents a decimal digit as long as the
total does not exceed 9. If the total
exceeds 9, then the result is outside the
range of single decimal symbols
representable by the four binary bits.
For example:

0001 + 1000 = 1001

(1 + 8 = 9).

nut:

0010 + 1000 = 1010

(2 + 8 = 10)

In the last addition, the resulting four
binary bits represent two decimal digits.
Four bits in packed decimal fields, howev­
er, must represent only the single decimal
digi~ 0,1,2, 3,4,5,6,1,8, or 9.
Decimal corrector circuits are used to
prevent two four-bit groups from giving a
result outside of the range of a single
decimal symbol.

After sign analysis, packed-decimal true
add proceeds as follows:

1. Six (0110 in binary) is added to each
four bit digit group of the second
operand byte.

2. The entire first operand byte (or only
four high-order bits for low order
byte) is added to the step 1 sum. Any
carry out of a four-bit total is noted.

3. If, in step 2, a carry occurred out of
the high-order bit of a four-bit sum,
add 0000 to that sum. If such a carry
did not occur, add the complement of
0110 (i.e., 1010) to that sum.

For example, ignoring sign analysis, add+18
(first operand) to +16 (second operand):

1. Add 6 (0110) to each four bit group of
the second operand:

second operand (16) 0001
0110
0111

0110
0110
1100

It is of some interest to note that
this addition has resulted in conver­
sion from ten's coro~lement notation to
sixteen's complement notation. That
is , 1 (0001) is th e ten' s
complement-of-9 (1001). Addition of 6
(0110) to the ten's complement-of-9
produces the sixteen's compleroent-of-9
which is 7 (0111). Also, 6 (0110)
added to the ten's complement-of-4
(which is 6 or 0110) produces the
sixteen's complement-of-4 (which is 12
or 1100).

2. Add the first operand cyte to the sum
obtained in step 1. (Any carry out of
the high bit position of the four low
bits is carried into the low order bit
of the four high bits.)

Sum from step 1 =
First operand (18)

0111
0001
1001

1100
1000
0100

If this addition results in a carry out
of a four-bit group, then the maximum
hexadecimal digit (F) has been exceed­
ed. But the first ten hexadecimal
symbols (0 through 9) equate directly
to the corresponding decimal symbols.
Therefore, if a carry-out does occur,
the digit represented by that four-bit
group must be in the range 0000 to 1001
(0 to 9). On the other hand, if no
carry-out occurs, then the four-bit
group does not represent the desired
decimal digit, and the 6 originally
added into that group rrust now be sub­
tracted.

3. Add 0000 to a four bit group if a carry
out of its high order position
occurred. Add 1010 (complement of 6)
to a four bit group if a carry did not
occur out of its high order position.

1001
1010
0011

0100
0000
0100 or +16+18=+34

(Note that the carry out of the high
order position is not used as part of
the total.)

2030 FETOM (9/1/66) 1-17

Introduction

As a second example, consider addition
of two packed decimal fields:

1. Second operand
(138+): 0001 0011 1000 1100
First operand
(117+): 0001 0001 01111100

2. The low order bytes are sent to ALU. A
true add is indicated because the num­
ber (zero) of minus signs is even.

3. The four high order bits of each
low order byte are added:

a. First, six is added to the second
operand:

1000
+0110
1110

b. Then the first operand is added to
the sum obtained in step 3a:

c.

1110
+0111

0101

The carry is retained for use in
addition of the next two four bit
groups.

Because a carry occurred out of the
high order position, 0000 is added
to the result of step 3b:

0101
+0000

0101 + = (5 decimal)

0101 represents the result low

order decimal digi t. 0101 and the
sign 1100 are stored in the low
order byte position of the destina­
tion field (first operand
location) •

4. The next two bytes (one from
the first operand, one from the second
operand) are sent to ALU.

5. The two bytes are added:

a. six is added to each four bit group
of the second operand byte:

h.

0001
+0110

0111

0011
+0110
1001

The first operand and the carry
from step 3b are added to the sum
obtained in step Sa:

Carry from step 3b =
Sum from step 5a = 0111
First operand = 0001

1000

1
1001
0001
1011

c. Because a carry did not occur out of
either four bit group, 1010 is
added to each group:

1000
1010
0010

1011
1010
0101

Notice that the high bit carries of
each four bit group are not used in
the total. The result is placed in
the first operand location. Sum­
marizing this operation:

First Operand second Operand

Before operation
A.fter operation

0001 0011 1000 1100
0010 0101 0101 1100

0001 0001 0111 1100
0001 0001 0111 1100

(In decimal notation: + 138 + 117 = +255.)

1-18 (9/1/66)

Introduction

~acked Decimal Complement Addition

• In complement add, the complement value of the second oper­
and byte is added to the true value of the first operand
byte.

Packed decimal complement addition employs
decimal correction circuits in a different
way than true add. After sign analysis,
packed decimal complement add proceeds as
follows :

1. The portion of the second operand being
operated on is complemented.

2. The portion of the first operand being
opera ted on is added to the result o.f
step 1. Carry conditions out of each
participating four-bit group are noted.

3. If, in step 2, a carry occurred out of
a four-bit group, add 0000 to that
group; if no carry occurred, add 1010
(the complement of 0110) to that group.

4. If there was a carry out of the high­
order four bits in step 2, the answer
is in true form. If there was no carry
out of the high-order four bits in step
2, the answer is in complement form and
must be recomplemented. In this case,
take the 2's complement of the number
and decimal correct those four-bit
groups where no carry occurred. The
procedure is:

a. Invert each position of the
complement answer and add 1 to the
low-order position.

b. Decimal correct by adding 0000 to
each four-bit group that has a
carry out, and 1010 (2's complement
of 6) to each four-bit group that
has no carry out.

For example, subtract 15 (second operand)
from 18 (first operand):

1. Complement the second operand.

Second operand (16) = 0001 0110

(complemented) = 1110 1010

2. Add first operand to result of step 1.

Result of step 1
First operand (18)

= 1110 1010
= 0001 1000

0000 0010

3. Carries occurred out of each four bit
group. Therefore, add 0000 to each
group. The result is in true form.

0000
0000
0000

In decimal:

0010
0000
0010

18 - (+16) = 2

As a second example (summarized in Figure
1-10), consider subtraction of +200 from
+190:

1. First operand = 0001 1001 0000 1100

Sec ond ope rand = 0010 0000 0000 1100

2. The low order bytes are sent to ALU. A
complement add is indicated because the
number of minus signs is odd (one minus
for the subtract operation, each oper­
and is plus).

3. Invert the four high order bits of the
low order second operand byte:

0000 (inverted) = 1111

4. Add the four high order bits of the
first operand byte to the result of
step 3. Because this is the units
position, add 1 to make the notation
2' s complement.

Result step 3 = 1111
First Operand = 0000

1
0000

5. Because a carry did occur from the
fOijr:-bit group, no decimal correction
:is necessary.

6. The next two bytes (one from each
field) are sent to ALU.

2030 FETOM (9/1/66) 1-19

Introduction

High-Order Byte·

First Operand = 190 = 0001 1001

Second Operand = 200 = 0010 0000

Invert Second Operand 1101 1111

Add First Operand 0001 1001

Plus 1 (2's complement Notation) _____ _

~ncllll

/J 1010 l Recomp lement
Necessary 1001

c
1001

0000

1001

Invert 'ult 0110 0110

Plus 1 (2's complement notation)

1010 1010

Answer (010-) 0000 0001

\

)

CD
CD

(
>@
(

)

Step in Text Low-Order Byte

0000 1100

0000 1100

CD 1111

0) OOO~
I coooo

CD 0000 (Hex correction)

0000

I 1111

(
1

@) cOOOO
)
(0000 (Hex correction)

\ 0000 1101

Decimal Equivalent (190+) - (200+) = 010-

Figure 1-10. Packed Decimal Complement Add Example

7. Invert the second operand byte.

8. The first operand byte is added to

9.

the inverted second operand. (Note
that a carry out of the high-bit posi­
tion in the first addition--step 4--did
not occur. Therefore. no additional
carry is used to form this step 8
total.)

step 7 result
First operand byte
Result

=
=

1101
0001
1111

1111
1001
1000

A carry did not occur out of the high­
order four bit group. Therefore, add
1010 to that group. A carry did occur
from the low-order four-bit group. Add
zero to this group.

1111
1010
1001

1001
0000
1001

10. There was no carry out of the high
order bit of the step 8 result.
Therefore. the answer is in complement
form and must be recomplernented to
produce a true result.

1-20 (9/1/66)

a. Read out the low-order byte result­
ing from step 5. Invert the high­
order four bits and add 1 to
produce the correct 2'5 complement
notation.

b.

High-order four bi~s = 0000
Inverted = 1111
Plus 1 (2's Comp) = 1
Low-order byte answer = 0000

There is a carry from this four bit
group so hexadecimal correction is
not needed. Therefore, add 0000 to
produce the low-order digit of the
answer.

Read out the high-order byte.
Invert the bits and add the carry
from the low-order byte (step lOa).
High-Order byte = 1001 1001
Inverted = 0110 0110
Low-order byte carry = ________ 1

0110 0111

There was no carry from either
four-bit group. Therefore, both
groups must be
hexadecimal- corrected by adding
1010 to each group.

I nt roduct ion

Result from above = 0110 0111
Hex-correction = 1010 1010
High-order byte answer 0000 0001

11. The result of the addition is stored in
the first operand location.

~loatinq Point Arithmetic

Result = 0000 0001 0000 1101

Decimal
Equiv. = 0 1 o

• E'loating point operands are made up of three fields:

a. fraction sign-bit

b. characteristic (represents -64 to +63)

c. fraction (made up of hexadecimal digits)

• Short precision operands are a word in length.

• Long precision operands are a double word in length.

• A normalized fraction has a high order non-zero hexadecimal
digit; an unnormalized fraction has a high-order hexadecimal
digit of zero.

Floating point is not a numbering system.
Rather, it is away of representing a
quantity in any nUmbering system. This
representation takes the form of a series
of digits multiplied by the base (of the
numbering system used) which is raised to a
power. For example, in the decimal system,
the number 1,234 is equal to anyone of the
following:

123.4 X 101

12.34 X 10~
1.234 X 103

.1234 X 10~
.01234 X 10 5

Notice that the decimal point is located at
a different position in each of the preced­
ing numbers. It is in fact a floating
decinlal point.

The Significant digit portion of a
floating pOint number is called the frac­
tion, and the power to which the base is
raised is called the characteristic. For
example, in .1235 x 10~, .1235 is the frac­
tion and 4 is the characteristic. Notice
that the fraction can be either positive or
negative and the characteristic can be
either positive or negative:

.1235 X 1 O~
-.1235 X 10~

.1235 X 10-~
- • 12 35 X 1 0- ~

Very large and very small quantities can be
conveniently represented in floating point
format. For example:

.12 X 10~o = 12,000,000,000,000,000,000

.567 X 10-~o = .00000000000000000000567

Quantities of such magnitudes are frequent­
ly used in scientific computations. Hence,
floating point (a special feature) is main­
ly applicable to processing of scientific
problems.

In System/360 floating point operands
are fixed in length:

1. Short precision operands are a word in
length.

2. Long prec~s~on operands are a double
word in length.

Floating point operands represent hexadeci­
mal numbers. The areas in a floating point
word a nd double word are:

Word
r--T----------------~--------------------,
IS ICharacteristic IFraction I L-~ _______________ -L ____________________ _J

o 1 7 8 31

Double Word
r-~---------------~---------------------,
IS ICharacteristic I Fraction I l_~ ________________ L_ ____________________ J

o 1 7 8 63

The sign bit position is at a value of 0
for positive fractions and at a value of 1
for negative fractions:

2030 FETOM (9/1/66) 1-21

Introduction

Hexadecimal Fraction Sign Bit Value

+.12 0

-.12 1

Up to 6 hexadecimal digits can be rep­
resented by the 24 bits of the fraction
field in a word. (During addition, sub­
traction, and division operations, however,
a seventh digit-the guard digit-is used to
increase the precision of the result.) A
double word fraction can contain up to 14
hexadecimal digits. (A guard digit is not
used here.)

The hexadecimal point of the fraction is
assumed to be immediately to the left of
the high-order fraction digit.

The sign of the fraction is taken care
of by the sign bit, but notice that there
is no sign bit for the characteristic. The
characteristic portion in a word or double
word is seven bits long. The maximum mag­
nitude of a positive number represented by
7 binary bits is 27 -lor 127; the smallest
magnitude is O. In order to represent
positive and negative exponents, the value
1000000 (64 in decimal), of the seven bits
that comprise the characteristic, is recog­
nized by the system as a characteristic of
o. The maximum positive characteristic is
then 1111111 and the maximum negative char­
acteristic is 0000000. Hence, the charac­
teristic is negative if the bit structure
of the characteristic field is in the range
0000000 to 0111111 (0 to 63 decimal). This
provides a range of negative charac­
teristics from -1 to -64. In other words a
characteristic field of 0000011 is recog­
nized by the system as a characteristic of
-61. This convention of using 1000000 as
zero is called excess 64 notation.

If the characteristic is negative (i.e.,
a characteri~tic field in which the high-

sign Characteristic Fraction

order bit is zero), its value can be
determined by subtracting it (by complement
addition) from 1000000 (64 decimal). For
example, if the characteristic field is
0010111:

Inverted cha r.
plus 1

= 1101000
1

1101001

2. Add complement to 1000000:

1000000
1101001
0101001

The carry indicates that the answer is
in true form, but it is ignored in the
result. Therefore: 0101001 = 41
(decimal). Hence, the characteristic
represented by 0010111 is -41
(decimal) •

To determine the decimal value of a posi­
tive characteristic:

1. Note that the high order bit must be at
a value of 1 for positive charac­
teristics.

2. Convert the remain ing bit positions to
the appropriate decimal value.

Fbr example, 1001001 is a positive charac­
teristic because the high-order digit is 1.
The remainder of the characteristic (1001)
is equal to 9 in decimal notation. Hence,
1001001 represents a characteristic of +9.

A normalized floating-point number has a
non-zero high-order hexadecimal fraction
digit. For example, the hexadecimal number
+.lA3 x 162 in a normalized word (floating
point format) is:

r----T---------------~------------------------------_, I 0 I 1000010 I 0001 1010 0011 0000 0000 0000 I l~ ___ ~ ________________ ~ _______________________________ J

+ +2 1 A 3 0 0 0

Notice that the three high-order binary
fraction digits are 0, but that the high
order hexadecimal fraction digit is 1. The
fraction is normalized, however, because it
is normalized with respect to hexadecimal
jigits and not with respect to binary
digits. An example of an unnormalized
fraction is:

1-22 (9/1/66)

Introduction

r----~----------------~-------------------------------l I a I 1000011 I 0000 1111 1111 0000 0000 0001 I L ___ ~ ________________ ~ _______________________________ J

+ +3 0 F F 0 0 1

Normalization is done by 1 eft-shifting
the fraction digits until the high order
hexadecimal digit is non-zero. For each
left shift, the characteristic is decreased
by one.

Floating-Point Addition

When normalization is done prior to an
arithmetic operation, it is called prenor­
malization. Postnormalization is a process
that changes an intermediate arithmetic
result to its normalized form.

• The operand fraction with smallest characteristic is right­
shifted until the two operands have equal characteristics;
then the operands are added.

Before addition starts, the characteristics
of both operands are compared. The
fraction with the smaller characteristic is
right-shifted. For each right-shift, the
characteristic is increased by one. When
the characteristics of the two operands are
equal, shifting stops. The fractions are
then added algebraically to form an inter­
mediate sum. If a carry occurs out of the
high-order hexadecimal sum digit, the sum
fraction is shifted right once and its
characteristic is increased by one. If a
characteristic overflow occurs as a result
of this increase, an exponent-overflow
exception (program interruption) occurs.

There are two floating-point add
instructions: add normalized and add
unnormalized. When the add unnormal ized
instruction is executed, the sum is stored
without normalization. In the normalized
add instruction, however, the intermediate

Sign Chara ct eris t ic Fraction

sum is left-shifted until the high-order
hexadecinal digit is non-zero. For each
left-shift of the hexadecimal digits, the
characteristic is decreased by one.

For example, add .124 X 16 2 to .0127 X
16 3 using the add unnormalized instruction
(s hort precis ion assumed):

1. .124 X 16 2 is right-shifted once before
the addition starts.
.124 X 16 2 (right-shifted once) = .0124
X 16 3

2. The fractions are added:

.0127
+.0124

.025B

3. The result is not normalized but it is
stored as is:

r----T----------------~------------------------------_,
I 0 I 1000011 I 0000 0010 0101 1011 0000 0000 I L ____ ~ ________________ ~ ______________________________ J

+ +3 0 2 5 BOO

2030 FE TOM (9/1/66) 1-23

Introduction

The same operation usinq an add normalized instruction is:

1. .124 X 16 2 is right-shifted once before the addition starts:

.124 X 16 2 (right-shifted once) = .0124 X 16 3

2. The fractions are added:

.0121
+.0124

.0258

3. The result is normalized by one left-shift:

.025DX 16 3 = .25BX 16 2 (normalized)

4. The result is then stored:
sign Characteristic Fraction

r----T----------------T-------------------------------, I 0 I 1000010 I 0010 0101 1011 0000 0000 0000 I L ___ ~ _______________ ~ _______________________________ J

+ +2 2 5 BOO 0

Floating-Point Subtraction

• The sign of the second operand fraction is changed before
the operation starts •

• The operation follows the sign rules of algebra so that, if
necessary, the second operand bytes are complemented during
the operation.

Floating-point subtract is similar to
floating-point add:

two's-complement form as in fixed-point
operands) as a series of hexadecimal
uigits.

1. The fraction with smallest charac­
teristic is right-shifted before sub­
traction starts. The characteristic is
increased by one for each right-shift
of the hexadecimal digits.

2. There are t\lilO floating-point subtract
instructions:

a. subtract normalized.

b. subtract unnormalized.

These instructions are executed in basi­
cally the same way as the corresponding add
instructions •

Note that the sign of a negative frac­
tion is indicated in the sign bit position
of a floating point operand. The fraction,
however, is carried in true form (i.e., not

1-24 {9/1/66 }

Before the actual subtra"ction, the sign
of the second operand (always the operand
that is subtracted frorr the first operand)
is changed. Then, if necessary, each sec­
ond operand byte is complemented as it
enters ALU. The operation follows the sign
rules of algebra. Hence, for a subtraction
operation:

Sign of
1st Operand

+

+

Original
Sign of
2nd Operand

+

+

Complement 2nd
Operand Bytes?

Yes

No

Yes

No

Introduction

IBM SYSTEW360 GENERAL INFORMATION

NUMBERING SYSTtMS

• A number is a sum of terms; each term is a product of a
digit symbol times some power of the base of the numbering
systp.m •

• A carry out of a position occurs when a one is added to the
highest valued symbol in that position.

combinations of the symbols of a numbering
system represent quantities or amounts. A
quantity can relate to specific items (such
as five apples), or it can be abstract (2 +
3 = 5). In either case, symbols are used
to express the quantity. For example, the
quantity can be represented by:

1. The written numeral 5.

2. The written word five.

3. The sound produced when the word five
is spoken.

The symbol for any quantity depends upon
the numbering system used. For example,
the Roman Numeral symbol for the number 5
is V. The symbol(s) used to express a
quantity have been adopted by convention.
We are familiar with the meaning of the
symbolS, but if we had always represented
5 with a #, we would know what the # stands
for.

Consider some basic
c.leciITlal-numbering-system conventions.
l'hese will help yOU to understand less
familiar numbering systems. A decimal
number is composed of symbols that are
called digits. The decimal number 12 is
represented by the digits 1 and 2, but
these symbols must be written in a specific
position. (12 is a different quantity than
is 21.) Each decimal digit has a meaning
that is determined by its position in a
string or series of digits. Some of the
jecimal posi tions are defined:

1 234
t t t t
I I I units
I I tens
I hundreds
thousands

Each of these positions is defined in terms
of powers of ten (the base of the decimal
nUmbering system). Any decimal number can
be represented by multiplying each position
by the appropriate power of ten and adding

the products. For example, 1234 is the
same quantity as:

1 X 10 3 + 2 X 10 2 + 3 X 101 + 4 X 10 0 =
1234

1000 + 200 + 30 + 4 = 1234

Notice that the units digit (4) is
multiplied by 10 0 • Any decimal number
raised to the zero power is 1. This is
also true of the other numbering systems
described in this publ ication.

In proceeding to the left from the units
position, the power of the base (10) is
raised one degree for each position moved.
Fractions are handled similarly, except
that in proceeding to the right from the
units position, the power of the base is
lowered one degree for each position moved.
Hence, the number 2.34 is the same as:

2 X 100 + 3 X 10- 1 + 4 X 10- 2

One other convention you should under­
stand is the way in which carries are han­
dled. In the decimal system, counting can
proceed from a zero quantity up to nine
without any carry:

o
1
2
3
4
5
6
7
8
9

At this point, however, there are no more
decimal symbols to use. Of course, the
next number is 10; but why? Notice the
significance of the carry from the units to
the tens position. What happens is that
when we run out of symbols, we carry to the
next higher position. The zero indicates
that we start counting allover again.

2030 FETOM (9/1/66) 1-25

Introduction

counting then proceeds as follows:

10
11
12
13
14
15
16
17
18
19

~gain we have run out of symbols to rep­
resent the unit position quantity. so, we
carry one over to the tens position and the
zero tells us to start counting again.
This procedure continues until we reach 99.
At this point we have run out of symbols in

BINARY

both units and tens positions. So, we
carry from the units to the tens position
and from the tens to the hundreds position.
We noW have 100 and can start counting
units again. Each time we run out of units
symbols we again carry to the tens position
until we run out of symbols in both the
units and tens positions, in which case
another carry is made to the hundreds posi­
tion.

These same concepts of carrying and
starting again at zero are used in the
binary and hexadecimal numbering systems.
In these systems, however, the number of
symbols (two for binary, sixteen for
hexadecimal) used is different than the
number of decimal symbols.

• The only two digit symbols in the binary system are 0 and 1.

• Binary addition rules are:

0+0 0

1 + 0 1

0+1 1

1 + 1 = 0 plus a carry

1 + 1 + 1 = 1 plus a carry

• To obtain the two's-complement of a binary nwnber:

1. Invert each position of the original number (i.e.,
change all O's to l's and all l's to O's).

2. Add 1 to the low order position of the inverted number.

• In order to subtract B from A (both binary numbers) comple­
ment B and add it to A. A carry out of the high-order posi­
tion signifies that the answer is in true form; no carry out
of the high-order posi tion indicates that the answer (which
must be recomplemented to obtain an answer in true form) is
in two's-complement form.

rhe binary numbering system uses a base of
10 (2 in decimal notation) and has two
symbols (0 and 1). Let's try the princi­
ples of carry and starting-at-zero that we
used for decimal numbers and add two, binary
numbers.

1 + 1 = 10

Notice that we started out with 1 and
then added 1 to it. We were already out of
symbols when we started, so a carry was

1-26 (9/1/66)

made to the next position. The 0 in 10
means that we can start coWlting in the
low-order position again. Let's add 1 more
to the total:

10 + 1 = 11

A carry did not occur because the low­
order position could accomodate one
additional count without running out of
symbols.

Introduction

Just as in the decimal system, the zero
in binary is a quantity which when added to
a second quantity results in a sum equal to
the second quantity.

For example:

1 + 0 = 1

or

o + 1 = 1

~e can now summarize all the facts you need
in order to add in binary:

o + 0 = 0

1 + 0 = 1

o + 1 = 1

1 + 1 = 0 (with a carry to the next
position) = 10

1 + 1 + 1 = 1 (with a carry to the
next position) = 11

rhe last item of the list can be broken
jown into:

1 + 1 = 10 + 1 = 11

subtraction of binary numbers can be
performed by using the same basic princi­
ples used in decimal subtraction. However,
the System/360 uses complement addition
rather than subtraction. Therefore, com­
plement addition is described here.

The two's complement of a binary number
is used in complement addition. It is
obtained by inverting each position of the
original number and adding 1 to the low
order position. To find the two's comple­
ment of 1100 invert each position:

1100 inverted is 0011

Then add 1:

0011
+1

0100

Using this principle, let's subtract 0100
from 1000 by complement addition.

The two's complement of 0100 is:

1011 + 1 = 1100

Now the complement of 0100 is added to
1000:

1000
1100

1 0100

The high-order digit indicates that the
answer is in true form and this digit is
not part of the total. The same operation
using decimal notation is:

Binary Complement Decimal
Subtraction Addition Subtraction

1000
-0100

0100

1000
+1100

0100

8
-4

"4

Now subtract 0011 from 0010. First 0011 is
complemented:

1100 + 1 = 1101

Then the addition is performed:

0010
1101
1111

Notice that there was no carry out of the
high order position. This lack of a carry
indicates that the answer is in
two's-complement form. To obtain an answer
in true form, recomplement the answer:

1111

0000 + 1 = 0001

or, 3 (0011) subtracted from 2 (0010) is a
minus 1.

2030 FETOH (9/1/66) 1-27

Introduction

Binary to Decimal Conversion

• To convert from binary to decimal, sum the appropriate
powers of tlNO that correspond to l's in the original binary
number.

Just as in the decimal system, any
binary number can be represented as a ser­
ies of multiplications that are added
together. For example:

1101 = 1 x 2 3 + 1 x 2~ + 0 X 21 + 1 x 20 =
13 (decimal)

This example really presents a way of con­
verting binary to decimal. Recognize that
we have only two symbols in binary (0 and
1) but we have used the symbols 0, 1, 2,
and 3 in this conversion. Shown in true
binary, the above series is:

1 X 1011 + 1 X 1010 + 0 X 101 + 1 x 10 0

The arithmetic would look like this:

1 x (10) (10) (10) + 1 x (10) (10) + 0 x 10
+ 1 x 1 = 1101

or

1 x 1000 + 1 x 100 + 0 x 10 + 1 x 1 = 1000
+ 100 + 0 + 1 = 1101

There is no need to use this second proce­
dure. What we are primarily interested in
is a conversion process from binary to
decimal so that a quantity can be rep­
resented in the familiar decimal numbering
system.

Notice in the original conversion to
decimal that each binary position value, of
either 1 or 0, is nultiplied by a power of
two. Therefore, in converting from binary
to decimal, you need sum only those powers
of 2 that are multiplied by a 1. (0 times
anything is 0.) using powers of 2, convert
11011 to decimal. The powers of two used
are:

1-28 (9/1/66)

or

16, 8, 4, 2, 1

By placing these over the appropriate
binary positions, you can quickly add to
find the equivalent decimal symbols:

16
1

8
1

4
o

2
1

1
1

16 + 8 + 2 + 1 = 27 (decimal)

The four was multiplied by zero, and there­
fore, it was not used in the summation.

conversion of fractions is not generally
necessary. The following information is,
therefore, presented for reference purposes
only. To convert a binary fraction to a
decimal fraction:

1. Express the binary fraction as a deci­
mal series using powers of two:

.111 = 1 x 2- 1 + 1 X 2- 2 + 1 X 2- 3

2. Express the series as a fraction:

1 X 2- 1 X 1 x 2-~ + 1 x
2- 3 = 1/2 +1/4 + 1/8 = 7/8

3. Divide the numerator by the denominator
to form the decimal fraction:

7 = .875 (decimal) = .111 (binary)
"8

Introduction

Decimal to Binary Conversion

• To convert a number in decimal notation to a number in
binary notation:

1. Oi Vide the original number and sutsequent quotients by
two.

2. Each remainder is a successively higher ordered binary
digit.

3. The last quotient (always a 1) is the high-order binary
digit.

The following procedure can be used to
convert a number in decimal notation to a
number in binary notation:

use of hexadecimal notation. See the Deci­
mal to Rexadecima 1 Conversion section.---

1. Divide the decimal number by 2. The
remainder is the low-order binary
digit.

2. Divide the quotient obtained in step 1
by 2. The remainder is the next binary
digit.

3. Continue dividing subsequent quotients
by two, to obtain each binary digit,
until a final quotient of 1 is reached.
This last quotient is the high-order
binary digit.

For example, the Conversion of 24
(decimal) to a binary number is shown in
Figure 1-11.

1 ----------- 1 1 0 0 0

2+ I
3

216
6

o----------------------~
6 2m

g
o------------------------~

12
2r24

24
-0 --------------------------~

Decimal fraction to binary fraction
conversion is more easily accomplished by Figure 1-11. Conversion of 24 (Decimal) to

Binary Notation

HEXADECIMAL

• The hexadecimal system has 16 symbols (0, 1, 2, 3, 4, 5, 6,
7, 8, 9, A, B, C, D, E, F) •

• The 16's-complement of a hexadecimal number is found by:

1. Subtracting the digits of the original number from an
equivalent number of F's.

2. Adding 1 to the low-order position of the result
obtained in step 1.

• Hexadecimal subtraction of B from A can be done by comple­
menting B and adding; the answer is in true form if a carry­
out of the high-order position occurs; the answer is in
16's-complement form if a carry does not occur out of the
high-order position.

2030 FETOM (9/1/66) 1-29

Introduction

rhe hexadecimal numbering system uses a
base of 10 (16 in decimal notation) and has
the following symbols:

Hexadecimal
symbol

a
1
2
3
4
5
6
7
8
9
A
B
C
D
£
F

Decimal
Equivalent

a
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15

Binary
Equivalent

0000
0001
0010
0011
0100
0101
0110
0111
1000
1001
1010
1011
1100
1101
1110
1111

~ddition of hexadecimal symbols is similar
to decimal addition except that a carry
does not occur until the unit sum exceeds F
(15 in decimal). Hence, in hexadecimal
notation:

F + 1 = 10
F + 2 = 11
F + 3 = 12
F + 4 = 13
F + 5 = 14
F + 6 = 15
F + 7 = 16
F + 8 = 17
F + 9 = 18
F + A = 19
F + B = lA
F + C = 1B
F + D = le
F + E = 10
F + F = lE
F + F + 1 = IF
F + F + 2 20

1\n example of hexadecimal addition written
in another form is:

1-30 (9/1/66)

In hexadecimal In decimal

B A C 2988
+1 F E +510

D A A 3498

In at her words:

C + E = A plus a carry

A + F + 1 (the carry) = A plus a carry

B + 1 + 1 (the carry) = D

Subtraction of hexadecimal numbers can
be performed by complement addition. To
subtract IFE from BAC, find the 16·s
complement of l-FE and add it to BAC. (The
16's complement of a hexadecimal number is
determined by subtracting each position
from F and adding one to the low-order
position of the result.)

The operation proceeds as follows:

1. Problem BAC - IFE = ?

2. Complement IFE:

3. Addition:

FFF
(-) IFE

BAC
+E02

9AB

BOt + 1 = E02

4. The carry out of the high order posi­
tion is ignored in the result and the
answer is 9AE.

If there is no carry out of the high order
position, the result is in 16's-complement
notation and must be recomplemented if an
answer in true form is desired.

Introduction

Binary to Hexadecimal Conversion

• Four binary digits can be represented by one of the 16 hexa­
decimal symbols •

• To convert from binary to hexadecimal:

1. Divide the binary field into four-digit groups, starting
from the binary point.

2. substitute, in order, the appropriate hexadecimal symbol
for each four-digit group.

Four binary digits can be represented by a
single hexadecimal digit. This results
from the fact that 16, the base of the
hexadecimal system, is equal to 2~ which is
the fourth power of the base of the binary
system. Therefore, conversion of binary to
hexadecimal is accomplished as follows:

3. substitute the appropriate hexadecimal
symbol for each decimal quantity:

1. Divide the binary field to be converted
into four-digit groups. Start counting
groups of four from the binary point
(i.e., the point that separates binary
fractions from whole numbers). For
example, 111000100111 can be divided
into:

111 0 001 0 0111

2. Convert each four-digit group into its
decimal equivalent:

Binary uecimal Equivalent

1110 14
0010 2
0111 7

Hexadecimal to Binary Conversion

4.

Decimal Quantity

14
2
7

Hexadecimal Symbol

E
2
7

Arrange the hexadecimal symbols in the
sequence that corresponds to the origi­
nal number:

1110 0010 0111 = E27

As you become more proficient in using
hexadecimal symbols you will probably omit
step 2.

• Each hexadecimal digit is equivalent to the quantity rep­
resented by four binary digits.

• conversion from hexadecimal to binary is accomplished by
substituting, in sequence, four binary digits for each hexa­
decimal digit.

To convert from hexadecimal to binary, Or:
reverse the hexadecimal to binary proce-
dure. For example, convert F26B to binary:

F26B = 1111 0010 0110 1011

Hexadecimal Decimal Binary
~rubol Egyivalent Egyivalent

F 15 1111

2 2 0010

6 6 0110

B 11 1011

2030 FETOM (9/1/66) 1-31

Introduction

Hexadecimal to Decimal Conversion

• Because each hexadecimal place value is determined by powers
of 16, conversion to decimal notation is effected by repeat­
ed I1llltiplicat ions lYt 16.

Use the following procedure to convert a
hexadecimal to a decimal number:

1. convert each hexadecimal digit to an
equivalent decimal number.

2. Multiply the high order digit
(equivalent decimal number) by 16.

3. Add the next lower order digit
(equivalent decimal number) to the
product o~ained in step 1.

4. Multiply the sum obtained in step two
by 16.

5. Add the next lower order di git to the
product obtained in step 3.

6. Continue forming products and adding
the next lower order digit until the
units position is reached.

7. Add the units position to the last
product formed and stop. Do not form
another product by multiplying by 16.

For example, convert IFEI to decimal nota­
tion:

1. Conversion of each digit of IFEI to
equi valent decimal numbers
produces: 1 15 14 1

2. 1 15 14 1
I I I
I I I

x.16 I I I
16 I I I

I I ,
3. +15.--J I I

3I I I
I I

4. x16 I I
496 I I

I I 5 ~ + 14 • ________ J I
510 I

I
6. x16 I

8160 I
I

7. + 1 ~-----------__ J
8161 (answer)

1-32 (9/1/66)

Conversion of hexadecimal to decimal
fractions may be useful if you are consid­
ering floating point operations. This
conversion, however, is presented here for
reference purposes only. To convert a
hexadecimal fraction to an equivalent deci­
mal fraction:

1. Express the hexadecimal fraction as a
sum of equivalent decimal numbers (1
through 15) times powers of 16.

2. Form fractions for each term.

3. Express each fraction in terms of a
common denominator and form one frac­
tion.

4. Divide the numerator of the fraction by
the denominator. (Round off the result
to Obtain the desired accuracy.) The
result is the approximate decimal equi­
valent of the original hexadecimal
fraction.

As an example, convert .1FE to a decimal
fraction:

1. .IFE = 1 x 16 1 + F X 16- 2 + E X 16- 3

.IFE = 1 x 16-1 + 15 X 16-2 + 14 X 16-3

2. 1 + 15 + 14
16 256 4096

3. 256 + 240 + 14 = 510
4096 4096

4. 510 = .1245 (rounded off)
4096

Introduction

Decimal to Hexadecimal Conversion

• ReCdllse each hexadecimal place value is in terms of powers
of 16, conversion from decimal to hexadecimal notation is
effected by successive divisions by 16.

To convert a decimal to a hexadecimal num­
ber:

1. Divide the decimal number by 16. The
remainder is the low order hexadecimal
digit.

2. Divide the quotient obtained in step 1
by 16. The remainder is the next high­
er order hexadecimal digit.

3. Continue dividing quotients by 16 and
using the renainders for each succeed­
ing hexadecimal digit until the quo­
tient becomes less than 16.

4. The final quotient (less than 16) is
the high order hexadecimal digit.

For example, convert 510 (decimal) to hexa­
iecinlal notation:

1.

14

2.

31
16 510

48
30

16
14

is the remainder and represents
order

1
16 31

16
15

hexadecimal digit of E.
a low

15 is the remainder and it represents the
next higher order hexadecimal digit,
F.

3. The quotient in the preceeding division
is 1, which is less than 16. The 1,
then, is the high order hexadecimal
digit.

4. 510 (decimal) = IFE (hexadecimal)

Conversion of a decima 1 fraction to a
hexadecimal fraction is applicable mainly
if you are working with floating point
operations. This conversion process is
presented here prinari ly f or reference
purposes. To convert a decimal fraction to
a hexadecimal fraction:

1. Change the decimal fraction from its
decimal-point form to an equivalent ten
thousandths fraction.

2. Multiply the numerator of the fraction
obtained in step 1 by 65,536.

3. Divide the product (ottained in step 2)
by 10,000, rounding off to the nearest
unit.

4. Convert the decimal number obtained in
step 3 to an equivalent hexadecimal
rnmber. (YoU can use the preceeding
method described in this section.)

5. The low order hexadecimal digit is four
places to the right 6f the hexadecimal
point (if a four place decimal fraction
was converted). Insert any necessary
zeros to the left of the high order
hexadecimal digit to obtain a four
place fraction.

For example, convert .1245 (decimal) to
a hexadecinal fraction, as follows:

1. .1245 = 1245
10, 000

2. (1245) (65536)
10,000

= 81,592,320
10,000

3. 81,592,320 = 8159 (rounded off)
10,000

4. a. 8159 = 509 with remainder of 15.~
16

Therefore, F (15 decimal) is the
low order hexadecimal digit.

b. 509 = 31 with rerrainder of 13 (0 in
-r6 hexadecimal).

c. 31 = 1 with remainder of F
16

d. The last quotient was less than 16
and is therefore the high order
hexadecimal digit.

e. Therefore, .1245 (decimal) is
approximately equal to .1FDF.

Notice that the decimal fraction used
(.1245) is the result of converting .1FE to
a decimal fraction in the Hexadecimal to
Decimal Conversion section. But the answer
obtained when .1245 is converted back to
hexadecimal is .1FDF. The differences
occur because rounding was used in each
conversion process. Hence, .1FDF rounded
off one place higher is .1FE.

2030 FETOM (9/1/66) 1-33

Introduction

Conversion of a decimal fraction to a
hexadecimal fraction is equivalent to con­
version of a decimal fraction to a binary
fraction. That is, the hexadecimal frac­
tion obtained can be converted to a binary
fraction. Hence, .1FE is equivalent to the
binary fraction .00011111 1110.

It is of some interest to note why the
65536 factor is used in the conversion
process. A four place decimal fraction is
four decimal digits (the numerator) divided
by 10,000 (the denominator).
Or, .1234 = 1234 x 10-- = 1234

10,000

Similarly, each hexadecimal fraction is a
numerator times some power of 16. The
hexadecimal fraction place values are (in
uecimal notation):

1, 1,
16 256

1 ,
4096

1
65536, etc.

In the conversion process, then, a four
place decimal fraction is approximately
equal to some numerator over 65536:

DODD =
10,000

XXXX =
65,536

1-34 (9/1/66)

Hexadecimal Digits
10ct

(Note that 10- = (F+l)ct, in the fraction on
the right.) The hexadecimal numerator is
found in terms of decimal digits (XXXX) and
converted to an equivalent hexadecimal
number.

If decirral fractions of more than four
places are to be converted to hexadecimal
notation, a factor larger than 65536 must
be used.

For example, to convert a five place
decimal fraction to a hexadecimal fraction,
use 16 5 instead of 65536 in the conversion
process. Also, the resulting hexadecimal
pOint's position is determined by the power
of 16 used. A five place hexadecimal frac­
tion (rounded off) results from conversion
of a five place decimal fraction. Notice,
however, that zeros may have to be inserted
to the left of the hexadecimal digits. The
number of zeros added between the signifi­
cant hexadecimal digits and the hexadecimal
point is:

Number of inserted O's = power of decimal
base used minus number of hexadecimal
digits in result.

Introduction

INFORMATION FORMATS

• The smallest addressable unit of storage - the byte - is
made up of eight infornation bits plus a parity bit •

• Fixed-length information is carried in fields that are:

1. One half word (two bytes) long,

2. One word (four bytes) long, or

3. One double word (eight bytes) long.

• F'ixed-length fields are addressed at their leftmost byte
which must be located at storage locations whose addresses
are divisible by:

1. Two for half words.

2. ~'our for words.

3. Eight for double words.

• If fixed-length fields are not addressed according to the
preceeding rules, a specification exception (program check)
occurs.

• A variable-length field, regardless of its length, can start
at any main storage address.

The basic information unit used by
system/360 is the byte. The byte is the
smallest addressable unit of main storage.
A byte is composed of eight information
bits plus, for checking purposes, a P
(parity) bit. Bit positions of a byte are:

POl 2 3 4 5 6 7

Each byte bit-position can have a value
of 0 (off) or 1 (on). The P bit is used to
maintain odd parity. If an even number of
bits 0 through 7 are at a 1 value, then the
P bit is set to a 1 value. The P bit is
set to 0, however, if an odd number of bits
o through 7 are set to 1. For example, if
bits 6 and 7 (an even number) are at a 1
value, then the P bit is 1:

Bit position P 0 1 2 3 4 5 6 7

Bit value 1 0 0 0 0 0 0 1 1

If, however, bits 5, 6, and 7 (an odd
number) are at a 1 value, then the P bit is
0:

Bit pOSition P 0 1 2 3 4 5 6 6

Bit value 0 0 0 0 0 0 1 1 1

The p bit does not always accompany a
byte. For instance, parity is not carried
through the ALU (in System/360, Model 30)
but it is generated for the result byte at

the outplt of ALU. In general, succeeding
descriptions and figures in this manual do
not show the P bit position. Its presence
is assumed unless otherwise noted.

A two-byte field is a half word. (Each
byte in the half word has its own parity
bit.) Numbering of bit positions for a
half word proceeds left to right (0 to 15)
through both bytes (Figure 1-12).

High Order Byte Low Order Byte

Bit Positions_ 0 I 2 3 4 5 6 7 8 9 JO I I 12 13 14 15

Figure 1-12. Half Word

A four-byte field (two half words) is
called a word. Bit positions are numbered
left to right, 0 to 31 (Figure 1-13).

Word

Half Word Half Word

Bit positions 0 71 8 1516 23124 31

Byte I Byte Byte I Byte

Figure 1-13. Word

Eight bytes (two words) comprise a dou­
ble word. Bit positions are numbered left
to right, 0 to 63 (Figure 1-14).

2030 FETOM (9/1/66) 1-35

Introduction

Double Word

Word

Half Word Half Word Half Word

Bit Positions -0 718 15 16 23124 3132 39140

Byte
1

Byte Byte
1

Byte Byte
1

Byte

Figure 1-14. Double Word

The sizes of fixed-length fields are
defined in terms of a half word, a word, or
a double word. All instructions and many
data fields are fixed in length. Instruc­
tions, for example, are always one, two, or
three half words long.

Certain address restrictions must be
followed when fixed-length operations are
performed. The rule is that fixed-length
information must reside on the correct
boundaries in main storage. Fixed-length
information is addressed at its high-order
(left-most) byte location. This address
must be divis ible by (Figure 1-15):

1. Two for ha If words.

2. Four for words.

3. Eight for double words.

Byte I Byte Byte I Byte Byte 1 Byte Byte I Byte Byte
0000 0001 0002 0003 0004 0005 0006 0007 0008

Half Word Half Word Half Word Half Word

Word Word

Double Word

Figure 1-15. Boundary Restrictions

In other words, the low order byte of
the address for the fixed-length informa­
t ion must ha ve :

1. Its low-order bit set to zero in order
to address a half word.

2: Its two low-order bits set to zero in
order to address a word.

3. Its three low-order bits set to zero in
order to address a double word.

If anyone of these boundary restric­
tions is violated, a program check occurs.
This check is called a specification excep­
tion. Hence, it is the responsibility of
the programmer to make sure that these
boundary restrictions are not violated.
(The specification exception does not cause
a machine check.>

1-36 (9/1/66)

Word

Half Word

47 48 57158 63

Byte I Byte

These boundary restrictions apply to
fixed-length information only. A variable­
length operand, even if it is a half word,
word, or double word in length, can start
at any main storage location.

The bit settings in one byte can
represent:

1. Special (or conditional) information,

2. A binary number (or part of a binary
number) ,

3. An alphabetic or special character in
zoned format,

4. A single decimal digit in zoned format,

5. Two decimal digits in packed decimal
format,

6. The characteristic and sign, or part of
the fraction of a floating point num­
ber.

Item 1 relates to cases in which a number
(or part of a number) or character
(a lphabetic, special, or numeric digit) is
not represented by the byte. Rather, the
setting of a bit or bits indicates that a
particular condition does or does not exist
or that a certain action is or is not
allowed. For example, the first eight bit
positions of a PSW are called the system
mask. A bit in this byte when on (value of
1) indicates that a certain operation is
allowed. (What the mask bits specifically
indicates is not pertinent to this descrip­
tion.) When the same bit is off (value of
0), it indicates that the operation is not
allowed. Hence, each of these bits rep­
resents a condition and not a number or a
character.

Items 2 through 5 in the preceding list
are described in the following paragraphs.
For information about itero 6, refer to the
Floating Point Arithmetic section.

Introduction

FIXED POINT NUMERIC FORMATS

• Fixed point numeric fields contain representations of binary
numbers •

• The high order bit of fixed point numeric fields is the sign
bit; it has a value of:

1. 0 for a positive field.

2. 1 for a negative field.

Fixed-point numeric fields represent binary
numbers. The high-order bit indicates the
sign of the field. positive numbers are
represented in true binary form with the
sign bit set to O. Negative numbers are
carried as two's - complements of their
true binary form with the sign bit set to
1. Fixed-point operands are usually half
words or words:
r---T--------------,

r--~---f f------,
I S I int eger I Word
L---L--i r--------J

o 31

In some operations. such as convert-to­
decimal, one of the operands is a double
"NOrd.

I S I integer I Half word
L __ ~--------------J

o 15

Fixed-length instructions (all part of
standard instruction set) are in the RR,
RX, or RS format.

ZONED FORMAT

• The EBCDI (Extended Binary Coded Decimal Interchange) code
and ASCII (American Code for Information Interchange) can be
used in the Systeml360 eight-bit byte environment.

• The four high-order bits of a zoned-format byte contain the
zone; the four low-order bits contain the digit.

• The zoned format is used primarily for character sensitive
I/O devices.

• The sign of a zoned-format numeric field is contained in the
four high-order bits (0 through 3) in the low-order byte of
the field.

The EBCDI (Extended Binary Coded Decimal
Interchange) code is designed for use in
eight bit environments. Anyone of the
characters shown in Figure 1-16A can be
represented by one eight bit byte. (The
bits in a byte can be set to anyone of 256
different combinations.) For example, the
EBCDI code for the letter A (see Figure
1-16A) is:

Bit pOSition o 1 2 3 4 567

Bit value 1 1 0 0 0 001

The ASCII (A.merican Standards Code for
Information Interchange) is another code
that can be used by System/360. In this
publication, however, we will deal

primarily with the EBCDI code. (For furth­
er information about ASCII, refer to IBM
System/360 Principles of Operation, Form
A22-682l.)

Information carried in the EBCDI code is
in zoned format. That is, bits 0 through 3
~ontain the zone portion of the code while
bi ts 4 through 7 contain the numeric por­
tion. Hence, the numeric character 4 in
EBCOI code (see Figure 1-16A) is:

Zone Portion Numeric Portion
I

Bit position 0 1 2 31 4 5 6 7
I

Bit value 1 1 1 110 1 0 0

2030 FETOM (9/1/66) 1-37

lntroduct ion

Bi t Pos itions 0, 1
01

00 I 01 I 10 I 11
Bit Positions 2,3

r

0000
Q:: Q:: _CD Q: Q) CE c:: ~ r0-

DS SP & -

@
0001 sos /

-..9.Q.!~ FS

0011

-<
0100

0101

0110

0111

1000

'-

r

II 1001

II 1010

1011

-<
1100

1101

1110

1111

CD
®
®
0

TM

PF RES BYP PN

HT NL LF RS

LC BS EOB UC

DEL IL PRE EOT

9 9 9 9 9 9 9 9
J2 12 J2 J2

11 11 11 11
0 II 0 0 0

1-01 ~E------- Zone Punches------•• I

00 01

00 I 01 I 10 I 11 001 01 I 10 I 11

CC SM C;

@
! :

$, 1/

(0)
< * 0/0 @

()
I

-

+ ; > =

I ---, ? I I

9 9 9 9

II
I I I I 12 J2

11 11
0 0

_.

fool ~I(------ Zone Punches ------•• 1

12- 0-9-8-1

12-11-9-8-1

11-0- 9-8-1

12-11-0-9-8-1

@
@

CD
®

No Punches

12

11

12-11-0

~

r---!-
2

3

>-4
f----'

j
'0,
(5

5
f----'

~
7

f----'

8
'"'--

Bit Positions 0, 1

Bit Pos itions 2,3

- ""
8-1 -
8-2

'---

8-3 -
~

8-5 -
8-6 -
~

-'

®
@
(jJ)
@

'" -<:
u
c

" c..

'0,
(5

"-

~:
'<4:'

c

:~
£
i:O

"-

~:
'<4:'

c

~
£
i:O

12-0

11-0

0-8-2

10 11

00 1 01
/

10 I 11 00 / 01 / 10 / 11

0000

0001

0010

0011

0100

0101

0110

0111

1000

1001

~------ Zone Punches ------~

10 11

00 1 01 [10[11 00 1 01 1 10 1 11

9 9 9

12 12 12 12 12 12
11 11 11 11 11 11

0 0 0 0 0 0

14: Zone Punches . 1
@ 0-1

Qj) 11-0-9-1

@ 12-11

@ This code con ol so be used for the loz enge (J:l).

F igure 1-16A. Extended Binary Coded Decimal Interchange Code

1-38 (9/1/66)

Bit Positions 0, 1

Bit Positions 2,3

8-1

3

4 '" -<:
u
c:

" c..

'0,
(5

Bit Posit ions 0,1

Illt Positions 2 3

8-2

8-3

8-4

8-5

8-6

8-7

Introduction

Control Characters

PF Punch Off BS Backspace PN Punch On
HT Horizontal Tab Il Idle RS Reader Stop
lC lower Case BYP Bypass UC Upper Case
DEL Delete IF line Feed EOT End of Transmission
RES Restore EOB End of Block SP Space
Nl New line PRE Prefix

Special Graehic Characters

¢ Cent Sign * Asterisk > Greater-than Sign
Period, Decimal Point Right Parenthesis ? Question Mark

< less-than Sign Semicolon Colon
(left Parenthesis -, logical NOT IJ Number Sign

+ Plus Sign - Minus Sign, Hyphen @ At Sign

I Vertical Bar, logical OR / Slash Prime, Apostrophe
& Ampersand , Comma Equal Sign

Exclamation Point % Percent " Quotation Mark

$ Dollar Sign Underscore

Bit Pattern Hole Pattern
Examples Type Bit Positions

01 234567 Zone Punches J Digit Punches

PF Control Character 00000100 12 -9 - 4

% Special Graphic 01 10 11 00 0-8-4

R Upper Case 11 OJ 1001 11 -;- 9

a lower Case 10000001 12 -0 - 1

Control Character, 00 11 0000 12-11-0 -9 - 8 - 1

function not yet

assigned

Figure 1-16B. Key to Figure 1-16A

Zoned information is used by character­
sensitive I/O devices. For example, a
print record is sent to a 1403 printer in
the zoned format. Each specific byte bi t­
combination represents one character to the
1403. If the 1403 receives an
unrecognizable code, then it does not print
a character for that position of the print
record. Hence, it is important that infor­
mation is sent to the 1403 in a recog­
nizable (to the 1403) form. Note that some
I/O devices are not character sensitive.
For example, no matter what the bit pattern
of a byte is (correct parity assumed), it
can be sent to and handled by a disk stor­
age or magnetic tape unit. The disk or
tape unit stores the bit pattern, which may
or may not represent a specific character
in the ASCII or EBCDI code.

When a signed decimal numeric field is
carried in zoned format, the sign of the

I
I

I

field is in the four high-order bits of the
low-order byte (Figure 1-17). Decimal
numeric fields are in the zoned format when
read into storage from a character­
sensitive I/O device or when sent from
storage to a character-sensitive I/O
device.

High Order Byte low Order Byte

0 3 4 7 0 34 70 34

Zone Digit Zone Digit Sign Digit

0000 0000 1100 = + 0000
1111 to 1111 to 1111=+ to

1001 1001 110] =- 100]

Note: Sign Bit Combinations are for EBCDI Code

Figure 1-17. Decimal Numeric Field in
Zoned Format

2030 FETOM (9/1/66)

7

1-39

Introduction

PACKED DECIMAL FORMAT

• In the packed-decimal format, representation of two decimal
digits is carried in each byte (except the low order byte).

• The sign of a packed-decimal field is carried in the four
low-order bits of the fieldws low-order byte.

• Valid binary codes for each decimal digit are in the range
0000 to 1001 (0 to 9 decima 1) •

• Zoned-decimal fields can be converted to packed-decimal
fields by use of the Pack instruction: packed-decimal fields
are converted to zoned-decimal fields by use of the Unpack
instruct ion.

'High Order Byte

Digit

Notes: EBCDI Signs,
1100=plus
1111 = plus
1101 = minus

Digit Digit Digit

All digit values are in the range: 0000 to 1001 (0 to 9 decimal)

Figure 1-18. Packed Decimal Format

Digit

If the decimal feature is installed in the
2030, decimal arithmetic operations can be
performed when the operands are in the
packed-decimal format. Each byte (except
the low-order byte) in a packed-decimal
field has bits that represent two decimal
digits (one digit in the four high-order
bits, a second digit in the four low-order
bits). For example, the number 19
(ignoring the Sign) is represented as 0001
1001. Because the information is decimal,
the only valid digits are 0 to 9 (0000 to
1001 in binary). The sign of the packed­
decimal field is carried in the four low­
order bits of the low-order byte (Figure
1-18).

Zoned-decimal fields can be used to form
packed-decimal fields by use of the Pack
instruction (Figure 1-19). The Unpack
instruction is used to form zoned-decimal
fields from packed-decimal fields (Figure
1-19).

packed-decimal fields are variable in
length and are composed of from 1 to 16

1-40 (9/1/66)

I
: Low Order Byte

Sign

bytes. All of the decimal feature
instructions are in the SS (storage to
storage) format. Hence, all packed-decimal
operands are handled in main storage rather
than in one of the general registers.

Pack Operation

'-----'-:,.---'--~..-~~---' three bytes

Key:

Z zone
D digit
S sign

Unpack Operation

three bytes

Figure 1-19. Pack and Unpack

Introduction

BASIC PROGRAMMING

INSTRUCTION FORMATS AND LENGTHS

• Register-to-register (RR) instructions are one half-word
long.

• storage-to-register (RX and RS) and storage-immediate (SI)
instructions are two halfwords long.

• storage-to-storage (SS) instructions are three halfwords
long.

• Instructions must reside on half word boundaries in main
storage (i.e. w low-order bit of instruction address equals
zero) •

Instructions specify the operation to be
done and the locations of the operands that
are to participate in the operation. Data
referenced in an instruction can be in:

1. A general purpose register,

2. A floating point register, or

3. Main storage.

When an operand is in a general reg­
ister, then that register is specified by a
four bit field in the instruction. RR
(register-to-register) instructions are one
half word long and have the format:

r-------~--------~---------,
lOp Code I Rl I R2 I L-_______ ~ ________ ~ _________ J

o 7 8 11 12 15

Here, only one halfword is needed for the
entire instruction.

Data in main storage is addressed by the
sum of a base and a displacement, or, in
some instructions, by the sum of an index,
a base, and a displacement. The base is
the value in the 24 low-order bits (bits 8
through 31) of a general register. Simi­
larly, the index is the value in the 24
low-order bits of a general register. The
displacement is a 12-bit field contained in
the instruction. Base-displace·ment
addressing is indicated in an instruction
by:

4 bits 12 bits

r--------T-------------------,
IBase I Displacement t L-_______ ~ ___________________ J

fhefour bits in the base field are the
address of one of the 16 general registers.

When (during instruction processing) the
actual address is generated, the number in
bits 8-31 of the general register is added
to the number in the instruction's dis­
placement field. (The desired base has
previously been placed, by program control,
in the specified general register.)

Note, however, that a maximum of 16
low-order bits of the generated address can
be used in Model F30 to address a main
storage location. Models C30, 030, and E30
use even fewer bits. These rest.rictions
are imposed by the main storage capacities
of the models used.

Because instructions that specify oper­
ands in main storage must use the base­
displacement (or index-base-displacement)
method of addressing, they must be longer
than one halfword. The formats are:

1. RX or RS, both of which are two
halfwords long:

Bits-- 8 4 4 4 12

r---------T----T----~---T---------,
lOp Code I Rll X21 B21 D2 I L ________ -L ___ ~ ___ ~ ____ i _________ J

2. SI which is two half words long and
contains one of the operands (the I or
immediate operand):

Bits-- 8 8 4 12
r--------~--------~---~----------,
lOp Code I I2 I B1 I 01 I L _________ i-________ i-___ i __________ J

3. S8 which is three half words long:

Bits-- 8 4 4 4 12 4 12
r-----,-,-'t-,-'t~--,

lOp codelL11L21BIIDIIB21021
L _______ ~_i-_i-_i-_i-_i-_J

2030 FETOM (9/1/66) 1-41

Introduction

In these formats:

R specifies a general register that con-
tains an operand.

X specifies a general register that con-
tains an index.

B specifies a general register that con-
tains a base.

f) is a displacement in the instruction.

I is an irnmediat e operand in the instruc­
tion.

OPERATION CODE

L is the length of a variable-length
operand.

Because instructions are considered
fixed-length information, they must be
located at halfword boundaries in main
storage. That is, the address for any
inst.ruction must have its low-order bit set
to a value of zero. If this low-order
address bit is a one, a specification
exception occurs when the instruction is
addressed.

• Bits 0 and 1 of an op (operation) code specify:

1. Instruction length in halfwords, and

2. General locations of operands.

• Bits 2 and 3 of an op code specify the type of data:

1. Fixed- or variable-length,

2. Decimal, binary, or floating point.

• Bits 4 through 7 of an op code specify the operation (such
as add or compare).

The high-order byte of every instruction
is the op (operation) code:

Hits 0 through 7

r----------------T------------------------,
lOp Code IRemainder of instruction' L ________________ ~ _______________________ -J

Bits 0 and 1 specify the instruction length
and the general location of data:

Instr uction General
Bi.ts 0 Length Location
and 1 (half words) of Data

00 1 Both operands in
general or floating
point registers

01 2 One operand in main
storage

1.0 2 One operand in main
storage

11 3 Both operands in main
storage

1-42 (9/1/66)

Bits 2 and 3 specify the type of data to
be operated on (i.e., fixed- or variable­
length; decimal, binary, or
floating-point). Bits 4 through 7 indicate
the operation (such as move, subtract, or
multiply) •

Op codes are frequently represented in
hexadecimal notation rather than by eight
binary digits. For example, the op code
for a fixed-point add instruction in RR
format is lA in hexadecimal notation.

Introduction

l\OORESSING GENERAL OR FLOATING POINT REGISTERS

• The four floating point and the sixteen general registers
are in the local storage of any systeml360 Model 30 •

• The instruction's op code indicates whether general or
floating point registers are specified by the instruction.

Op Code Rl R2 The sixteen general registers can contain
fixed-point binary operands while the four
floating-point registers can contain only
floating-point operands. All sixteen gen­
eral and the four-floating point registers
are in local storage.

r----------T-----~----,
10001 101010110 10100 I L _________ ~ ____ ~ _____ J

The addresses, in instructions, that are
used to specify general registers 0, 2, 4,
and 6 correspond identically to the four
float.ing-point register addresses. The op
code of the instruction, however, specifies
whether a general or a floating-point reg­
ister is to be used in the operation.

This instruction calls for addition of the
contents of general register 0100 (4 in
hexadecimal) to the contents of general
register 0110 (6 in hexadecimal).

An example of an add normalized
floating-point instruction is:

Op Code Hl R2
r---------~-----T-----l
10011 1010 10110 10100 1 L _________ ~ ____ _4 ____ _J

The general registers, as the name gen­
eral implies, can be used for purposes
other than containing fixed-point operands.
For example, a general register can contain
a base or index used in address generation.
(Note, however, that when general register
zero is specified as a base or index reg­
ister, the base or index is zero, no matter
what the actual content of general register
zero is.)

An example of specification of general
registers in an instruction is shown in the
following fixed point binary add instruc­
tion:

Here, the contents of floating-point reg­
ister 0100 (4 in decimal) is to be added to
the contents of floating-pOint register
0110 (6 in decimal). The op code indicates
a floating-point operation, so that the
floating-point registers, and not the gen­
eral registers, participate in the opera­
tion.

MAIN STORAGE ADDRESSING

• storage addresses are generated by adding a displacement
value to a base value.

• The general register that contains the base portion of the
address is called the base register.

• The instruction can contain a displacement value as well as
the address of a general register that contains the base
value. (Sometimes the instruction also contains the address
of a general register that contains an index value.)

• Only registers 1-15 can be used as base registers or index
registers.

• If register 0 is specified as the base register or index
register, its contents are ignored. Instead, a base address
or index value of 0 is used.

• The generation of storage addresses does not change the
instruction or the base register contents.

2030 FETOM (9/1/66) 1-43

Introduction

To use a 24-bit address in the instruction
for each operand would consume storage
space that could be used for other purpos­
es. In the smaller models of System/360
(such as the Model 30 with approximately 8K
storage), the amount of main-storage space
is definitely limited. One solution would
be to use 24-bit addresses on the larger
models such as Model 70 and to use shorter
addresses on the smaller models. This
would mean that programs used on the var­
ious System/360 Models would no longer be
compatible because of the different address
lengths. So we must look for another solu­
tion that will reduce the length of the
instructions and still maintain compat-
i bility.

There are other features desirable in
main storage addressing besides a simple
reduction in the length of instructions.
It is also desirable that, each time the
program is loaded into the computer, the
program can start at a different address
without having to change the addresses in
each instruction. This is known as program
relocation, which is a valuable tool in
IBM'S latest programming systems~

Besides the features of program reloca­
tion and sho.rter instructions, it is also
~esirable to be able to index instructions.

Assume that System/360 programs are
written in sections. Each section is 4096
(decimal) bytes in length. (Of course
programs tha t are less than 4096 bytes can
be written as one section.) The beginning
of each section is ~alled the base address
for that section. ----

Consider the case of a program that
requires 12,000 bytes. By sectioning it
into 4096 byte groups, we have three pro­
gram sections with a base address for each
section. 1!"or the following example, the
program starts at main-storage location
2,048. (The program could also be started
at other locations.)

r----------T--------~---------,
ISection 1 ISection 21Section 31 L _________ ~ _________ ~ ________ J

t t t t

I" 1 1 I
~---------~---------J , , I
1 Base I
I Addresses I
1 1
Location Location I

2,048 14,047

As can be seen in this example, the 12,000
byte program starts at location 2,048 and
runs through location 14,047. The first
two sections are each 4096 bytes long while

1-44 (9/1/66)

the remainder of the program (the last
3,808 bytes) is in section 3.

Now that the program has been sectional­
ized and base addresses are known, how can
this help in addressing main storage?

Because each section is a maximum of
4096 bytes long, any byte in a section can
be locat ed by adding to the base address a
number in the range of 0-4095. This number
is called the displaceroent. That is, each
byte is displaced from the base address
from 0 to 4095 places.

From To
0----------------------------------4,095

r----------------f f----------------,
, Section of Program 1
L _______________ ~ r-----------------J
t ,
I
I
I
L-------Base Address

Suppose that the program we have been
us ing as an example is moved so that it
starts at location 8,192.

r--------~--------~---------,
,section 11Section 21Section 31 L-_______ ~ ________ _L _________ J

t t t

I I I
1 1 I
1 1 I
Location Location Location
8,192 12,288 16,384

The base address for Section 1 is now 8,192
and the base addresses for Sections 2 and 3
are 12,288 and 16,384. The displacement
for each byte in the program has not
changed. The last byte of section 1 is
still displaced from its base address by
4,095.

The preceding demonstrates the ease with
which a Systeml360 program can be relocat­
ed. To relocate a Systeml360 program, the
~ addresses are changed while the dis­
placements remain the same.

Main storage addresses are 24 bits long.
This allows for compatibility throughout
the range of storage capacities for
System/360 models, as well as for address­
ing up to about 16 million bytes. Because
a program can start anywhere in main stor­
age, the base addresses for the program
must be 24 bits long. (Ouring actual
addressing, no Model 30 uses all 24 bits.)

The displacement range for any particu­
lar base address is 0-4095. To express

Introduction

this range requires 12 binary bits. (You
can calculate this by converting 4095 to
hexadecimal and then to binary.)

161 15------------F
1

161 255-------F I

1614095--F
1

o 1
1
1

1111

1 I
I I
1 I
1 J
I I
1 1

1111 1111

Any byte in main storage can be located
by adding a 12-bit displacement to a 24-bit
base address.

The use of a base address and a dis­
placement makes it easier to relocate a
program each time it is loaded into the
computer. However, we also want a shorter
instruction. To put both the base address
and displacement in the instruction would
make the instruction longer. It would also
mean that each instruction would have to be
changed (base address) every time the pro­
gram is relocated. The manner in which the
System/360 handles this is to carry the
base address in one of the general reg­
isters. When a general register contains a
24 bit base address, it is referred to as a
base register. The address of the base
register and the 12 bit displacement are
carried in the instruction.

Let's take a look at a typical instruc­
tion used to add an operand in main storage
to an operand in one of the general reg­
isters. When only one of the operands is
in main storage, the instruction is two
halfwords in length. To add a main storage
operand (source operand) to a general reg­
ister operand, (destination operand) sever­
al items are necessary. They are:

1. 8 bit Op Code

2.

3.

4.

4 bit General
Register
Address }

4 bit Base)
Register (
Address (

12 bit Displacement)

Destination
Operand
Address

Source
Operand
Address

The instruction format for this opera­
tion

r-----~--~-----~----T------------,
10 718 11112 15116 1 9 120 311
1 I I I I I
I Op IGen I IBase I Displace- I
1 Codel Reg. I I Reg. I ment 1
I I Addr. I I Addr. I I L ______ ~ _____ ~ ____ ~ ___ ~ _________ J

Bits 12-15 of this instruction could be
used for further modification of the main
storage address. We will, however, ignore
them for the present.

Given a displacement of 100110110010 and
base-register 11 (whose contents are shown
below), the effective storage binary­
address is 010010001001110100100001.

r------------24-LOW-ORDER-BIT~
I I

r----r----+----~---~---~---T--~----~
10000100001010011000110011001110110111111 L ___ ~ ____ ~ ___ ~ ___ ~ ___ ~ ___ ~ ___ ~ ____ J

General Register 11 Contents

Remember that you add the 12 binary bits
in the displacement to the low-order 24
binary bits of the base register.

The address generated by adding the
displacement and base address is used for
addressing main storage. The original
instruction and the base register's
contents remain unchanged.

As previously mentioned, only general
registers 1-15 can be used as base reg­
isters. If general register 0 is specified
as the base register, the base address is
assumed to be zero, regardless of the con­
tents of register o.

r------T-----------------------,
1 0 1 1022 1 L-____ ~ _______________________ J

t t

1 I
1 I
Base Displacement
Register

For this example, the contents (in decimal)
of register 0 is 2048.

Given these address fields in the
instruction and the contents of register 0,
the effective storage address is 1022.
Because register 0 is specified as the base
register, a base address of 0 is used. The
contents of register 0 are ignored.

All storage addresses are generated by
us ing base and displacement. In some
instructions, however, a third factor is
used. The third factor is called the index
value. It is contained in a general reg­
ister.

2030 FETOM (9/1/66) 1-45

Introduction

In those instructions that include an
indexing factor, the address fields have
the format:

r--------T-----~----------------,
I Index IBase IDisplacement I
IReg. I Reg. I I
I Addr. I Addr • I I l ________ ~ ______ ~ ________________ J

4 bits 4 bits 12 bits

The effective storage address is generated
by adding: .

1. Displacement,

2. Contents of the base register, and

3. Contents of the index register.

For e~~mple, suppose the address portion of
an instruction is:

INSTRUCTION FIELDS

r-T-'T-------,
161711012 1
L_.l_~ _______ J

Register 6 contains the value 2048, and
register 7 contains the value 6024:

1. The effective storage address is 9084.

2. The address portion of the instruction
is unchanged.

3. The values in the base and index reg­
isters are unchanged.

The storage address is generated by adding
the contents of the base register (6024)
plus the contents of the index register
(2048) to the displacement value given in
the instruction (1012). The values in the
specified registers and the displacement
value in the instruction remain unchanged.

• There are five basic instruction formats: RR, RX, RS, SI,
Gind SSe

• In most operations, the first operand is replaced by the
contents of the second operand or by the results of the
operation •

• The number in the length code (L) in the SS format is one
less (when actual machine language is used) than the true
length of the data field.

Instructions are 1, 2, or 3 half words
long, depending on the locations of the
operdnds.

RR FORMAT: A l--half word instruction is
used when each operand is in a general
register or in a floating-point register.

An RR format instruction has:

1. An 8-bit op code.

2". A 4-bit register address for the first
operand (destination) •

3. A. 4-bit register address for the second
operand (source) •

rhe RR (register-to-register) format is:

r--------T---~---1
lOp code 1 Rl I R2 1 L-_______ ~ ____ ~ ____ J

Bits 0 and 1 of the op code indicate the
length of the instruction and the location

1-46 (9/1/66)

of the operands. For the RR format, bits 0
and 1 are both at a 0 value.

The second byte of the RR format is
divided into two fields: Rl and R2. The
R1 field gives the register address of the
first operand while the R2 field is the
address of the second operand. The R suf­
fix numbers in the address fields of the RR
formats (and all other formats) indicate
whether the operand is the first or second
(and in some cases, the third) operand.
For most operations, the results replace
the first operand.

RX FORMAT: Instructions that are two half­
words in length have one of three different
formats. As you recall, if bits 0 and 1 of
the op code are either 01 or 10, the
instruction is two halfwords in length.
Furthermore if bits 0, 1 of the op code are
set to 01, they indicate a specific format,
known as the RX format:

In tro duct ion

r--------T------T-------~----~---------,
lOp Code I R1 I X2 I B2 I D2 I
liGen. IIndex IBase IDisplace-1
I IHeg. I Reg. 1 Reg. I ment I L ________ ~ ______ ~-----__ ~ ____ ~ _________ J

In the RX format, the effective address
of the second operand is generated by
adding the contents of the base register
and the index register to the displacement.
The RX format is used for storage to reg­
ister operations. The destination register
address is specified by the Rl field.

r--------T----T---~---~--------------,
I ADD I 3 I 7 I 4 I 1024 I L _______ ~ ____ ~ ____ ~ ____ ~ _____________ J

For the preceding RX format instruction,
the storage address is generated by adding
the 24 low-order bits of the contents of
registers 7 and 4 and the displacement
value of 1024. The storage (source) oper­
and is added to the contents of register 3
and the sum is placed in register 3.

RS FORMAT: storage-to-register instruc­
tions in which the storage address does not
include an indexing factor are called the
RS format. The format is:

r--------~---~---~----T--------------,
lOp Code I R1 1 R3 I B2 I D2 I l ________ ~ ____ ~ ___ ~ ___ ~ ______________ J

The RS format (two half words long) is
identified by a 10 in bits 0 and 1 of the
op code. The R3 field in the RS format
specifies the general register used for the
third operand. (In some RS instructions,
the R3 field is ignored.) An example of an
instruction that uses the R3 field is Load
Multiple. During execution of a Load Mul­
tiple instruction, data in main storage is
loaded (or placed) into general registers.
Loading begins with the register specified
by the Rl field and continues consecutively
until the register specified by the R3
field has been loaded. For example:

r--------T----T---~---~--------------,
lOp Code I 4 I 7 I 0 1 0100 I l ________ ~ ____ ~ ___ ~ ____ ~ ______________ J

In this Load Multiple example, the
effective storage address is 0100. This is
because register 0 is specified as the base

register (whose contents are ignored during
address generation).

Here, registers 4 through 7 are loaded
with the data from main storage. Because
each register can hold one full word, reg­
isters 4-7 are loaded with the data in
storage location 0100 through 0115
(decimal). (Each storage address is used
to address one byte of data.)

SI r~RMAT: An SI format instruction is
also two halfwords in length. This format
is used when one operand is in main storage
and the other operand (called the immediate
operand) is carried in the instruction
itself. The SI format is also identified
by a 10 in bits 0 and 1 of the op code,
just like the RS format. The 51 format is:
Op Code 12 81 D1

In the SI format, the storage operand is
the first operand. Its effective address
does not include an indexing factor. The
immediate operand is fixed in length and is
one byte long.

An SI format instruction example is Move
Immediate. Execution of this instruction
moves the immediate operand byte (12) from
the instruction to the storage location.
The immediate operand remains unchanged in
the instruction after completion of the
operation. For example:

r--------T---~---~---~--------------,
lOp Code I 12 I 0 I 1000 I l ________ ~ ___ ~ ___ ~ ___ ~ _____________ ~

In this Move Immediate instruction, the
contents of the 12 field are placed in
storage location 1000.

Because bits 0 and 1 of the op code have
a value of 10 for both the RS and SI for­
mats, the remaining bits of the op code
indicate whether the instruction is in the
RS or the SI format.

SS FORMAT: In the four previous formats,
the operands are fixed-length. Variable­
length operands are specified by the 5S
(storage-to-storage) format instructions:

r-------~---------T----T--------------T----T--------------,
lOp Code I L I B11 Dl I B21 02 I L ________ ~ ________ ~ ___ ~ ____________ ~ ____ ~ ______________ J

,~~

Length Location of Location of
COde 1st operand 2nd Operand

(destina- (source)
tion)

2030 FETOM (9/1/66) 1-47

Introduction

Because both operands are in storage,
the ss format instruction is three
halfwords long, and is identified when bits
o and 1 of the op code contain 11.

In the SS format, an indexing factor is
not included in the generation of storage
addresses. The second byte of the SS for­
mat is the length code which consists of a
binary bits. The maximum value that can be
expressed with 8 binary bits is 255
(decimal> •

Because all operands are at least one
byte long, a length code is used to tell
how many additional bytes are needed. For
instance, a length code of 15 indicates
that the operand is 16 bytes long. If an

operand is one byte long, the length code
is zero.

So far we have been treating the length
code as one a-bit binary number. However,
we are dealing wi th two operands. Do they
both have to be of the same length? The
answer is: not always. The lengths depend
on the particular operation. If we are
concerned with moving a data field from one
area of storage to another, we only need
one length code. If, however, we are
adding one storage field to another, then
we need to know the length of both oper­
ands. For arithmetic SS operations, the
length code is split in two:

r-------~---~---~----T--------------T----T--------------,
lOp Code I L1 I L2 I B1 I D1 I 32 I 02 I l ________ ~ ___ ~ ___ _i ___ _L _____________ _L ____ ~ ______________ J

t t
I I
I I
I I

Length of-J Length of
first second
operand operand

With the length code split into two
4-bit fields, the maximum length of arith­
metic variable-length operands is 16 bytes.
The effective length of variable-length
fields is one more than the length code.

1-48 (9/1/66)

I nt rodu ct ion

INSTRUCTION SEQUENCING AND BRANCHING

• Unless otherwise specified, instructions are processed
sequentially •

• Instructions are fetched from main storage during I-time and
executed during E-time.

The instructions of the stored program are
read out of main storaqe and then executed.
one at a time. Each instruction is decoded
in the control section of the Central Proc­
essing Unit (CPU).

After being decoded in the control sec­
tion of the CPU, the instruction is execut­
ed. Arithmetical or logical operations are
performed in ALU. During processing of
every instruction, there are two periods of
time. The time during which the instruc­
tion is read out (fetched) from main stor­
age an~ interpreted is I-time
(Instruction-time) • The operation speci­
fied by the instruction is performed during
E-time (1:i:xecution-time). Data is the name
generally given to information read out of
main storage during E-time. Instructions
are read out of main storage during I-time.
An instruction may be treated as data and
changed if it is read out during E-time.

In the System/360 there is no clear
Ji vision between I-time andE-time. That
is, before the instruction has been com­
pletely read out and analyzed by the con-

Instruction Address Field in PSW

trol section. some part of the execution
may have already been stat:ted. But for
simplicity, we can think of I-time as l:eing
separate from E-time.

The instructions of a stored program are
generally read out and executed in a
sequential manner. The sequential manner
of instruction fetching and execution can
be changed by instructions known as branch
instructions.

Recall that instructions are generally
thought of as having two l:asic parts. The
op code of the instruction is used to tell
the computer what to de (such as add or
branch). The other portion of the instruc­
tion generally tells the co~puter where
data is located. For this reason it is
called the address portion.

An instruction may ccntain information
other than data addresses. The address of
the next instruction to be executed can te
specified by a branch instruction. (In
some instructions the data to be operated
on can be contained in the instruction.>

• The Program Status Word (PSW) is a double-word containing 8
bytes (64 bits) of control and status information.

• The current PSW is maintained in machine circuitry_

• The address of the next sequential instruction to be fetched
from main storage is contained in bi ts 40-63 (24 bi ts) of
the PSW.

In the System/360 there is a doubleword of
information used to indicate the status of
the program as well as to control the pro­
gram. This doublelNOrd is called the Pro­
gram status Word (PSW). As in all double­
words, the bits of the PSW are numbered 0
to 63, from left to right. The PSW
includes status information such as:

1. The location of the next instruction.

2. Whether an arithmetic operation has
resulted in a positive or negative

answer. (Possibly the operation ended
with a zero balance or an overflow.)

The current PSW reflects the status and
controls the prograrr currently being exe­
cuted. The current PSW is not stored in
any of the 16 general registers or addres­
sable locations in main storage. It is
kept in some internal at:eas of the
System/360 that are not addressable by the
program. Although the current PSW may be
scattered throughout the CPU. it is consid­
ered as one double word of information.

2030 FETOM (9/1/66) 1-49

Introduction

The location of the next instruction to
be fetched from main storage is indicated
by bits 40-63 of the PSW.

PSW
r------------~---------------------------l
10 391 40 631 L _____________ ~-_________________________ J

I
I

1 I L __________________________ J

24-Bit Instruction Address

The instruction address portion of the
current PSW is updated for each instruction
that is fetched and executed. That is, if
an RR. type instruction is fetched from
location 1000, the instruction address
portion of the current PSW is updated. The
location of the next sequential instruction
is 1002 because an RR-format instruction is
one halfword (two bytes) long. Thus the
instruction address portion of the PSW is
updated to 1002.

Instruction Branching

After the RR type instruction at loca­
tion 1000 has been executed, the instruc­
tion address portion of the PSW (which
contains 1002) is used to fetch the next
instruction. If the instruction at loca­
tion 1002 is the RX (two halfwords long)
type, the instruction address portion of
the current PSW is then changed to 1006.

Because instruction length is always a
multiple of halfwords, the instruction
address portion of the current PSW is
updated by some roultiple of two (exce~t
after execution of a branch). The instruc­
tion address in the current PSW is
increased J::y 2, 4, or 6 depending on bits 0
and 1 of the current instruction's op code.
For example, if bits 0 and 1 of the current
instruction's op code ccntain 11, the
instruction address in the current PSW is
increased by 6.

• A branch instruction is used to make program decisions.

• A branch instruction provides a way to leave one instruction
sequence and branch to another instruction sequence.

• The instruction address field of the current PSW is changed
to the branch-to-address when the program branches.

Decision blocks in a program flow chart are
represented by a diamond shaped symbol.
The use of this symbol in a program rep­
resents a decision as to what instruction
to use next. Should the program continue
with its present sequence of instructions,
or should it branch out to another sequence
of instructions? somet.imes the program is
trying to decide which of two or more ~
seqnences to branch to.

As you know, the instruction address
portion of the cnrrent PSW is used to fetch
the next sequential instruction. However,
whenever a branch is executed, the contents
of the instruction address portion of the
cUrrent PSW are replaced by the address of
the instruction being branched to.

1-50 (9/1/66)

For exarople, if an RX instruction (at
location 1000) is fetched, the instruction
address portion of the current PSW is nor­
mally changed to 1004. If however, the
instruction at 1000 says to branch to loca­
tion 2000, the instruction address portion
of the current PSW is changed to 2000.

Here, tits 40-63 of the current PSW
might be updated to 1004 and then changed
to 2000. The action depends on the parti­
cular branch instruction used. However, at
the time of the branch, the address of the
branch-to locatiqn is placed in bits 40 to
63 (instruction address portion) of the
current psw.

I nt rodu ct ion

Condition Code Field

• The condition code occupies bits 34 and 35 of the current
psw •

• The 4 combinations of the condition code are 00, 01, 10 and
11.

• The condition code indicates the results of certain instruc­
tions (such as add, subtract, or comfare).

• Some instructions do not affect the condition code.

The condition code is located in bits 34
and 35 of the PSW.

34,35
I ,

0-----33 I I 40--------------------63 , ,
r-------T-JL-JL~-------------------------,
I I C I Instruction I
I I I I
I I C I Address I
L _______ ~ ______ ~ _____________ ------------J

Condition Code

The condition code can have anyone of
four bit combinations:

1) 00

2) 01

3) 10

4) 11

The condition code is set to one of its
four combina tions after an instruction has
been executed. Then it is placed in the
condition code portion of the current psw.
Not all instructions affect the condition
code.

One of the uses of the condition code is
to indicate the result of arithmetic opera­
tions, such as add or subtract. There are
four possible results of an algebraic add
or subtract:

1) positive number,

2) Negative number,

3) Zero balance, or

4) An overflow.

The condition code reflects the results
with these settings:

Condition
Code

00

01

10

11

Arithmetic
Results

zero balance

< zero (negative)

> zero (positive)

overflew

The condition code is set at the end of
algebraic add or subtract 0Ferations
(either decimal or binary). The condition
code retains its setting until the end of
the next instruction that can change it.

Another use of the condition code is to
indicate the result of a compare operation.
A compare operation consists of comparing
the first operand to the second operand.
The condition code is set to indicate the
result. Neither operand is changed. The
condition code is set and indicates whether
the first operand is equal to, less than,
or greater than the seccnd operand, as
follows:

Condi ti on Code Coropariscn

00 equal

01 low

10 high

Note that a condition code setting of 11
is not possible after a corrpare operation.
Note also that the condition code is used
to indicate more than just the result of an
algebraic or comparison operation. The
actual meaning of the ccndition code
depends on the results of the operation
that caused it to be set.

2030 FETOM (9/1/66) 1-51

Int roduct ion

Condition Code Branching

• The instruction that tests the condition code is called
nranch on Condition.

• Branch on Condition can have either the RX or RR format.

• The R1 field is used as the mask field to test for a speci­
fic setting of the condition code (one bit set in mask
tielJ) or a multiple condition code setting (two or more
bits set in mask field).

• A mask field of 0000 results in a NO-OP instruction.

• A mask field of 1111 results in an unconditional branch
instruction.

One of the instructions of the System/360
is an instruction ca lIed Branch-on­
condition. 'rhis instruction causes the
system to examine the condition code and
branch if the condition code setting
matches that of a code in the Branch-on­
Condition instruction.

The Branch-on-Condition instruction can
be either in the RR or the RX format. In
either case, the R1 field is coded so that
the condition code can be tested. The
Branch on Condition (RR format) instruction
is:

r-------~----T----'
I 07 I Rl I R2 I l _______ ~ ____ ~ ____ J

The branch-to address is in the general
register specified by the R2 field. The RX
format is:

r--------T----~---T----~-------------,
I 47 I R1 I X2 I B2 I D2 I l ________ ~ ___ ~ ___ ~ ____ ~ _____________ J

t -- '-../' --
I
I
I
Mask
field

Effective
address is the
branch-to
location

The Rl field in the Branch-on-Condition
instruction is referred to as the mask
field. The condition code is tested by
being matched against the mask field.

The mask field is tested against the
condition code according to the following
chart:

Mask Field Condition Code

1000 00
0100 01
0010 10
0001 11

1-52 (9/1/66)

Any of the possible ccndition code
settings can be tested by setting the
appropriate bit of the mask field. If bits
8-11 of a Branch on Condition instruction
contain 1000, a branch occurs only if the
condition code has a setting of 00. If the
condition code is 01 and the mask field is
0010, a branch does not occur.

Sometimes the four ~ossitle settings of
the condition code are referred to as deci­
mal digits:

Condition Code

00
01
10
11

Decimal Egyivalent

o
1
2
3

The bits of the Branch-an-Condition
instruction's mask field correspond to the
condition code settings in a left to right
fashion.

8--------11

r------------,
11 1 1 1 I <----Mask Field l ___________ J

0, 1, 2, 3<-----Condition Code

To test for a specific condition code
setting, the corresponding bit of the mask
field must contain a 1.

If the mask field centains 0000, nene of
the possible condition code settings can
cause a match and a branch can not occur.

If the mask field contains 1111, all or
any of the possible condition code settings
match corresponding mask bits. Because the
condition code always contains at least one
of the four possible settings, a mask field
of 1111 always results in a branch.

In summary, the branch on condition
instruction:

Int. rodu ct ion

a. Can be used as a NO-OP instruction, when
its mask field is 0000.

b. Can test for a specific result (such as
an equal compare) when one of the bits
of the mask field is set on.

SYSTEM/360 AND INTERRUPTIONS

Supervisor Concepts

c. Can test for a multiple result (such as
an equal 2! low compare) when two or
more bits of the mask field are set on.

d. Can be used as an uncoditional branch
when its mask field is 1111.

• Control programs perform such functions as program loading,
storage protection assigning, I/O opeIation handling, inter­
ruption handling, job flow handling, and operator communi­
cations handling •

• One control program (the supervisor), in general, remains in
core storage at all times •

• Basic functions of the supervisor program are I/O control
and interruption handling.

A program is a sequence of instructions
designed to solve a problem. For example,
a payroll problem program could:

1. Get an employee's .record,

2. Calculate gross and net pay, and

3. Put the results out in the form of a
pay check.

The payroll program then gets the next
employee's record and repeats the process.
This sequence of instructions continues
until all employee's records are processed.
Admittedly, this is a simplification of a
payroll problem. Most programs, however,
are similar to this payroll example in that
they can be broken down into the three
opera tions:

1. Get record.

2. Process record, and

3. Put record into an output file.

These problem solving programs are
referred to as problem programs.

problem Program Logic

Another example of a Problem Program is
an assembly program. Here the problem is
different, but the three casic operations
are the same. The proble~ consists of:

1. Getting a symbolic (source language)
statement,

2. Processing it by translating the state­
ment into machine language, and

2030 FETOM (9/1/66) 1-53

I nt rodu ct ion

3. Putting the results in the output file
(object program).

Get source language
5tatement

ProceSS statement by
translating into
machine la nguage

Put results in
object program

During recent years, data processing
machines have been developed with faster
and faster internal processing speeds. As
a result, the execution times for these
problem prog rams has been continually
reduced, but with no corresponding reduc­
tion in the time it takes for an operator
to load-in the ne.xt probl'~ program and
manually set-up input data. In some data
processing installations, the average "set
up" time is about equal to the average
"execution" time. In other words, the data
processing system is idle about half the
time, while the operator is "setting up"
for the next problem program. Clearly this
is an inefficient way to control an instal­
lation.

In an attempt to reduce this idle time
and keep the system running, programmers
began to use stored programs to control the
execution of problem programs. These pro­
grams are called control Programs. (Other
names used are "Monitors" and
"Supervisors".) These Control Programs
were dt first written only for the require­
ments of a particular installation. Later,
as the similarities between control pro­
grams became obvious, IBM began to supply
generalized control programs which could te
tailored to the requirements of each
installa tion.

The simplest type of control program is
u'sed to supervise the loading of problem
programs; it might operate in the following
manner:

1. An input tape is prepared. This tape
contains the problem programs and asso­
ciated data (Figure 1-20).

2. The operator loads the control program
into main storage from a second tape.

3. The control program loads the first
problem program and then passes control
(via a branch) to the problem program.

1 - 5 4 (9/1/ 6 6)

4. The problem program reads in its data
and performs its assigned task.

5. When the problem prograro is finished,
it does not issue a halt instruction.
Instead it passes ccntrol (by
branching) back to the control program.

6. The control program then loads in the
next problem prograrr and passes control
to it.

7. This operation continues until all
problem programs have been executed.

, PROBLEM
PROGRAM

DATA

SUPERVISOR

Main Stomge

Figure 1-20. Program-Leading Control Pro­
gram

Notice several things about the use of a
control program in the ~receding example:

1. The system never halted between jobs.

2. The control prograrr rerrained in main
storage during problem program execu­
tion.

3. The control program served as a link
between jobs. Its cnly function was to
bring in a new problem program as each
job was finished.

4. The problem prograrrs handled their own
input-output operations (Figure 1-21).

I nt roduct ion

Control __ _

Data ~ _~o~_

MAIN STORAGE

CONTROL
PROGRAM

PROBLEM
PROGRAM

Contro I Prog. S Rd Prog. A Rd Prog. B

Problem Prog. , l ... ____ ..Jt l ... ____ _
Prog. A Executed Prog. B Executed

Rd Prog. C

Pigure 1-21. I/O operations Handled by
Problem program

5

This is one example of the use of a
somewha t limited control program. Here,
the entire control program is in main stor­
age. Other functions, however, can be
included. as part of a control program. One
such function is the initiation of input­
output operations. The problem program is
mainly interested in processing data. The
actual read and write operations necessary
to transfer data between input-output
d.evices and main storage can be handled by
the control program (Figure 1-22).

Problem Program Control Program

:-==-------~Vi
- -------------

PROCESS

-~ --==---- WRITEVO -- -- ---------

Figure 1-22. Control Program Handling I/O

In this I/O handling fUnction of a con­
trol program, control passes back and forth

between the problem and control program
during the execution of the problem pro­
gram.

In the first control program example,
the only time the control program was in
control was between jobs. NOW, however,
the control program not only reads in new
problem programs, but it also (during the
execution of the problem program) is used
to start the necessary I/O units for input­
output data (Figure 1-23).

The control program can ce given other
functions as well. Of course, the more
functions that a control program has, the
more main storage space it requires,
thereby leaving less available storage for
problem programs. This ~roblem is solved,
to some degree, by placing those sections
of the control program that are used infre­
quently on a high speed fast access I/O
device, such as a disk stcrage unit. Only
those sections that are necessary to super­
vise the running of protlem programs are
kept in main storage. The Fortion of the
control program that resides in main stor­
age is known as the Supervisor. The super­
visor program calls in (froIl' disk to main
storage) other sections of the control
program when necessary.

Control programs have come into general
acceptance because of the need to reduce
machine idle time and rranual intervention
and to increase the overall efficiency of a
data processing installation.

Read

Control Prog. Rd Prog. A

Problem Prog. _

MAIN STORAGE

CONTROL
PROGRAM

PROBLEM
PROGRAM

EXECUTE PROGRAM A

Rd Prog. B

Figure 1-23. Control program sequencing

2030 FETOM (9/1/66) 1-55

Introduction

lnterruptions and the PSW

• An interruption terminates the current sequence of instruc­
tions and causes a machine forced-branch to the supervisor
program.

• An interruption results in storing of the current PSW in
main storage, and fetching of a new PSW from main sto~ge.

• Processing resumes at the instruction address specified by
the instruction address portion of the new PSW, which is now
the current PSW.

• There are five classes of interruptions. Each has both an
old and a new PSW location in main storage.

Because there is no halt instruction in
system/360, a problem program, when f in­
ished, must be able to branch into the
supervisor so that a new problem program
can be loaded. Also when a machine or
program check occurs, an automatic branch
to the supervisor is usually desired.

These automatic branches into the super­
vior are called Interruptions. That is,
the current sequence of instructions is
interrupted dnd an auton~tic branch is
taken to a new sequence of instructions.
Both machine checks and program checks can
cause automatic branches or interruptions.
Also, when a problem prog ram is finished,
it signals the supervisor via an interrup­
tion.

An interruption is similar to a branch.
However, it does much more than a branch
instruction. A branch instruction can only
cause the instruction address portion of
the current psw to be replaced.

r------~---~---T----T----'
Instruction ,Branch, R1 1 X2 I B2 I D2 I

PSW

L ____ --i-_--i ___ ~ __ ~ ____ J

, I
,_ . ______ ~ _ J

Effective :
Address

I

r - - - - - - - _t - -
I 40 63 ' ,
I I

r--------------------~-------------,
I I Instruction I
I I Address I L ____________________ ~ _____________ J

when an interruption occurs:

1. The current PSW is placed in wain stor­
age where it is called the old PSW, and

2. A new PSW is brought out of main stor­
age, and it becomes the current PSW.

1-56 (9/1/66)

r-----------,
I .------, I
I 10Id PSW J.+- (1) -----, I L _______ J I I
I , ,
I r-------, I J r-----------,
I ,New PSW, -+-(2) -----+-I Current PSW J I l-______ J I L _____ ---J
L __________ J

Main storage

Assuming that the instruction address
portion of the new PSW contains 1096, the
first instruction processed after the
interruption is at address 1096.

There are five distinct classes of
interruptions:

1. External Can be caused by pressing
the Interrupt key on the
systeITI ccnsole.

2. Supervisor caused by the Supervisor
Call instruction.

3. Program

4. Machine

5. I/O

Caused by a program check.

Caused by a machine check.

Caused ty an Input/Output
operation.

Each of the five classes of interrup­
tions has its own rrain storage locations
for new and old PSW's as follows (decimal
notation used):

InterruEtion Old PSW New PSW

External 0024 0088
Supervisor 0032 0096
Program 0040 0104
Machine 0048 0112
I/O 0056 0120

For example, a rrachine check causes the
current PSW to be placed in location 0048
and a new PSW to be brought out from loca-

Introduction

tion 0112. Notice that these locations are
all divisible by eight because PSW's are
doublewords, and must reside on doubleword
boundaries. (It is interesting to note
that each new PSW is located 64 storage
locations higher than the corresponding old
psw.)

~lthough an interruption may be initiat­
ed by an instruction (such as when the
supervisor call instruction initiates a
supervisor interruption), the actual stor­
ing and loading of the PSW is done automat­
ically by circuitry.

Interruptions occur only at the end of
an instruction and never in the middle of
one. The current instruction is completed
before an I/O, external, or supervisor call
interruption is taken. In the case of
program and machine interruptions (which
indicate programming and circuit errors,
respectively), the interruption still
occurs at the end of execution of the
instruction. However, in these two cases,
the end may be ~orced by:

1. suppressing the instruction's execution
when a programming error is detected
during instruction fetch time, or

2. Terminating its execution when a pro­
gramming or machine error is detected
during execution time (Figure 1-24).

The branch is effected automatically by
internal circuitry. The current PSW is
placed in a fixed location in main storage
and becomes the old PSW. The old PSW gives
the specific reason for the interruption
and also provides a return to the inter­
rupted program. ~ new PSW is fetched from
a fixed location in main storage and
becomes the current PSW. The new PSW pro­
vides an entry into the correct routine in
the supervisor program.

r------, r------------'---·---,
10ld PSWl-+---.----f a. Gives reason I
l ____ -' I I for interruption!

I I I
I lb. Provides return I
I I to Problem I
I I Program I I L ______________ J

I
r----.1-----,
ICurrent PSw~----Controls
L-___ ,.-___ J Program

I
r-------, I
INew PSW~----i-------provides entry
L-_____ J into supervisor

program

PSW INSTRUCTION LENGTH FIELD: Once an
instruction has been read cut of main stor­
age, the instruction address portion of the
PSW is Updated and specifies the next
instruction's address. Interruptions can
occur only after an instruction is fin­
ished. Therefore, the instruction address
portion of the old PSW does not contain the
address of the last instruction executed.
Instead, it contains the address of the
next instruction that would have been exe­
cuted if the interrupticn had not occurred.

When the interruption is completed, the
supervisor may elect to return to the point
of departure from the problem program. It
does this by examining the old PSW. In
some cases, the problem program instruc­
tion, performed just before the interrup­
tion, may have to be performed again.
Because the instruction address portion of
the old PSW is updated before the interrup­
tion occurs, and because instruction
lengths vary. the supervisor needs addi­
tional information to derive the instruc­
tion address. This additional information
is contained in bits 32 and 33 of the old
PSW, and is called the instruction length
code.

r------,.---;~--~ T -------,

I I I I I I I
I I I C I I Instruction I
I I L I I I Address I
I I I C I I I
I I C I I I I L-_______ .1--__ .1--__ ~ ___ ~ _____________ J

t t
I I
I I
I L-Bits 34, 35--Condition
I Code
I
I
l------Bits 32, 33:

Instruction
Length Code

2030 FETOM (9/1/66) 1-57

Introduction

When the supervisor retrieves the old
psw to determine where to re-enter the
problem program, the instruction length
code indicates what value must be subtract­
ed from the old PSW instruction address
field to produce the address of the op code
of the last instruction executed before the
interruption occurred. The instruction
length code is valid only for certain ty~es
of interruptions. The supervisor program
must determine if this information is to be
used.

Bits 32-33 of the PSW are set to 01, 10,
or 11 (depending of the length of the
instruction) before the current PSW is
stored as the old PSW.

PSW Bits 32-33

01
10
11

Instruction Length

1 Halfword
2 Halfwords
3 Halfwords

For example, the instruction length code
in the PSW is set to 10 (2) for an RX for­
ma t instruction.

If the instruction address portion of
the old PSW contains 4000 (decimal) and the
instruction length code contains 11, the op
code of the last instruction prior to the
interrupt is located at 39<}4 (decimal).

A program routine must be provided for
each of the five classes of interruptions.
Each of these interruption handling rou­
tines process the interruptions in a dif­
ferent way. It is not always important to
be able to determine the last instruction
executed before the interruption. In the
case of program, machine, or supervisor
interruptions, an instruction in the prob­
lem program caused the interruption.

In the case of external and 1/0 inter­
ruptions, the problem program did not cause
the interruption. As a result, it is unirn­
f~rtant to the supervisor program what
instruction was executed last in the prob­
lem program. After the interruption rou­
tine is completed, the next sequential
problem program instruction (address in old
psw) is processed.

PSW INTERRUPTION CODE FIELD: Another field
in the PSW that is of value to the supervi­
sor program is the interruption code field.
It is held in bits 16-31 of the PSW.

1-58 (9/1/66)

o 15 16 31 40 63
r--------~--------~-~-T-------T--------,
, I Inter- , 'I , Instruc-I
\ \ruption I \ I ltion Ad-I
I 'Code I I I I dress I L-_______ ~ ________ ~i__~ ______ ~ ________ J

t t
) I
I I
I I
I L-------Condition
I Code
I
I
L----------Instruction

Length Code

When an inter.ruption occurs, the current
PSW is stored in cne of five locations
reserved for old PSW's. It is at this time
that the interruption code of the current
PSW is set.

r-------,---------,
t Interruption I
1 Occurs I
l _______ ~---------J

I
I
I

r---------------------,
ISet Instructicn I
\ Length Code and \
\Interruption Code I L--______ --. _________ -J

I
I
I r-------·-------.------,

I Store PSW in I
I old PSW location I
L _________ ~----------J

I
I
I

r-------------------, I Fetch I
I new PSW ,
L-_________ -----------J

The five classes of interruptions tell
the supervisor only the general reason for
the interruption. For instance, if the new
PSW is brought out of location 0040, then
the interruption was caused by a program
check. The supervisor still needs to know
what type of prograro check occurred. This
is the function of the interruption code in
the PSW. By exarrining the interruption
code in bits 16-31 of the old PSW, the
program check routine in the supervisor can
tell specifically whether it was a specifi­
cation, addressing, or some other prograro
exception. In the case of 1/0 interrup­
tions. the interruption code carries the
address of the channel and 1/0 unit that
caused the 1/0 interruption. (Figure
1-24).

Introduction

For example, when a program interruption
is caused by a fixed-point overflow, the
interruption code of the old PSW contains
0000000000001000. (Refer to Figure 1-24.)

For brevity's sake, the interruption
cOde is often represented as 4 hexadecimal
digits:

Binary Hexadecimal

0000000000001000 0008

There are five old PSW's in main stor­
age. How does the supervisor know which
one to use'l The answer is, tha t each of
five new psw's point to different routines
in the supervisor. These routines in turn
use the old PSW location that corresponds
to the particular class of interruption.
For example, the program check routine in
the supervisor uses the old PSW at location
0040, while the supervisor call routine
uses the old PSW at location 0032.

Interru (2tion Old PSW New PSW

External 0024 0088
supervisor 0032 0096
Program 0040 0104
Machine 0048 0112
I/O 0056 0120

In the case of an interruption caused by
a machine check, the PSW that was controll­
ing the program prior to the interruption
is stored automatically in location 0048.
Then the doubleword at location 0112 is
brought out and becomes the current PSW.
This PSW directs the system to that area of
the supervisor program that handles machine
checks. The machine check handling routine
of the supervisor is written so that the
doubleword at location 0048 is processed as
the old PSW.

In the case of an interruption caused by
a program check, the current PSW at the
time the interruption occurs is stored
automatically as the old PSW at location
0040. Then the doubleword at location 0104
is brought out and becomes the current psw.
This PSW directs the system to the supervi­
sor routine that handles program checks.

The program check handling routine of the
superv isor is written so that the double­
word at location 0040 is processed as the
old PSw.

In the case of an interruption caused by
the supervisor Call instruction, the cur­
rent PSW is stored in location 0032. Then
the doubleword at location 0096 is brought
out and becomes the current PSW. This PSW
directs the systelt to that portion of the
supervisor that handles supervisor calls.
One way a problem program could notify the
supervisor that the program is finished is
to issue a Supervisor Call instruction.
Thus the last instruction of a problem
program would probably be a Supervisor Call
instruction.

If the Interrupt key on the system con­
sole is pressed, an external interruption
occurs. In this case, the current PSW is
automatically stored at location 0024. For
an external interruption, the doubleword at
location 0088 is brought out and becomes
the current PSW.

I/O interruptions generally occur at the
end of an I/O operation. Most I/O opera­
tions are overlapped with Frocessing. The
I/O interruption SignalS the supervisor
that the I/O operation is finished. An I/O
interruption causes the current PSW to be
stored at location 0056. The new PSW at
location 0120 is brought out and becomes
the current PSW. This PSW directs the
system to that section of the supervisor
program that handles I/O interruptions.

Problem Prog.-.,
I
I
I

s uperv isor--- - ~, ---"
Prog. t

I
I

Supervisor Call
Interruption

t

I
I
I ,
I
I

Supervisor
Starts I/O
Operation

t
I
I ,
I
I

t

I
I

,.-­
I ,
I ,

Supervisor
Handles I/O

InterrUpt

I/O Operation
Overlapped
with Processing

2030 FETOH (9/1/66) 1-59

Introduction

Interruption Source Interruption Code
Identification PSW Bits 16-31

Input/Output (Old PSW 56, New PSW 120)

Multiplex Channel 00000000 aaaaaaaa
Se lector Channe I 1 00000001 aaaaaaaa
Se lector Channe I 2 00000010 aaaaaaaa
Se lector Channe I 3 00000011 aaaaaaaa
Se lector Channe I 4 00000100 aaaaaaaa
Selector Channel 5 00000101 aaaaaaaa
Selector Channel 6 00000110 aaaaaaaa

Program (Old PSW 40, New PSW 104)

Operation 00000000 00000001
Privileged Operation 00000000 00000010
Execute 00000000 00000011
Protection 00000000 00000100
Addressing 00000000 00000101
Specification 00000000 00000110
Data 00000000 00000111
Fixed-Point Overflow 00000000 00001000
Fixed-Point Divide 00000000 00001001
Decimal Overflow 00000000 00001010
Decimal Divide 00000000 00001011
Exponent Overflow 00000000 00001100
Exponent Underflow 00000000 00001101
Significance 00000000 00001110
Floating-Point Divide 00000000 00001111

Supervisor Call (Old PSW 32, New PSW 96)

Instruction Bits 00000000 rrrrrrrr

External (Old PSW 24, New PSW 88)

External Signal 1 00000000 xxxxxxxl
External Signal 2 00000000 xxxxxxlx
External Signal 3 00000000 xxxxxlxx
External Signal 4 00000000 xxxx 1 xxx
External Signal 5 00000000 xxx 1 xxxx
External Signal 6 00000000 xxlxxxxx
Interrupt Key 00000000 xlxxxxxx
Timer 00000000 lxxxxxxx

Machine Check (Old PSW 48, New PSW 112)

Machine Malfunction 00000000 00000000

Notes: a = I/O Device Address
r = Bits 8-15 of Supervisor Ca II Instruction
x = Unpredictable

Mask ILC Instruction
Bits Set Execution

0 x Complete
1 x Complete
2 x Complete
3 x Complete
4 x Complete
5 x Complete
6 x Complete

1,2,3 Suppress
1,2 Suppress
2 Suppress
0,2,3 Suppress/T e rm i nate
0,2,3 Suppres!j!'Terminate
1,2,3 Suppress
2,3 Terminate

36 1,2 Complete
1,2 Suppress/Comp lete

37 3 Complete
3 Suppress
1,2 Terminate

38 1,2 Complete
39 1,2 Complete

1,2 Complete

1 Complete

7 x Complete
7 x Complete
7 x Complete
7 x Complete
7 x Complete
7 x Complete
7 x Complete
7 x Complete

13 x Terminate

Figure 1-24. Interruption Code and Action Chart

1-60 (9/1/66)

Introduction

Load PSW Instruction

• The Load PSW instruction is used to return to the problem
program after an interruption •

• The Load PSW instruction is in the Sl format. The 12 field
is ignored.

• A doubleword is loaded into current PSW circuitry (from
locations in main storage) by the Load PSW instruction.

After the end of t he I/O interruption rou­
tine in the supervisor, it is desirable to
return to processing the problem program.
Simply bra nching back to the problem pro­
gram would not be desirable. A branch
instruction only affects the instruction
address portion of the PSW. other parts of
the PSW are also important in controlling
the processing of a program. For one
thing, the condition code setting in the
controlling PSW for the I/O interruption
routine would not necessarily be the same
as it was before the I/O interruption
occurred. It would be best to be able to
give cont rol back to the problem program
with the sanle PSW the problem program was
using when the I/O interruption occurred.

This can be done in the System/360 with
an instruction known as Load PSW. This
instruction is used by the supervisor to
load the old PSW back in the system's con­
trol section. This is the last instruction
in the supervisor's interruption handling
routine. Note that this return (by replac­
ing the PSW) to the problem program is done
by means of an instruction (load PSW) and
is not automatic, as is an interruption.

r--------, r---------------,
10Id PSW I IProblem Program I
L~ ______ J L _______________ J

J t t
I I (1) 1(1)
J I ,
I I ,
I r~--------------~,
L_>I Current PSW I

(3) L----------T-----J
t I
, (2) I
I I r---------------,
I I 'Supervisor

r-----~-, L->IInterruption
'New PSW I I Handling
l _______ J (1) 'Routine

I
I
I

I
I
I
I
I
I
I

(3)ILoad PSW I L _______________ J

As ca n be seen from the preceding
diagram, interruption action is as follows:

1. At the time of the interruption, the

current PSW (which is controlling the
problem program) is stored in the old
PSW location. This is done automat­
ically by machine circuits. The old
PSW interruption code gives the reason
for the interruption. The instruction
address portion of the old PSW indi­
cates the point at which the problem
program was left.

2. A new PSW is then brought out of stor­
age and becomes the current PSW. This
new PSW points to the first instruction
of the interruption handling routine
which is part of the supervisor pro­
gram.

3. After the interruption has been taken
care of, the last instruction of the
interruption handling routine is Load
psw. Processi~ this instruction caus­
es the old PSW to becom.e the current
PSW, and a return is made to the prob­
lem program.

The Load PSW instruction is of the SI for­
mat:

r--------~--------~--~--------~---,
lOp Code I 12 I B1 I D1 I L _______ _i ________ ~ ___ _i ______________ J

In the Load PSW instruction, the 12 field
is ignored.

r------~---·-----,---~------·--------,

I 82 I 12 I B1 I 01 I L _______ ~ ________ ~ __ ~ ______________ J

t t ~

I I
Load PSW I
Op Code I
in Hex I

I
Ignored

t
I
I
I
I
I
I

Effective address of double
word that is to be loaded as
the PSW. Note that the
current PSW at the time this
instruction is fetched is
not stored any~here and is
therefore lost.

The Load PSW instruction can be used by
a supervisor program to change the current

2030 FETOM (9/1/66) 1-61

Introduction

psw. The main use of the Load PSW instruc­
tion is to return to the problem program
after an I/O, supervisor call, or external
interruption has been serviced. It could
also be used to load the PSW for a new
problem program after the new program has
been read into the machine by the supervi­
sor program.

Supervisor Call Instruction

To return to a problem ~rog%am after an
I/O interruption has been serviced, the
effective address generated by the B1 and
01 fields of a Load PSW instruction should
be 0056 (38 in hexadecirral>. Refer to
Figure 1- 24.

• The Supervisor Call instruction (RR format) is used by the
problem program to pass control to the supervisor program by
causing a supervisor call interruption •

• The Rl and R2 fields of a supervisor Call instruction are
placed in the interruption code field of the supervisor call
old PSW.

The supervisor call interruption is used by
the problem program to pass control to the
supervisor program. There are a number of
reasons why the problem program might want
to call the supervisor program. Two of the
major reasons are:

1. To tell the supervisor program that the
problem program is done. The supervi­
sor might then read in a new problem
program and load its PSW.

2. To request the supervisor program to
start an I/O operation for the problem
program.

The Supervisor Call instruction is of
the RR forma. t :

r--------,----,----,
I OA I R1 I R2 1 l ________ ~ ____ ~ ____ J

The superyisor Call instruction causes a
supervisor call interruption. The eight
bits of the R1 and R2 fields are placed in
the interruption code of the old PSW.

r--------'----T----'
I OA 1 R1 \ R2 \ l ________ ~ ____ ~ ___ J

Location
0032

~

r-i--~-------~---,
\ IOld PSW \ \
1 \ I 1

~--~--------~lr-J
r----T---------~---,
I 116 31\ 1 L-__ ~ ________ ~ ___ J

Current PSW

Locat.ion 0096 New PSW

1-62 (9/1/66)

Because the bits of the R1 and R2 fields
are stored as the interruption code, they
can tell the supervisor program the reason
for the interruption. Resulting actions
vary, depending on who wrote the supervisor
program. For instance:

r--------.----. ----,
1 OA I 0 I 0 I Supervisor
l ________ ~_L_ ___ J

~

l
Call Instruction

This interruption code
might be used to signal a supervisor pro­
gram that the problem program is finished.

Given the following supervisor call
instruction (in hex), the binary bit struc­
ture that would be place in the interrup­
tion code of the old PSW is 11010000 (bits
16-31 of the old PSW in location 0032):

r--------.----.----,
I OA I D I 0 I L-_______ ~ __ L-___ J

Introduction

Masking Interruptions

• Some interruptions are prevented from occuring by mask bits
in the current psw.

• The system mask is in bits 0 to 7 of the PSW. These bits,
when zero, prevent (mask) external and I/O interruptions.

• The machine check mask is bit 13 of the PSW. When off, it
allows machine errors to be ignored. Machine checks are not
normally masked off except as a diagnostic aid.

• The program mask is stored in bits 36 to 39 of the PSW.
when zero, these bits are used to prevent 4 of the 16 pro­
gram checks from causing interruptions.

• Eleven program check interruptions and the supervisor call
interruption cannot be masked off.

Sometimes, it is not desirable to allow an
interruption. Consider, for example, an
I/O interruption. In the systeml360 it is
possible to have simultaneous I/O opera­
tions on two or more channels. When one
operution is completed, an I/O interruption
usually occurs. The PSW is stored to give
the supervisor program the reason (which
I/O unit) for the interruption. This old
PSW also gives the supervisor program a way
in Which to return to the interrupted prob­
lem program. If another I/O interruption
is allowed before the first one has been
completely handled, the old PSW (from the
problem program) is lost.~ The supervisor
program would then not be able to return to
the problem program via the Load PSW
instruction.

r---------------,
1st I/O Interruption-->IProblem Program I I L _______________ J

I
Location 0056 I
r-------' I
10Id PSWI<----------J L ______ J

t

I
I 1 r---J.-------,

I Current PSWI L-------___ J

t 2
I
I

r----J.---,
INew PSWI L __ ~ ___ J

1
I r--------------,
I 11/0 Interruption I
L---------------->IRoutine in

I Supervisor
I Program
I
I
ILoad PSW

r----------·------> 1 from 0056 I I L ___ , _______ J

If a second I/O interrupticn were allowed
to occur before the Load PSW instruction is
executed, the current PSW at this point
would be stored in location 0056. This
would cause the old PSW (also in location
0056) from the problem program to be dest­
royed.

SYSTEM MASK: How does the supervisor pro­
gram prevent this second undesirable I/O
interruption until it has processed the
first one? It does this by proper use of
mask bits in the PSW.

2030 FETOM (9/1/66) 1-63

Introduction

Machine Check Mask
o 7 1316 31 36 39 40 63
r------T---T------_y-~~--_y--------_,
I I IInter- I I I I IInstruc- 1
\ 1 \ruption\L \ C\ Ition I
I \ I Code \ C \ CI I Address 1 l ____ .1 ___ .1 _____ ~_~ __ ...L~ _______ J

t t
System
Mask

Notice that:

Program
Mask

1. Bits 0-7 are the system mask bits.

2. Bit 13 is the machine check mask bit.

3. Bits 36-39 are the program mask bits.

When anyone of these mask bits is set
to zero, the corresponding interruption is
masked or prevented. Let's first consider
the system mask bits. These eight bits can
be used selectively or collectively to mask
1/0 and external interruptions as follows:

PSW Bit Masks Interruption from

o Multiplexor Channel
1 Selector Channel 1
2 Selector Channel 2
3 Selector Channel 3
4 Selector Channel 4
5 Selector Channel 5
6 Selector Channel 6
7 External

(Note that the only system mask channel­
bits applicable in a Model 30 are bits
0, 1, and 2.)

To prevent (mask) all 1/0 and external
interruptions, bits 0-7 of the current psw
must contain zeros.

Notice that there is only one 1/0
interruption. However, each of the six
selector channels and the multiplexor chan­
nel can be selectively prevented from caus­
ing an 1/0 interruption.

A system mask of 00111110 masks some 1/0
and all external interrupts. A system mask
o(10000001 prevents 1/0 interruptions by
all selector channels.

The system mask that determines whether
or not to prevent any 1/0 or external
interruptions is in the current PSW. In
the case of an 1/0 interrUption, the
address of the device and channel causing
the interruption is stored in the interrup­
tion code of the old PSW.

To prevent a second 1/0 interruption
before a first one has been completely
processed, the system mask of the ~ PSW
should contain zeros.

1-64 (9/1/66)

o 7 Froro ,
1
I r--,.---, \

IFF J I---L­
L-_.l-__ J

t

1
I
I old PSW
I
I
\

1.

System Mask in Hexa-
I decimal
\

01 7 2.
I
I

Prcblero Program

-------,
\
I
\
I
I
I
I

r---~---_,

IFF I I current
I I IPSW L ___ J.-___ J

I
I
I

r--~---, I
100 I I ____ ~---------------J
l_~ ___ J I

+ New PSW To Supervisor Program

One more point should be made concerning
the system mask. When it contains zeros,
I/O and external interruptions remain pend­
ing. As soon as the syste« mask is set to
ones, another interruption can be taken.

The last instruction in the 1/0 inter­
ruption routine of the supervisor program
is Load PSW. The old PSW in main storage
location 056 (decimal) is brought out and
becomes the current PSW. Once this is
done, I/O interruptions can once more occur
because the systerr ~ask cf the problem
program's PSW probably contains all ones
(FF). Of course, a system wask of all ones
allows not only I/O interruptions but also
external interruptions.

MACHINE CHECK MASK:

r------y---T-------~--T---~--T--~-------,
I I IInter- I I I I I Instruc- I
I I)ruptionl Lie I Ition I
I I ICode \ C I C \ IAddress 1 l ____ --L_---L ______ ~_~ __ _.1. __ _.1. ______ --J

, , ,
system ~achine Program
Mask Check Mask Mask

(bit 13)

A machine check interru~tion can be
masked by means of bit 13 of the PSW. If
this bit contains a zero, machine checks
are ignored, and no machine interruption
can occur. Of course, this is not the
usual state of the «achine check «ask tit.
It is usually set to one, so that any
machine check will cause an interruption.
The Check Control switch, on the system
console, when set to the stop position,
causes an error stop (even if PSW bit 13 is

Introduction

set to zero) rather than an interruption
when a machine check occurs. The usual
mode of operation is to have this switch
set to the process position and PSW bit 13
set to one. This means that when a machine
check (such as even parity) occurs, an
error stop does not occur. Instead an
interruption occurs.

In summary then, there are three basic
courses of action when a machine che~
occurs:

1. A machine check interruption (the PSW
is stored in location 0048 and a new
PSW is fetched from location 0112.)

2. An error halt when the Check Control
switch is set to the stop position.

3. The check is ignored if PSW bit 13 is
zero and the Check Control switch is
set to the process position.

Depenuing upon the settings of switches
on the system console, other actions can
occur when a machine check occurs. These
actions are described in Appendix B of this
publication.

There is one other .item of information
concerning machine checks. It is called
log-out. Unless the machine check is being
ignored, information concerning the status
of internal circuitry is automatically
placed in storage starting at machine loca­
tion 0128 (decimal). This log-out occurs
prior to loading of the machine new PSW
that is used to control the program error
handling routine.

Just how much information is contained
in a log-out and what it means depends on
the particular model of System/360. Howev­
er, log-out always occurs prior to a
machine interruption. This log-out infor­
mation reflects the status of the machine's
internal circuitry. As such, it is mean­
ingful only to someone who has a knowledge
of the machine'S internal circuitry.

For a Model 30, the maximum log-out area
used includes main storage locations 128,
129, 130, 131, 133, 134, 135, 137, 138, and
139 (decimal).

PROGRAM MASK: Program checks (such as a
specification exception) can also cause an
interruption. On a program interruption,
the PSW is stored in location 0040 and a
new PSW is fetched from location 0104.
certain program interruptions can be masked
off by use of bits 36-39 of the PSW.

r------~-~------~--~--~--T----------,
I 1 IInter- I I I I I Instruc- I
I I I rupticn I Lie I Ition I
I I I Code I C I C I I Address I L _____ ~ __ ~ _____ ~-_~ __ ~ ___ ~ __________ J

t t t
System ~~chine Program
Mask Check Mask Mask

(Bit 13)

There are 15 possible exceptions that
can cause a prograrr check (see Figure
1-24). On occasion, four of these may not
be considered as prograrr checks. The four
exceptions are:

1. Fixed-Point Overflew

2. Decimal Overflow

3. Exponent Underf low }

Significance

Concerned with
Floating Point

4.

When one of the general registers is
being used as a counter in a program, it
may be desirable to test the counter for an
overflow. In such cases, an overflow
should not be treated as a program check.
As a result, the prograrr rrask in the PSW is
available to the programmer to mask prograrr
check interruptions caused by four excep­
tions, as follows:

36 39
r---------,
10 0 0 0 I
L _____ _J

t
I

Fixed Point----J

Overflow

t
I
I
I
I

Decimal---------- J

Overflow

t
I
I
I
I

t
I
L----Proqram Mask

Significance

L------Exponent
Underflow

All other programming exceptions (such
as specification) are always treated as
programming errors and always cause a pro­
gram interruption.

It is important to know which classes of
interruptions cannot be masked. They are
the supervisor call interruption and pro­
gram interruptions caused by all but the
four programming excepticns indicated in
bits 36-39 of the PSW.

2030 FETOM (9/1/66) 1-65

Introduction

System/360 Status Bits

• Three bits in the PSW are used to control the System/360
mode or state.

• The ASCII mode bit (PSW bit 12) determines if decimal opera­
tions are done in EBCDIC mode (0) or ASCII mode (1).

• The wait state bit (PSW bit 14) determines if the System/360
is in the running (0) or wait (1) state •

• An external or 1/0 interruption causes the System/360 to go
from the wait state to the running state.

• The problem state bit (PSW bit 15) determines if the
System/360 is in the problem (1) or supervisor (O) state •

• privileged instructions can be processed only when the sys­
tem is in the supervisor state. A program interruption
occurs in the problem state, if execution of a privileged
instruction is attempted.

PSW

o 63

r--------T----~-------_,
I I I I l ________ ~ ___ ~ ________ J

(I
r-------,
IA M W PI
l _______ J

12 15

Of bits 12-15, you are already familiar
with bit 13. It is the machine check mask
bit.

ASCII MODE BIT: Bit 12 is the ASCII mode
bit. ASCII is an information interchange
code adopted by the American Standards
Association to be used for data communi­
cation. The ASCII mode bit determines the
mode in which decimal operations are done
<i.e., in EBCDIC or ASCII mode). If bit 12
of the PSW contains a one, the ASCII sign
(+ and -) codes and zones are internally
generated, rather than the EBCDI codes.
For example,
The number 1 in EBCDIC is:

1 1 1 1 0 0 0 1
Zone Numeric

The number 1 in ASCII is:
01010001
Zone Numeric

When processing data with the instruc­
tions of the decimal feature, the following
are the standard signs generated:

1 1 0 0 Plus
EBCDIC

1 1 0 1 Minus

1-66 (9/11 66)

If bit 12 of the PSW contains a one, the
signs that are generated when using the
decimalf eature are:

1 0 1 0 = Plus
ASCII

1 0 1 1 = Minus

For example, +107 is:

If PSW
bit 12
is 0

If PSW
bit 12
is 1

D

0001

0001

o 0 S

0000 0111 1100 EBCDIC

0000 0111 1010 ASCII

When a packed decimal field is converted
back to the unpacked format by the Unpack
instruction, the zone bits that are insert­
ed depend on the ASCII mode bit in the PSW.
For instance, +107 in EBCDIC mode is
unpacked as follows:

r----------~---------,
Packed 10001 000010111 11001 l _________ ~ __________ J

r---------~---------~---------,
Unpacked 11111 000111111 0000111000111 I L _________ ~ _________ ~ ________ -J

Zones and sign inserted if P5W l::it
12 is 0 (EBCDIC Mode)

If +101 is unpacked when in ASCII mode, the
fo llowing results are obtained:

r----------~---------,
Packed 10001 000010111 10101 L _________ ~ __________ J

Introduction

r-------~---------~---------,
Unpacked 10101 000110101 0000110100111 1 l __________ ~ _________ ~ ________ J

Zones and sign inserted if PSW 12
bi t is 1 (ASCII Mode)

WAIT STATE BIT: If the wait bit (PSW bit
14) contains a one, instructions are no
longer fetched and executed. Instead the
System/ 360 waits unt il an interruption
occurs and changes the PSW. The new PSW
would normally contain a zero in bit posi­
tion 14.

Only the occurrence of I/O or external
interruptions can change the status of the
CPU from wait to running state. Machine,
program, and supervisor call interruptions
can occur only when the CPU is in a running
state.

PROBLEM STATE BIT: The Model 30 can be
executing either the supervisor program or
the problem program. Accordingly, the
system is in either the supervisor state or
the problem state.

All instructions can be executed when in
the supervisor state. However, certain
instructions are not allowed in the problem
state. For example, all I/O instructions
must be issued by the supervisor program.

Privileged Instructions

Bit 15 of the PSW is called the protlem
state·bit. When bit 15 of the PSW is zero,
the instruction associated with that PSW is
part of the supervisor program. When bit
15 of the PSW is one, the instruction asso­
ciated with that PSW is part of the problem
program. Thus, regardless of which PSW is
used, bit 15 identifies the state of the
System/360.

The program state bit allows the system
to be SUre that those instructions reserved
for the supervisor state are executed only
by the supervisor program. If the problem
program attempts to execute an instruction
rese.rved for the supervisor state, a pro­
gram interruption occurs.

Normally:

1. Bit 15 is set to a 1 in the old PSW's
in main storage.

2. Bit 15 is set to a 0 in all five new
PSW's in main storage.

The old PSW indicates the next problem
program instruction, while each new PSW
indicates a superVisor program instruction.

• privileged instructions are those which can be executed only
in the supervisor state (bit 15 of PSW is 0) •

• An attempt to execute a privileged instruction in the prob­
lem state (PSW bit 15 set to 1) results in a privileged
operation exception (a program interruption).

Not all privileged instructions are des­
cribed here. However, you should be aware
of the considerations that determine which
instructions are privileged.

For example, the supervisor program has
more control over changing PSW fields than
has the problem program. The following
table indicates how certain PSW fields can
be changed:

Bits Field Changed By

0-7 System Mask The Set System
Mask instruction

16-31 Interruption An interruption
Code

32-33 Instruction An interruption
Length Code

34-35 Condition Many
Code instructions

36-39 Program The Set Program
Mask Mask instruction

40-63 Instruction Execution of
Address ~rogram

Notice that some of the PSW fields can
be changed by an instruction. Other fields
can be changed only by changing the entire
PSW. Basically, there are two ways of
changing the entire PSW. One is by way of
an inter.ruption. The ether is by way of
the Load PSW instruction. It would not be
desirable to allow the protlem programmer
to use the Load PSW instruction because
this instruction changes all parts of the
PSW. The problem program should not have
that much control over the machine. Cnly
the supervisor program should retain this
control. As a result. Load PSW is a privi-

2030 FETOM (9/1/66) 1-67

Introduction

leged instruction. It can only be used in
supervisor mode (when bit 15 of the PSW is
0). The programmer could use the Load PSW
to change any part (or all) of the PSW when
the system is in supervisor mode. This
instruction can be used to return to the
problem program after an interruption has
been serviced.
r---------, r-------,
I Supervisor I IProbleml
I ILoad PSw------>1 I
I Program I Iprograml L __________ J L _______ J

The problem program can wbranchw to the
supervisor program by way of a supervisor
call interruption.
r----------, r-------,
I Supervisor I <--------------1 Problem I
I ISupervisor calli I
I I Interruption I I
I Program I IPrograml L __________ J L-______ J

Set System Mask Instruction

Notice, however, that a branch instruc­
tion is not used because it can not change
the problem state bit (bit 15) in the PSW.
The problem program cannot use the Load PSW
instruction because it is a privileged
operation. The problem program can only
use the Supe.rvisor Call instruction to go
from the problem state to the supervisor
state (PSW bit 15). Of course, this
assumes that the new PSW in location 0096
(for supervisor call interruptions) has a
zero in bit 15.

Besides the Load PSW instruction, there
are two other instructicns which can change
the PSW. They are: Set System Mask and
Set Program Mask. The Set Program Mask is
not a privileged instruction. Hence, the
problem programmer can use it to change the
program mask portion of the PSW. Actually
the Set Program Mask instruction changes
bits 34-39 of the PSW (which include the
PSW condition code field).

• The Set system Mask instruction is used by the supervisor
program to change the PSW systero mask field.

• Set System Mask is a privileged instruction.

• set System Mask is in the SI format, but the 12 field is
ignored.

The set system Mask instruction is a privi­
leged instru~tion. Recall that the system
mask affects 1/0 interruptions, but
Systeml360 is designed to have the supervi­
sor handle all 1/0 operations. For this
reason, the Set System Mask instruction and
the four 1/0 instructions are privileged
operations. The Set system Mask instruc­
tion is:

r--------~--------~---_y--------------,
I 80 I 12 I B1 I 01 I l ________ ~ ________ ~ ___ ~ _____________ J

. This instruction is similar to the Load
PSW instruction in that the 12 field is
ignored.

r-------~---------y--~--------I
I 80 I 12 I B1 I 01 I

Set SYs~::-Jr-7--~ -~:::-:::::::----(
Mask Op of byte that replaces
Code in Hex the system mask in

the current PSW
Ignored

1-68 (9/1/66)

Given the following Set System Mask
Instruction (in hexadecimal), the binary
bit structure that is placed in bits 0-1 of
the current PSW is 11110000.

r-----~-----~---~----,
180 I 00 I 0 I 0021
I I I , , L ____ -..L _____ .-..L ___ -..L ____ J

o 1

r---------,
ISystem Maskl L __________ J 0000

0001
0002
0003
0004

Set System
Mask

r----·----.----,
I 00 ,
I FF I
I FO I
, OF I
I AA I
.------------~ I Main storage, L _____________ J

Introduction

Set Program Mask Instruction

• The Set Program Mask instruction is used to change the set­
ting of the condition code and the program mask in the cur­
rent PSW.

• set Program Mask is in the RR format and the R2 field is
ignored.

The Set Program Mask instruction (RR
format) is:

r----~----~--,
I 041 Rl I R2 I l ____ ~ __ ~ ____ J

t t t

I I I
I I I

Set I I Ignored
Program I I
Mask op---l I
code in I
hex I
r-------------~-------------------------I
Bits 2-7 of this register replace the con-
dition code dnd program mask bits (34-39)
of the current PSW.

Example (note that B register is ignored):

Instruction

Reg B

Reg A

PSW

r---,.---,. ---_,
I 04 I A I B I l ___ -.1 __ --.1 ____ J

r----T----T----T----'
I FF I FF I FF 1 FF I L ___ -.1 ___ ~ __ ~ ____ J

r----T---T----~---,

I OF I OF I OF I OF 1 l ___ ~ ___ ~ ___ ~ ___ J

~11
r------~--~------_,.--~--_,.----~------_,
I System) IInter- I I I C IProg.IInstruc-1
I Mask I lruptionl L I C IMask Ition I
I I I Code I C) I IAddress I l ______ ~ ___ ~ _______ ~ ___ L_ __ L ____ _L ________ J

34 39

Bits 2-7 (001111) of reg A are placed in
positions 34-39 of the PSW. (Notice that
the cont.ents of general register Bare
ignored.) This action replaces the condi­
tion code and the progr~n mask. With a

program mask of all ones, any fixed point
and decimal overflows would be treated as
errors and a program interruption would
occur.

Let's try another exarrFle. Given the
following Set Program Mask instruction, the
binary bit structure of bits 32-39 of the
current PSW after tbe instruction is exe­
cuted are as shown. Bits 32-33 are the
instruction length code.

,-------,
Instruction (in hexl---+f 04 B AI L---_____ J

r----------~--~---,
Gen. Reg A------------I FO FO FO FO I L __________ .-___ J

r-----------------,
Gen. R eg B-----------~ OF OF 0 F 0 F 1 L ______ - __________ J

r---------------,
Bits 32-39 of----------~O 1 0 1 0 1 0 11

L _________ ~----J

PSW before
32 39

r------.---·----,
Bi ts 32-3 9 of----·--~I 0 1 0 0 1 1 1 11 l _______________ J

PSW after

Remember that the prograrr. mask is used
to determine which program checks can cause
interruptions. For exawFle, with a program
mask of all zeros, a fixed Foint or decimal
overflow is not treated as a programming
error and a prograrr interruFtion does not
occur. Instead, an overflow sets the con­
dition code to 11. This is normal regard­
less of the program mask. But now an
interruption does not occur and the protlem
programmer can use the branch-on-condition
instruction to test for overflow.

2030 FETOM (9/1/66) 1-69

Introduction

STORAGE PROTECTION

• A four bit storage key is associated with each main storage
block of 2048 bytes •

• A protection key is held in bits 8-11 of the PSW •

• Every time a storage modification cycle is attempted, the
associated storage key and the PSW key are compared.

• If the two keys are not the same (and the PSW protection key
is not zero), a protection exception occurs, causing a pro­
gram interruption so that the storage modification cycle is
not taken.

Any information in mai n storage can be
rn~lified or completely changed. The five
new PSW's in storage locations 0088-0127
can be changed. It is desirable to allow
the supervisor program to modify these new
PSW's. However, the problem program should
not modify this same area. It is undesira­
ble to have any part of the supervisor
program changed by the problem program.
What is needed is some means by which the
supervisor program can change any area of
main storage while the problem program can
change only its own assiqned area. The
System/360 has a storage protection feature
which prevents a program from altering main
storage contents in specified areas of
storage. Storage protection is a special
feature in system/360 Model 30.

To implement the storage protection
feature, each main storage block of 2048
bytes has a key associated with it. This
storage key is four bits long and can con­
tain any number from 0 to 15. storage keys
need not be assi gned in any order. Any of
the 16 keys can be used regardless of stor­
age size.

For example, storage keys for a system
with 8K main storage could be:

r------------,
I 6144 - 8191 1-- 13
~-------------~
I 4096 - 6143 1-- 5
~------------~
I I Storage Keys
1 2048 - 4095 1--11-
~-------------~ I 0 - 2041 1---0 L _________ J

A 16K main storage unit would need eight
storage keys if each 2048 byte increment
were assigned a different key.

Besides the storage key associated with
each block of 2048 bytes, there is a Pro­
tection Key in bits 8-11 of the PSW; ----

1-10 (9/1/66)

r------.---. -, ------"'---,-'------,
I System 1 IAMIInter- IIICIProg.IInstruc- I
IMask 1 IWPlruptionlLICIMask Ition I
I I I ICode lei I IAddress I l ____ ~ __ ~_~ ___ ~_~~~ ___ ~ _________ J

,
I
I
I
I

Protection
Key

Any time the main storage unit takes a
storage modification cycle, the storage
protection feature is in oferation. A
storage modification cycle is one in which
the information brought out of main storage
is not regenerated. Instead new informa­
tion is placed back into the same wain
storage location. The fetching of an
instruction is not an example of a storage
mOdification cycle, because the instruction
is placed back into storage without modi­
fication.

The operation of the storage protection
feature is as follows:

1. On every storage modification cycle,
the protection key in the PSW is com­
pared with the storage key associated
with the block of main storage in which
information is addressed.

2. A protection exception results in a
program interruption if the two keys
are npt identical.

3. If the PSW protection key is zero, any
main storage area can be modified
regardless of its storage key. An
interruption does not occur.

For example, if the protection key in
the PSW contains a six and a storage modi­
fication cycle is atterrpted in an area
whose storage key is five, a program inter­
ruption occurs.

If the key in the PSW is zero and the

Introduction

storage key is six, however, a program
interruption will not occur.

Whenever a program interruption occurs,
the interruption code, placed in the old
psw, indicates the reason for the interrup­
tion. When a storage protection mismatch
occurs, a protection exception is indicated
in the interruption code of the old PSW
(see Figure 1-2q).

Assuming that the PSW has a protection
key of six, the 2K blocks of main storage
labeled A, C and 0 can be successfully
modified because their storage keys match
the PSW's protection key:

r-----,

~~~~~i=:3-
1 C I - 6 storage Keys 
~-----~ 
lD 1--6 l ____ J 

Set Storage Key Instruction 

If the PSW protection key is zero, how­
ever, all four areas can be modified. 

Thus, when the PSW has a protection key 
of zero, the current program can succeSs­
fully modify data anywhere in main storage. 
A protection key of zero would probably be 
in a PSW used by a supervisor program that 
has a storage key of zero. 

• This instruction is used to change storage keys associated 
with each 2048-byte block of storage • 

• Set Storage Key eRR format) is a privileged instruction. 

The protection key in bits 8-11 of the PSW 
cannot be altered except as a result of 
changing the entire PSW. The entire PSW is 
changed only by the Load PSW instruction or 
by an interruption. However, the storage 
keys for each block of 2048 bytes can be 
changed by an instruction known as Set 
storage Key (RR format). This instruction 
sets the storage key for one block of 2048 
bytes: 

r---T----T---' 
108 I Rl I R2 I L ___ ..L. ____ ..L. ____ J 

To set all the storage keys for a 16K 
main storage unit would require execution 
of eight set storage key instructions. 

The desired storage key (0-15) is in 
oits 24-27 of the general register speci­
fied by the R1 field. The remainder of 
register R1 is ignored. The 2048 byte 
block of storage in which the storage key 
is to be set is determined by the address 
in the general register specified by the R2 
field. 

r--------~---~----l 
I 08 I 3 I 5 I L ________ -..L. ___ -..L. ____ J 

t t t 
I I I 
I I I 

Set I I This register 
Storage I I has the address 
Key Op-------J I of the 2K block 
Code I 

1 
Key is in this 

register 

storage addresses in the Systero/360 are 
24 bits long. General register capacity is 
32 bits. As discussed previously, storage 
addresses are placed in the low-order 24 
bit-positions in a general register (tit 
positions 8-31). Because we are concerned 
only with 2048-position blocks of storage, 
and not specific storage addresses, we have 
to examine only those bits that define 
2048-position blocks. This inforrration can 
be determined from bits 8-20. Add.ress bits 
8-20 for an 8K storage system are: 

8 20 
0000 0000 0000 0 = addresses 0000-2047 
0000 0000 0000 1 = addresses 2048-4095 
0000 0'000 0001 0 = addresses 4096-6143 
0000 0000 0001 1 = addresses 6144-8191 

2030 FETOM (9/1/66) 1-71 



Introduction 

A specification is given to the program­
mer that requires the general register's 
four low-order bi ts (28 -31) to be zero. 
Thus, the structure of data in the general 
register, as far as the set storage key 
instruction is concerned, is: 

o 7 8 20 21 27 28 31 
r-------T-------------~-------~-----, 
IIgnoredlwhich 2K block I Ignored I 0000 I L _______ ~--___________ ~ ______ ~--____ J 

Any address can be used, as long as the 
four low-order bits are zero. This means 
that the storage key can be set using any 
address that is divisible by 16. 

Given the following, the storage key of 
block 0 is set to 1: 

InstI'uction 

Register 3 

Register 5 

storage Block 
A 6144-8191 
B 4096-6143 
C 2048-4095 
D 0000-2047 

r--------~---~----, 
I 08 I 3 I 5 I (hex) L-________ ~ ___ ~ ___ J 

r-----------------, 
tOO 0 0 0 4 1 0 I (hex) L _________________ J 

r-----------------, 
I 0 0 0 0 0 1 400 I (hex) L _________________ J 

Key 
o 
o 
o 
1 

General register 5 contains the hexa­
decimal address 140. This means that bit­
positions 8-20 of register 5 are zero. 
Thus block 0, the first block of 2048, has 
its storage key set to 1. 

The set storage key instruction is a 
privileged operation. It may be issued 
only when bit 15 of the PSW (problem state 
bit) is zero. In a typical 
supervisor-controlled operation, the 
supervisor causes a problem program to be 
read into main storage. The supervisor 
set,s the storage keys for the area of stor­
age used by the problem program. The 
supervisor assembles the PSW to be used by 
the problem program. This assembled PSW 
has a protection key that matches the stor­
age key associated with the problem pro­
gram. 

Once the function of loading a problem 
program into main storage and assigning the 
keys for storage protection is done, the 
supervisor passes control to the problem 
program with the Load PSW instruction which 
specifies the assembled PSW (Figure 1-25). 

The protection key in the PSW used by 
the supervisor program is zero. This 

1-72 (9/1/66) 

allows the supervisor program to modify 
data anywhere in main storage. The main 
storage area occupied by the supervisor 
program has a storaqe key of O. This means 
that unless a p~gram has a key of 0 in its 
PSW, it will not be able to modify or 
change information in the area being used 
by the supervisor program. 

Each block of 2048 bytes does not have 
to have a different nu~ber set in its stor­
age key. However, each proqram in main 
storage should have a different storage key 
assigned in order to protect one program 
from anothe~. For instance, the supervisor 
program may take up one block of 2048 bytes 
which is assigned a storage key of O. This 
storage key would roost likely be assigned 
by the supervisor program just after it is 
read into the system. The ~roblen program 
is then read into the ~chine under super­
visor control. This program (Figure 1-25) 
takes up three blocks of 2048 bytes each. 
Each of these three blccks is assigned the 
same storage key (1) by the supervisor 
prog %a m. The PSW for the problem program 
is given a protection key that matches its 
storage keys. This allows the problem 
program to alter itself if necessary, but 
prevents it from altering another problem 
program or the supervisor. 

So far, we have only discussed the con­
cept of two programs in the computer: a 
supervisor program and a Froblem program. 
There may, however, be two or more problem 
programs in storage at the same time. 

Storage 

r--------, 
I Problem I 
I I 
IProblem B 1--2-,Storage 
I I I Keys 
~----,----~ I 
I Problem I I 
I I I 
IProblem A I--l-~ 

I I I 
~------~ I 
I I I 
ISupervisorl I 
I I I 
IProgram 1--15J 
L-______ J 

Protection 
Keys ---, 

I 
I 
I 
I 
t Prob. 

Prog. B--.----2 

Probe 
Prog. A------1 

supervisor---O 

In the preceding diagram, each problem 
program has a differen t storage key. The 
protection keys used by each program are 
also different. Each matches its program's 
storage key_ Notice that the supervisor'S 
protection key does not match its storage 
key. Because the supervisor's protection 
key (in its PSW) is zero, it does not have 
to match a storage key. It can unlock any 



Introduction 

area of main storage and alter its contents 
if necessary. 

Assume: 1. That the problem program takes 5,000 bytes and begins at 
location 2048. 

2. That the supervisor is in locations 0000 - 2047 and has a 

Set Storage 
Key of 2048-
4095 to 1 

Set Storage 
Key of 4095-
6143 to 1 

Set Storage 
Key of 6143-
8191 to 1 

"Load PSW" 
Using the 
Assembled 
PSW 

Problem 

Program 

storage key of 0 and a protection key of O. 

t 

Problem 
Program is 
Read Into 
Loc. 2048-7047 

A storage key of 1 was chosen for this problem 
program. Actually any key from 1-15 could 
have been used. (0 is already being used by the 
supervisor program.) 

"Assembled" 
PSW Would 
Probably be 

Control 
- - -+- Passes to the 

Prob lem Prog. 

6144 - 8191 ~ 

4096 - 6143 11 
2043 - 4095 11 

Supervisor Program 

01 0000 - 2047 

1. System mask of all ones to allow interruptions. 
2. Protection key of 1 to match the storage key 

associated with this program. 

3. AMWP field = 0 1 0 1~ 

Allow / Jnning P",b. 
Machine State State 
Interruption 

4. Instruction address of 2048. 

Figure 1- 25. Using Storage Protection 

2030 FETOM (9/1/66) 1-73 



Introduction 

Insert storage Key Instruction 

• The Insert Storage Key eRR format) instruction is used to 
examine the current value of a storage key. 

• Insert storage Key is a privileged instruction. 

The insert storage key (RR format) instruc­
tion does not change any storage keys. Its 
purpose is to inspect or examine a storage 
key. 

Op Code R1 R2 

r--------T----T----, 
109 I 4 I 3 I L ________ ~ ____ ~ ____ J 

t t t 
t I This register 
t I has the address 
I I of the 2K block 
I I 

Insert The Storage Key 
Storage is inserted into 
Key Op this register 
Code 

Here, the storage key of the block 
addressed by the contents of the register 
specified by the R2 field is inspected. 
This storage key is then inserted into bits 
24-27 of the register specified by the Rl 

PROGRAMMING SYSTEMS 

field. Bits 28-31 of this register are 
made zero and bits 0-23 remain unchanged. 

Example: 

Storage Block Rey 
2048-4095 1 
0000-2047 F 

Instru ct ion 0 9 4 3 

Register 3 before 0 0 0 0 0 F 0 0 
Register 3 after 0 0 0 0 0 F 0 0 

Register 4 before 8 7 6 5 4 3 2 1 
Register 4 after 8 7 6 5 4 3 1 0 

Notice that the storage key (1) of block 
2048-4095 is inserted into bits 24-27 of 
register 4 while bits 28-31 are made zero. 
The remainder of the register is unchanged. 
The storage key remains unchanged for the 
storage block referenced. 

• programming systems are de~igned to lessen the programming 
effort required to produce application programs. 

• Each programndng system requires that the machine system 
have certain minimum features and I/O uni ts. 

• Three basic categories of programs are: 

1. Control, 

2. Processing, and 

3. System service. 

A wide variety of progr~nming support is 
provided for use with IBM System/360: 

1. operating System/360, 

2. Basic Operating System/360, 

3. Basic Programming Support, and 

4. System/360 Model 20 programming sup­
port. 

All are designed to minimize the time 
and effort required by the user to produce 
and process programs. (operating 
system/360 is summarized in IBM Operating 

1-74 (9/1/66) 

system/360 Concepts and facilities, Form 
C28-653.5'; Basic prograrrning Support and 
Basic operating System/360 are summarized 
in IBM System/360 Basic P~o9ramminq Support 
and IBM. Basic operating System/360 Program­
ming Systems Summary,Form C24-3420.) 
Systero/360 Model 20 prograrrrring support is 
not applicable to Model 30 and therefore is 
not described here. 

BPS (Basic Programming Support) is a 
programming systerr used without dependence 
upon any other program. Each BPS program 
serves a specific and limited application 
for minimum card and/or tape configu­
rations. 



Introduction 

By contrast, BOS (Basic Operating 
Systeml360) and operating System/360 fur­
nish centralized control for all programs. 
In these systems, programs are stored on a 
tape reel (usually file protected) or a 
disk pack, thus providing a high degree of 
program security. (That is, frequent oper­
ator handling of programs, that otherwise 
would be stored on cards, is not required.) 
At the direction of the user, these resi­
jent programs are retrieved and brought 
into storage by the control program when 
needed. This overall control results in 
automation of system operations with a 
minimum of operator intervention. 

Choice of a particular programming sys­
tem is dependent upon many factors. The 
user determines the main storage size and 
I/O configuration required by his applica­
tions. He chooses a programming system 
that gives him the most effecti ve use of 
his system. Choice of a programming sys­
tem, however, may influence, to some 
degree, the amount of storage and types of 
I/O units he will need. 

Each programming system requires a cer­
tain amount of main storage. For example, 
BOS <Dasic Operating System/360) 8K Disk 
requires a System/360 with at least 8,192 
bytes of main storage. An autotest program 
can be obtained to assist the user in test­
ing programs in the BOS 8K Disk environ­
ment. This autotest program, however, 
requires that the system have at least 
16,384 bytes of main storage. 

Also, each programming system requires 
some minimum machine configuration. If, 
for example, BOS 16K Disk is used, the 
system configuration must include, besides 
other I/O units, at least one IBM 2311 Disk 
storage Drive. BOS 16K Tape, however, 
requires magnetic tape units. 

Generally, within a programming system 
(though not in all systems) are three basic 
categories of programs: 

1. Control, 

2. Processing, and 

3. System service. 

A control program handles functions that 
are not directly related to problem solv­
ing. Such functions are control of pro1:1em 
program loading and control of I/O opera­
tions. The control functions achievatle 1:y 
any programming system depend upon the 
facilities of the programming system and 
the system configuration (number and types 
of I/O units and features). 

processing programs operate under con­
trol of the control prograrr and are more 
directly aimed at specific applications 
(such as sorting and merging data) than are 
control programs. 

System service prograws are, in general, 
used to: 

1. Create and maintain libraries (refer to 
the Libraries section of this manual). 

2. Edit prograrrs (refer to the Linkage 
Editor section of this rranual), and 

3. Generate the system [i.e., set up the 
overall program (including control and 
problem) in main storage and in exter­
nal storage devices (such as disk) so 
that desired functions can be 
performed) 1. 

The particular characteristics of each 
programming system are not described here. 
Rather, a general descrit::tion related to 
certain control, processing, and system 
service program components is presented. 
Note also that the following topics do not 
necessarily apply to all programming sys­
tems and do not include all possible fUnc­
tions of the programs described. What is 
presented is general prograrrroing system 
information that you are likely to encoun­
ter. 

2030 FE TOM (9/1/66) 1-75 



Introduction 

CONTROL PROGRAM 

Supervisor 

• The entire supervisor may be in main storage during problem 
program runs, or it may have its primary routines in main 
storage and less frequently used routines in an external 
storage medium • 

• The checkpoint/restart facility provides for recording pro­
gram information at intermediate points so that, if a higher 
priority program requires processing, the checkpointed pro­
gram can later be started at the intermediate pOint rather 
than at its beginning. 

The supervisor performs such functions as: 

1. Interruption handling (supervisor call, 
external, etc.) 

2. Channel scheduling (i.e., schedule I/O 
requests for each channel; initiate I/O 
operations; handle I/O interruptions), 

3. I/O device error recovery, 

4. operator communication, 

5. program retrieval (from external stor­
age, such dS disk storage), 

6. End-of-job indication (thereby turning 
control over to a job control program 
which may then load the next problem 
program) • 

Depending upon the programming system 
used, the entire supervisor may be in main 
storage during problem program processing. 
In other programming systems, the most 
frequently used routines of the supervisor 
are normally in main storage, while infre­
quently used routines are kept in resident 

IPL (Initial Program Loader) 

storage (such as on magnetic tape). These 
infrequently used routines are loaded into 
a transient main storage area when needed. 
(The transient area may be used by a numter 
of routines, but usually only by one rou­
tine a t a time.) 

In some cases, a single, generalized 
supervisor is used by all ~roblem programs. 
In other situations, the supervisor is 
tailored to a specific application and run 
with only certain problem programs. The 
method used is usually deterroined by the 
particular programming system and, in some 
cases, by the applicaticn (problem) pro­
grams. 

In some supervisors a checkpointlrestart 
facility is provided. Here, records of 
program conditions are aade at intermediate 
points during job processing. These 
records are usually stored on magnetic tape 
or disk. If a higher priority program then 
requires processing, the checkpointed 
records are retained so that the original 
program can later be restarted at an inter­
mediate step Lather than repeating the 
entire program run. 

• IPL loads the supervisor into main storage at the start of 
system operations. 

This program loads the supervisor into main 
storage when system operation is initiated. 
(Not all programming systems have a control 
program component called IPL.) IPL is 
loaded from an I/O unit by dialing that 1/0 
unit's address into the load-unit switches 

1-76 ( 9/1/66) 

(on the system console) and press ing the 
start key. 

IPL may initially clear all of main 
storage (except the area used by 1PL) 
before loading the supervisor. 



Introduction 

Program Loader 

• The program loader loads problem programs into main storage. 

When a distinct component called program 
loader is used, it generally performs the 
function of loading problem programs. In 
some programming systems, the functions of 
the program loader are handled by the 
supervisor or some other control program 
component. 

Job Control 

• Job control, between job runs, prepares jobs to be run. 

Job control prepares jobs to be run. It 
performs its functions between jobs and is 
generally not in core storage while a job 
is being run. It may perform such func­
tions as: 

1. Assign actual I/O device addresses to 
the appropriate symbolic names used in 
the program to be run. 

PROCESSING PROGRAMS 

Language Translators 

2. Set program switches according to the 
requireroents of the ~rogram to be run. 

3. Indicate that program execution is to 
begin. 

• Language translators convert source programs to object pro­
grams. 

• programming languages used with System/360 are: 

1. Assembler, 

2. COBOL, 

3. RPG, 

4. FORTRAN, and 

5. Programming Language/I (PLlI). 

Language translators are programs that 
convert symbolic (source) programs into 
machine language (object) programs. Two 
terms are frequently used to describe the 
conversion process: assembling and compil­
ing. 

In general, assembling means to produce 
one machine language instruction for each 
symbolic source statement written by the 
programmer; compiling means that more than 
one machine language instruction is pro­
duced for each input source statement. 

The distinction is not always clear. 
For example, when source statements written 

in the assembler language are translated, 
one machine language instruction is gener­
ally produced for each input assembler 
statement. However, macro instructions can 
be written by the programmer and each of 
these effectively results in several 
machine lanuage instructions that can be 
used by the object program. 

Depending on the programming system, one 
or more of the following programming lan­
guages can be used: 

1. Assemkler, which is a flexible, symbol­
ic language that is machine-oriented 

2030 FETOM (9/1/66) 1-77 



Introduction 

and applicable to both commercial and 
scientific problems, 

2. Report Program Generator (RPG), the 
principal function Of Which is to accu­
mulate data from existing files and 
generate reports from this data, 

3. COBOL, which is applicable mainly to 
commercial problems, 

4. FORTRAN, which is specifically directed 
to the solution of scientific problems, 
and 

5. programming Language/I, which is used 
in both scientific and commercial prob­
lems. 

sort/Merge Programs 

Depending on the programming system, a 
specific "level" of a programming language 
is usually used. For example, the basic 
assembler language does not include all the 
capabilities of the assembler language. 
The basic assembler is used, for example, 
with the BPS (8K Card) Card Assembler. The 
assembler language, however, can be used in 
the BOS (8K Disk) programming system. It 
is interesting to note that a program writ­
ten in the tasic assembler language can 
generally be translated and run by a pro­
gramming system that normally uses the 
assembler language. However, the reverse 
is not usually true because the assemtler 
language has greater capabilities than the 
basic assembler language. 

• Sort/merge programs sort and merge data files contained on 
disk or magnetic tape. 

sort/merge programs, in general, provide 
for sorting files of random records or 
merging multiple files of sequenced records 
into one sequential file. Records can be 
sorted or merged into ascending or descend­
ing sequence, and an individual sequence 
can be specified for each control-data 
field. (A control-data field is a group of 
contiguous bytes within a data record. The 
data in this field, in effect, is compared 

Utili ty Programs 

with the data in the corresponding field of 
every record in a file to determine the 
sorted or merged sequence of the records.) 

Prograrrs are provided to sort/rrerge 
files that are on disk or on magnetic tape. 
The user provides specifications (or 
parameters) that define the job to be run 
and the data input. 

• Most utility programs can be categorized as: 

1. File-to-file (such as card to tape), 

2. Multiple file-to-file (such as multiple disk to 
printer), or 

3. Initializing (such as preparing a disk pack for use). 

IBM provides several types of utility pro-
9 rams to perform: 

1. Transfer of information from one I/O 
device to another (file-to-file). 

2. Transfer of information among several 
I/O devices (multiple file-to-file). 

3. Initialization of a tape or disk vol­
ume. (A volume is the portion of a 
single unit of storage media that is 
accessible to a single read/write 
mechanism. For example, a reel of 
magnetic tape on a 2400 series magnetic 
tape drive or a disk pack on a 2311 
disk storage drive is a volume.) An 
initialize-disk program, for example, 

1-78 (9/1/66 ) 

is used to write standard horre address­
es and track description records and to 
make a disk surface analysis to iden­
tify defective recording surfaces (if 
any). 

In some prograrr.reing systems, either 
batch or SPOOL file-to-file utilities can 
be processed. Batch file-to-file utilities 
are run independently when no other program 
is being run. SPOOL (Simultaneous Peri­
pheral Operations On Line) utility programs 
are designed to maximize total job through­
put. For example, if one ~ro9raro does not 
require the full I/O capacity of the sys­
tem, other peripheral oFerations can con­
currently use the I/O facilities that would 
otherwise be idle. Alse, a program that 



Introduction 

normally uses slow speed I/O devices (such 
as printers, card readers, and card 
p,lnches) can di.rect its output to high 
speed I/O devices (such as magnetic tape or 
disk units). Later, a SPOOL operation can 
transfer this data from the high-speed to a 
low-speed I/O device if concurrent programs 
do not need this pair of I/O devices. 

Autotest 

• An autotest program provides testing facilities for applica­
tion programs. 

Autotest programs provide debugging capabi­
lities for assembled program decks as they 
are test-run. In general, the user can 
batch (run several programs, one after 
another) a number of individual test jobs 
and get extensive diagnostics and testing 
services with just one loading procedure. 

SYSTEM SERVICE PROGRAMS 

Linkage Editor 

• The linkage editor ~inks together and relocates object pro­
gram segments (routines). 

This program edits the output of language 
translators and produces executable phases 
(an entire problem program may be a phase) 
in a library (see Libraries). The linkage 
editor relocates programs or program sec­
tions and links together separately assem­
bled sections. Linking is the cross ref-

Libraries 

Core Image Library 

erencing of program routines. For example, 
a subroutine may have to be inserted into 
another routine before the program can be 
run. Cross-references (specified by the 
programmer) between the routines are ~sed 
by the linkage editor to establish the 
correct relationships between the routines. 

• The core image library, on disk or magnetic tape, contains 
program phases in a form identical to that which they have 
when in core storage. 

The core image Ii brary (not a program) is a 
grouping of programs, each comprising one 
or more phases. Each phase is the image of 
(i.e., identical to) its form in main stor­
age. (The core image library is on magnet­
ic tape or disk.) Programs that may be in 
the core imaqe library are: 

1. User problem programs, 

2. ~lob control, 

3. Linkage editor, 

4. Language translators, 

5. Library maintenance ~rograms, and 

6. sort/merge programs. 

The desired program is moved from the 
core image library (on ta~e or disk) to 
main storage when it is to be processed. 

~030 FETOM (9/1/66) 1-79 



Introduction 

Macro Library 

• The macro library (on tape or disk) contains a number of 
series-of-instructions each of which can be referenced by a 
macro-instruction statement. 

The macro library (on disk or tape) con­
tains instruction routines; each routine 
can be referenced by a macro-instruction 
statement. Macro-instruction statements 
caUSe the assembler language translator 
program to retrieve a specially-coded sym­
bolic routine from the macro library, modi­
fy the routine according to the information 
in the macro instruction, and insert the 

Relocatable Library 

modified routine into the source program 
for translation into machine language. IBM 
provides specially coded routines as ~art 
of a macro library and the user can, in 
some programming systems, define his own 
macro-library routines. He can then ref­
erence these routines through macro­
instruction statements that he defines 
himself. 

• The relocatable library contains object modules (program 
sections) that can be located into various areas of core 
storage. 

This area (on tape or disk) is used to 
store object (machine language) modules (a 
separate program section that can be 
combined with other sections) in relocata­
ble format. Relocatable means that the 
module can have its addresses (with ref­
erence to main storage) changed, and hence 
it can be placed in various areas in main 

Library Maintenance programs 

storage. Note that so~e programs, due to 
the manner in which they are written, can­
not be relocated. The object modules 
stored in this library can be co~bined with 
other object modules (that are either in 
the relocatable library or are read in from 
an I/O Unit) by the linkage editor when it 
edits a program in the core image library. 

• Library maintenance programs provide services to enter or 
delete library sections, to print out the contents of a 
library, and to rearrange library sections. 

These programs are used to: 

1. Enter or delete phases (in the core 
image library) and macro definitions 
(in the macro library), 

Load System Program 

2. Translate informaticn from a particular 
library to printed (or displayed) or 
punched output, and 

3. Reallocate and condense libraries. 

• When used, the load system program generates (or sets Up for 
use) a minimum resident system. 

This program may be used to create a mini­
mwn resident system. The system created 
may be used to generate other specialized 
systems, or the load system program itself 
may be used to produce specialized systems. 

1-80 (9/1/66) 

Many times it is unnecessary to use the 
load system program. In this case, system 
generation is accomplished by other means 
which depend upon the programming system 
used. 



Functional Units 

fHAPTEE 2. FUNCTIONAL UNITS 

SYSTEM CLOCK 

• The basic timing pulses for the IBM 2030 are generated by 
the system clock. 

• A crystal oscillator drives a four-stage latch ring. 

• Latch ring outputs travel via transmission lines to the SLT 
large cards. 

• Specific timing pulses are created at the large cards by 
mixing the latch ring pulses. 

Four latches are connected to form an over­
lapped latch ring for creating the basic 
clock pulses (Figure 2-1). A free-running 
crystal oscillator provides the pulses that 
drive the latch ring circuit. The latch 
ring circuit is reset with the clock 4 
latch on. When the clock is to start, the 
clock start latch is turned on. This 
allows clock 1 latch to turn on. The 
latches turn on in progression. ClOCK 2 
latch turns on before clock 1 latch turns 
off, clock 3 latch turns on before clock 2 
latch turns off. The result is four over­
lapping timing pulses called Pl, P2, P3, 
and P4. These four pulses are sent via 
transmission lines to the large cards. 
(Figure 2-2) At the large cards, logic 
circuits combine the P-pulses to develop 
the specific timing pulses needed at the 
large cards. rhese pulses are shorter than 
the P=pulses and are called Tl, T2, T3, and 
T4. Use of the transmission line distrib­
ution system, allows the subdistribution 
centers to be close to the logic. Thus, 
ringing and noise are minimized. 

Clock Start 

- Delayed Osc A 
N Not Clock 3 

Clock 4 D 

Clock Reset ----c:> 
- De layed Osc ~ R 

~ 
I A 

+ De layed Osc N 

Not Clock 4 D 
L--

Clock Reset ---cs-
+Osc ~ R 

~ 
I A 

Not Clock I N 
- De layed Osc D 

L--

Clock Reset () 

- De layed Osc ~ 
R 

~ 
+Delayed~ 

Not Clock 2 I D 0 
Clock Reset L- R 

-

+Osc IA 
IN 

Clock I 

I--FL--

Clock 2 

I--FL- -

Clock 3 

- -FL--

Clock 4 

'--FL-

I ~-

PI 

P2 

P3 

P4 

Figure 2-1. Clock Pulse Generation 

2030 FETOM (9/1/66) 2-1 



Functional Units 

"..-, ...... , 
1 "-

PI I "-

CPU P2 I 
-, 

TLTransmission Line 
Clock / / 
Circuits I / 

P3 / 
/ 

I , 
1/ P4 I " 

"f / 

r----------------------- ----

Line 
~ ~ Sense 

~ Amp. T2 Pulse A I 

Pulse T2 Pulse Al to Cl A I-
Driver 

If 
T2 Pulse A2 

Line 
~ Sense 

Amp. 

~------------------------

L......--J 
To Additional 
Large Cards 

Distribution to 
Other Large Cards 

Figure 2-2. Clock Pulse Transmission 

1 

..J 

The system clock operates on either a 
750 nanosecond or a 1 microsecond clock 
cycle depending on the type of core storage 
unit in the 2030. The M2 core storage unit 
operates on a 2 microsecond read/write 
cycle, and therefore it requires a one 
microsecond system clock (li'igure 2-3). For 
the one microsecond clock, the oscillator 
runs at 2.0 megacycles per second. Turn-on 
and turn-off of the clock latches produce 

2-2 (9/1/66) 

500 nanosecond, overlapped P1, P2, P3, and 
P4 pulses. These pulses are brought 
together at the large cards to form timing 
pulses that are 250 nanoseconds long. 

- Osc or - De layed Osc 

+ Osc or + De layed Osc 

PI 

P2 

P3 

P4 

T1 

T2 

T3 

T4 

t--- Il"s -----l 
D D D n 
I D D D [ 

/SOO ns 

~ Set on By Mach Reset Key 

I I I 
--D--2S0ns D 

I---- 1 1"5 -----l 
D D 

[ 

D D 
D [ 

Figure 2-3. Clock Timing (1 us clock) 

The 750 nanosecond clock operates the 
same as 1 microsecond clock. However, the 
timings are shorter. The oscillator oper­
ates at 2.67 megacycles per second. This 
produces 375 nanosecond P-pulses, and 187.5 
nanosecond T-pulses (Figure 2- 4) • 

r-- 7S0 ns---+l 

- Osc or - Delayed Osc D D D D 
+ Osc or + Delayed Osc I D D D [ 

PI 375ns 

P2 

P3 I r-
P4 

~set on By Mach Reset Key 

~ I I [ 

TJ ~I87.5ns D 
f+---750ns~ 

T2 D D 
T3 D D 
T4 D [ 

Figure 2- 4. Clock Timing 
(750ns clock) 



Functiona I Uni ts 

CLOCK CONTROL 

• The clock is reset with P4 on and Pl, P2, and P3 off. 

• Clock start line allows oscillator pulses to reach the clock 
latch ring. 

• The clock always stops with P4 on and Pi, P2, and P3 off. 

The clock oscillator runs continuously as 
long as power is on. ~hen the 2030 is 
reset, clock latches Pi, P2, and P3 are 
off, and clock latch P4 is on. Raising the 
clock-start line allows oscillator pulses 
to reach the latch ring. As long as the 
clock-start line remains up, the latch ring 
continues to run. when the clock-start 
line drops, the latch ring continues Wltil 
P4 turns on and P3 turns off. At this 
time, the latch ring stops until the clock­
start line is raised again. The clock­
start line is controlled by the clock-start 
latch which must be on to start the clock. 
The clock-start latch is turned on by 
either the start key or the Load key (SLD 
Figure 5-03C). With the clock-start latch 

REGISTmS 

on, the clock-start line may be blocked to 
prevent further clock cycles. For example, 
when the Power-off key is pressed, the 
power-off latch turns on. This blocks the 
clock start line which stops the clock at 
the end of the current cycle. The clock 
may be reset immediately by a machine 
reset. This line resets Pi, P2, and P3 off 
and P4 on (SLD Figure 5-08A). Machine 
reset also raises the clock-reset line to 
reset the clock control latches such as the 
clock-start latch, the clock-start-control 
latch, and the load-key latch (S1O Figure 
5- 03C) • Thus the clock-reset line prevents 
the latch ring from being restarted after 
it is reset. 

• The 2030 uses storage latches for registers. 

• Polarity hold latches and AOI latches are used. 

• Most register input and output data movement is controlled 
by the read only storage unit. 

• Data may be moved into or out of a register manually. 

Registers in the 2030 are used for storing 
addresses, status information, and data. 
Many registers have multiple functions; the 
function used depends on the operation 
being performed. These registers are made 
up of storage latches of either the polari­
ty hold or AOI type. In the polarity-hold 
latch, the output line follows the data 
line when the control line is active 
(Figure 2-5). This means that information 
on the data line is set into the polarity­
hold latch when the control line is raised. 
Notice that there is no actual reset of 
this latch. It is reset by raising the 
control line while at the same time, 
leaving the data line down. The I, J, U, 
V, T, ~, L, and D registers are all samples 
of registers using polarity-hold latches 
<SLD Figure 5-05C). 

pata 

Control 

Output 

--, CJ n r==J 

nOr=J n 

L Th ;, sp;ke wHi be seen on a ,cape when 
"Control" attempts to turn the latch off. 

Figure 2- 5. Polarity Hold Latch 

2030 FETOM (9/1/66) 2-3 



FUnctional Units 

The second type of latch used for reg­
isters is the AO! latch which is made of 
several logic blocks tied together to form 
a latch (Figure 2-6). This latch is used 
when multiple inputs are required. and when 
a single reset function is desired. The 
F-register (SLO Figure 5-04C). the MC­
register (SLD Figure 5-07A), and the S­
register (SLD Figure 5-078) are all 
examples of AOI latches used as registers. 

urn on A 
A-I 

-
Time T4 

- A-2 - 01 

CD -
Turn on B -
CD -
Reset 

N - A-3 

- ---' 

- 0 Latch Back 

CD T4 and Turn on A or B turns latch on. 

Turn on of latch sends Latch Back 
pulse to switch with (not) Reset to 
keep latch on. 

Reset deconditions A-3 to turn latch 
off. 

Figure 2-6. AO! Latch 

Latch on 

The information to be placed into a 
register may come from anyone of several 
points in the cpu. Likewise, information 
in the register may be directed to several 
points in the CPU. In Figure 2-1, the 
input gating is shown for two sources, 

READ ONLY STORAGE AND MICROPROGRAM 

while the output gating is shown for one 
destination. Keep in mind that for this 
example, there are actually 9 PH latches, 
nine sets of input gating. and nine sets of 
output gating. In this example one input 
comes from the main storage unit. The 
second input comes from the Z-bus which is 
the output of the arithmetic and logic 
unit. 

Z-bus 0 Bit 
Z-bus Set R A 
Storage Data Out 0 Bit ~ 0 

Memory Set R A 
R "0" Bit 

Set R-register 

(control) ---PH-- -

R-register 
(8 Bits + Parity. 
One position shown) 

Gate R to A - Bus 
Read Only Storage ...--

A A-bus Zero Bit 
Control ...-- -
Gate R to A - Bus OR 

Manual Control -
-

Figure 2-7. Register Control 

The polarity hold registers are reset by 
raising the control line while keeping the 
data input lines down. A machine reset 
would cause most registers to be reset off. 
To prevent parity errors, the machine-reset 
line resets the parity latch on in most 
registers. One exception to this reset 
system is the F register where all posi­
tions except the 1A latch are reset on. 
The F-register is part of the interrupt 
mask system. Resetting all positions, 
except the 1A latch. on allows external 
interrupts to occur after the machine has 
been reset. 

• ROS (Read Only storage) is a nondestructive read out storage 
device. 

• Microprogram is a machine control program and is punched in 
special cards called ROS Cards. 

• ROS cards are placed in the ROS device and are selected to 
read out a logical functional operation for the machine. 

2-4 (9/1/66) 



FUnctional Units 

Before we learn the details of the ROS and 
microprogram lets look at some of its gen­
eral concepts. 

The ROS in the 2030 is a CROS (Capacitor 
Read Only storage) device which uses the 
capacitor as a storage device. If we have 
a capacitor at a selected spot, we say 
there is a bit, or the condition is a 1. 
If we do not have a capacitor at a selected 
spot, then we do not have a bit or the 
condition is O. By selecting a set of 
capacitors and decoding their bits (1) or 
no bits (0) we can control signal lines and 
gate inputs and outputs of registers. The 
only way the information in ROS can .be 
changed is by adding or removing capaci­
tors. Therefore, we can only read out of 
ROS and the read out is nondestructive as 
compared to core storage where the informa­
tion is read out and. must be written back 

Address Register 

D~ 
I 

Address I 
Decode 

Address Dr i vers 
Decode 

Read Only Storage 

IIlll!I1 
.1" 

Sense and 
Decode 

in order to retain it. Figure 2-8 shows 
the general operation of ROS. An address 
is set into the address register and then 
decoded to select a certain position in the 
ROS device. An impulse is then sent to the 
capacitors. The outputs from the selected 
capacitors are sensed. and decoded to condi­
tion a circuit which controls the input or 
output of one or more registers. 

The microprogram is a written program. 
The program is divided into words: each 
word contains logical statements telling 
what function the 2030 should be performing 
during this one microsecond cycle. Figure 
2-9 is a page from a microprogram. The 
microprogram is laid out on CAS (Control 
Automation System) CLOts (CAS Logic 
Diagram). Each microprogram word is placed 
in a logic block on the eLD. 

XX- Register 

1 Allow Information 

into XX- Register r---
A 

Infor-
mation r---

Infor­
mation 

Out 
A 

Information In 

~ 

Allow Information Out of XX- Register L--__ --' 

Figure 2-8. General Operation of ROS 

2030 FETOM (9/1/66) 2-5 



N "rJ , 
~. 

0'\ I.Q 

~ 
(D 

II:) N , I 
~ II:) 

" 0'\ 
",. ...., n 

r:-. 
0 

I'tJ 
III 

I.Q 
(1) 

" 

c: 

• 
• 

" 
• 

" 
oJ 

" 
L 

" 
II 

.. 
Q 

It 

• A • ., 
1 

I 

~hQ.E 101 
MIl lPDUE D<ONT£rjTS Of 

C IlEG 

10 - 00] 00 - 00] 10 - 0026 10 - 001! 
1 L+t.... 1 ott.... ~ W~T I ~ t~nc I 

'E------------..... , 1 0.0 2 -1 loO 26 -t ~:SS lE -1 0.0 za 
U- 00 --!I E3- 10 -ec E_ 10 -eD E5- 00 -EE ~-2Xl1 

So.1t-:rxrsTl¥£ ~"'XD L-SX OIIIG VA,UI! SET T"O T,O DllDER ADDA 
IN D SET 55-1 i'i-rIIER C52) 

IIIDT1! l-THIS WOAD SETS ~.O AND 5,.1 as .. O"'G as Nl 
"DDA STARTIIlG WITH S IS IN T. WHEN T HI" 
ADOII SO WAS JUST ACCESSED AND IF THERE 
was NO CARRY OUT FAOI4 THe DECREI4ENT OF 
ITS CONTENIS! A TVER INTERRUPT HAS JUST 
oc:c:uRRED. TIC ADDA I/j T C 4F 1 IS TlEIll 
"c:c:eSSED IUT ITS CQl'jTEIliTS ARE LEFT UNCHANGED 
AND IIIT 1'0 IS SET TO OlliE. IF A C/IRRY OUT 
~ED I'ROH THE DEC'lEMENT Of THE CONTENTS 
ClI' ADDR 50. PE UPDATE ENDS WITH NIl 
INTERllUPT INDICATED. 

• 
THES~DS AI'! IP./ -ALL MACHPifS WHETH!R TIMl1'I IS 
IIfST D l1li NOT. HOIIEYI!1II. WITHOUT E)(Tf"N~ HAADWAIIE 
Ce: AI! 1 THIS IlQUTI~ CAN I\II!VEA I! ENTEIIED. 

00 - OO2L 01 - OOlD 10 - OOZE 

Tt9W M5 I _5 WRITE 1 T-O+T 1 ~+C.RC J ~ ~~+L J 
O.SS lJ~ 1.0 1 ~:: ...- Ot --.JF .n- 10 --IJG .JI-" --.114 

DECRElENT TIMER NOT! 1 

10 - OO2A 00 -] 00 1 T-o+T 
T+MIII M5 WRIT! ----------' 

I I A 1.1'0 
A o.ss 10\ " 50.1 
L6- Ot ~ L7- .... -LG 

~ 4r~AS ~~o;~CESSED 
BUT NOT DI5T\JRJED 

01- 0029 _-lOClCX 

~ =100 ".w 1\o1.10------------------j ~.e:1I1 I 
1 S1.INTA J __ .. --fill 9- .. -t.IJ 

!ND II' UPDATE m I e:yCLE 

L-________________________________________________________________ ~AM1----~ 

~l~ IlAIT 

09117/65 I I4ACH 11/17/65 NAME 
MODE 
P.N. 
11M CORP. 

2030 

== SDD I ~ li~165 =OP.I 
INTERVAL TIMER UPDATE 
160 CYCLE) 

1 aIII11 I 

"IJ 

§ 
o 
rt .... 
o 
::;, 
III 
~ 

c::: 
=' ~. 

rt 
Ul 



Functional Units 

Figure 2-10. ROS Document Layout 

In order to place the microprogram into 
the 2030, use punch-card size documents 
called ROS cards. The microprogram word is 
coded and punched into the ROS card. There 
are 60 positions for punching in each row 
of the ROS card (Figure 2-10). 

ing the card, the microprogram can be 
placed into the ROS device. Each row is 
one microprogram word. 

Each pOSition is one side of the capaci­
tor used in the CROS. Therefore, by punch-

Now that we have some idea what ROS and 
microprogram are and how they are used, we 
shall go into more detail and explain the 
concepts of ROS, how it is used, and how to 
read a mi c roprog ra m. 

ROS CONCEPTS 

• IBM system/360 Model 30 is controlled by a microprogram. 

• A ROS (microprogram) word controls each machine cycle. 

• System control lines and gates are controlled by fields in 
the ROS word. 

• CROS (Capacitor Read Only storage) contains the microprogram 
in the form of ROS words. 

• CROS for the 2030 can contain 8064, 60 bit words. 

• Bit patterns of ROS words are determined by the presence or 
absence of capacitors. 

• ROS words can be changed by replacing ROS cards. 

2030 FETOM (9/1/66) 2-7 



FUnctional Units 

The CROS device is used to hold predeter­
mined information, such as the micropro­
gram, that can be nondestructively read 
out. The microprogram is punched in the 
ROS cards. Up to 4,032 words (12 words per 
card) are used unless a compatibility fea­
ture is installed, then another ·4,032 word 
CROS module is installed. Each ROS word 
contains 60 bits that control the gates and 
control lines of the system for each 1 
microsecond machine cycle. Gating for each 
functional unit is controlled by the bit 
combination within a field of a ROS word. 
Later we will see where 0111 in bit posi­
tions 23-26 of the ROS word gates the R­
register to the A-register bus. 

CONTROL POINTS 

The bit pattern of a ROS word determines 
the presence or absence of capacitors 
within the CROS hardware. A ROS word can­
not be changed by a customer program: how­
ever, the customer Engineer can change the 
information in the ROS words by replacing 
the ROS cards. 

CROS replaces most of the system control 
circuits, as used in previous machines, and 
introduces a flexibility to machine design 
that we did not have before. This flexi­
bility allows changing the control circuit 
for a feature by replacing or adding the 
necessary ROS cards. 

• The capaci tor is the most important canponent of the CROS. 

• A line driver impulses many capacitors. 

• Each control point in the 2030 data flow is controlled by a 
SAL (sense amplifier latch). 

• The bits in the ROS word determine if the line .is active or 
inactive for that cycle. 

Using simplified block diagrams we can 
learn the theory and operation of CROS. In 
our development of CROS we will see: (1) a 
control point source, (2) a selection 
device for the source, and (3) basic opera­
tion of ROS. 

The block diagram in Figure 2-11 has the 
control points numbered. For example, the 
in-gate control point for the G-register is 
number 3. By using the statement READ OUT 
R, GATE THE OUTPUT THROUGH rHE LOGIC UNIT, 
AND STORE IT IN S, the use of control 
points can easily be seen. 

2-8 (9/1/66) 

The first part of the logic statement, 
READ OUT R, indicates a need to condition 
control point 2 (see Figure 2-11). By 
adding a latch called a SAL (sense ampli­
fier latch) to this point, we have a method 
to allow the R-register bits on the in-bus 
(Figure 2-12). We used the capacitive 
coupling (a) from a line driver (b) to turn 
on the SAL which allows the R-register to 
be gated to the in-bus. 



F unctiona 1 Uni ts 

R-Register 

;J 
In Bus 

Figure 2-11. Control Points 

R-Register G-Register 

In Bus" 

Driver .. 

Figure 2-12. SAL Control 

To do the rest of the statement, we must 
read in and out of the logic unit and into 
the S-register. Figure 2-13 shows that we 
do this by adding three more SAL's and 
connecting them to the proper control 
points. The three added SAL's are also 
capacitive coupled to the same line driver 

S-Register 
Out Bus 

Out Bus ~ 
S-Register 

as the first SAL. Thus, the conditions of 
our statement have been satisfied. We have 
now established a source for our control 
points (the SAL's), and a selection for the 
source (the line driver and coupling 
capaci tor) • 

2030 FETOM (9/1/66) 2- 9 



Functional Units 

R-Register G-Register 

In Bus 

Figure 2-13. Multiple SAL's 

So far we have only looked at SAL's that 
were active for our specific statement. In 
the block diaqram, there are eight control 
points and each one bas to have a source 
and a selective 1evice. 

What happens to our statement if we 
connect the R-register as shown in Figure 
2-14. Beside reading out of R, we will 
read into R. There is nothing wrong with 
this electronically and it can be a legiti­
mate operation, but the conditions set by 
the statement are not satisfied. Assume we 
can cut one of the plates off the coupling 
capacitor for the SAL that conditions con­
trol point 1 (Figure 2-15). Once again the 
sta temen t is sa ti sf i ed. 

2-10 (9/1/66) 

S-Register 

Now if we connect a SAL for each control 
point (Figure 2-16), but cut one plate from 
each coupling capacitor we do not want to 
use, and impulse the driver, the statement 
is still satisfied. Thus, we have a stor­
age device, and each time the line driver 
is impuls ed, the same operat ion is per­
formed. 

Actually we have a read only storage 
device made of capacitors with either one 
or two plates using a common drive line. 



F unctiona 1 Uni ts 

Out Bus 

R-Register G-Register S-Register 

In Bus 

Figure 2-14. SAL Gate 

Out Bus 
R-Register G-Register S-Register 

In Bus 

Figure 2-15. SAL Selection 

2030 FETOM (9/1/66) 2-11 



FUnctional Units 

;V 
R-Register G-Register S-Register 

Out Bus 

In Bus 

I I I I I I 
Figure 2-16. Multiple SAL Selection 

ROS WORD 

• Each ROS word is one step of a microprogram. 

• The ROS word is made up of a string of capacitor plates 
having a common line feeding them. 

The statement we have been working with is 
one ROS word. If we want to do a different 
function or operation, we either have to 
replace the first word or add another. 
since we still want to do the first state­
ment again, we add another ROS word and 
another line drive.r (Figure 2-17). This 
new word can perform the function READ-OUT 
R, TAKE THE OUTPUT THROUGH THE LOGIC UNIT, 
AND READ-IN G. If we impulse line driver 
one, we take What is in R and put it in S. 
If line driver two is impulsed, we take 
what is in R and put it in G. By adding 
plates to the coupling capacitors and 

2-12 (9/1/66) 

adding more line drivers, we can create 
enough ROS words to perform any function 
our data flow can handle. 

We know what we want to do but what is 
an easy way of doing it? First, let's look 
at the plates' connections to the SAL's. 
In Figure 2-18 the capacitor plates are 
shown connected serially to a SAL. A ROS 
board is used to do this in the 2030. The 
ROS board is nade of laminated fiber board 
and the capacitor plates are made of copper 
which are laid on the board. 



Functional Units 

Figure 2-11. Multiple Drivers 

Sen~ ~ 
Pads y 
Figure 2-18. Sense Pads 

'lbe coupling capaci tor plates connected 
to a line driver (ROS word) are connected 
differently. They are laid out in parallel 
on a Mylar. strip. Figure 2-19a shows a 
ROS word for our block diagram before it is 
programmed and Figure 2-.19 b shows the ROO 
word after it is programmed for the first 
statement. 

In Figure 2-20 the Mylar strips with our 
first and second statements programmed are 
shown placed over the sense pads. When the 
line driver for the first statement is 
impulsed, that function is performed. By 
adding more ROS words and drivers, more 
functions can be done. 

In the 2030, the Mylar strips are called 
ROS cards, and each card contains 12 ROS 
words. The capacitor plates on the ROS 
cards are made of copper strips or silver 
ink. 

.rrademark of E. I. du Pont de Nemours & Co. Inc. 2030 FETOM (q/1/66) 2-13 



Functional Units 

R In ROut G In GOut S In S Out Logic In Logic Out 

(a) ROS-Word 

(b) ROS-Word Programmed to Perform Logic Function: 

Readout R, gate the output through the logic unit and read in S. 

Figure 2-19. programmed ROS ~ord 

Line 
Driver 

Line 
Driver 

2 

Line 
Driver 

X 

Figure 2-20. 

2-14 (9/1/66) 

re R In 

r§r§~r§r§rBr§ 
A R Out A Gin A G Out A S In A S Out A A 

-1'-

ROS Words 



Functional Units 

ROS CARD 

• The primary unit of the CROS is the ROS word. 

• The 2030 ROS word is 60 bits wide. 

• There 3re 12 ROS words on each ROS card. 

Figure 2-21 shows a ROS card. The primary 
unit of CROS is the ROS word; in the 2030 
each word is 60 bits wide and there are 12 
words per car1. The words are positioned 
on a sheet of Mylar exactly the same size 
as an 80-column card. Each bit position is 
one plate of a capacitor and the plates are 
positioned so they coincide with the normal 
punching position of a card. rhe plates 
are connected to a horizontal line running 
from the column 1 and to the column 80 end 

Capacitol Plate 

Pigure 2-21. ROS Document 

of the card. This allows the card to be 
punched on existing punched-card equipment 
such as the IBM 24, 514, or 1402. 

If the plate is punched out, we do not 
have a bit. Therefore, if we wish to have 
a control line active for a certain ROS 
word, we do not punch that position. When 
the card is placed next to the ROS board, 
the elongated tab on the card contacts the 
drive tab on the board. 

~ 

2030 FETOM (9/1/66) 2-15 



Functional Units 

ROS MODULE AND ROS BOARD 

• There a r e 43 ROS boards per full 4K ROS module. 
• Depending on the capacity requi r ed, some ROS modules may contain 

fewer than 43 boards . 
• Each ROS board has 8-ROS c a rd positions . 

A 4K ROS mod ule contai ns 42 ROS boards f or 
a total of 4,032 ROS words (Figure 2-22) 
plus one spare board to be used if a board 
fails. 

The sense pad for the same bit position 
of each wor1 is connected by a vertical 
line on the board. This line feeds the 
sense amplifier for that bit. 

The ROS card is held against the ROS 
board by an air bag. Air pressure is 
applied to the bag which in turn forces t he 
card in contact with the board. 

Figure 2-22 ROS Module, Front View 

2-16 (6/67) 

The design of the board allows the 
boards to be placed in the ROS module so 
the drive-line connectors for the even 
boards are at the top, and at the bottom 
for the odd boards. All sense lines are 
routed from one end of the module. 

The ROS board has a capacitor plate for 
each capacitor plate on the ROS card 
(Figure 2-23). The capacitor plates on the 
ROS board are called sense pads. Both 
s ides of the ROS board have identical sense 
pad patterns, so we can have 8 (0-7) ROS 
cards of 12 words apiece, for a total of 96 
ROS words per board. 



Functional Units 

Figure 2-23 ROS Board 

Capacitor 
Plate 
(720 Sense 
Pads) 

2030 FETOM (9 /l /66) 2-17 



Functional Units 

ROS DATA FLOW 

• The W- and X-registers are used to address ROS. 

• A ROS word is read out of each machine cycle. 

• The information in some of the SAL's is transferred to con­
trol registers to be held because of timing conditions. 

• The outputs of the SAL's and control registers are decoded 
and routed to control the function required by the ROS word. 

rhe ROS address registers (Wand X 
registers) are set at the first of the ROS 
cycle and the outputs of the registers are 
decoded to select one ROS board and two ROS 
words on the boarj. The two words are read 
out and one of the words is selected and 
set into the SAL's at a given time in the 

ROS Address Read 

Address - Decode f---- Only -
Register Storage 

r+ 

Next Address Information 

Figure 2-24. ROS Data Flow 

2-18 (9/1/66 ) 

cycle. The outputs of some SAL's are need­
ed longer than the SAL's are set, so the 
information is transferred to control reg­
isters. The output of the remaining SAL's 
and the control registers are decoded and 
routed to allow a logical operation to be 
performed (Figure 2-24). 

J 
Control 

SALS -- Register 

-

Timing Ring 

L 
r---

ROS 
Field 
Decoder 

To 
Machine 
Control 
Points 



Functional Units 

ROS CONTROLS 

• The controls for ROS include hardware for: 

1. Addressing ROS. 

2. Sensing the output of ROS. 

3. Timing for ROS. 

ROS ADDRESSING (4K MODULE) 

• The ROAR (Read Only Address Register), W- and X-Registers, 
address is decoded to: 

1. Selec~ one out of 42 ROS boards. 

2. Select one out of 48 drivers for that board. 

3. Select one out of 2 ROS word read from that board. 

Figure 2-25 shows the overall addressing 
method for ROS. For now, we will take 
sections of the total picture and explain 
them and then tie them together. 

We know that each ROS board has 8 ROS 
cards and each card has 12 words of 60 bits 
each. Therefore, we have 96 ROS words on 
each board, and all are used. In a 4K 
module the addresses are sequential, board 
o has addresses 0 to 95 (decimal number), 
and board 1 has addresses 96 to 191 and 
etc. through board 41 with addresses 3936 
to 4031. Because of the electrical connec­
tions on a ROS board, a ROAR decode selects 
two ROS words. However, only one of these 

words is gated to the SAL'S. Since there 
are 96 words on a ROS board and two words 
are addressed each time, 48 drivers are 
needed to read out the 96 words. 

Figure 2-26 represents the 48 drivers 
for one board and the driver's connections. 
The drivers are physically located on two 
small cards (driver card A and driver card 
B) and connected to the ROS board from the 
rear side of the ROS module (Figure 2-27). 
There are 24 electrically connected drivers 
on each small card. Each driver is a one 
transistor circuit. Let's consider the 
connection to the transistors as shown in 
Figure 2-28. 

2030 FETOM (9/1/66) c-19 



tv I'Ij 
I e-. 

tv ~ 
0 ~ 

1"1 
(1) 

tv 

'" I , tv 
~ VI , . 
'" '" :;0 

0 
Ul 

~ 
Q; 
0-
1"1 
(1) 
en Bit en 
~. Position 
::l 

~ 
Bit 

S Value 
I.Q 
e-. 
0 
s:II .... 

Strobe Odd Gate 0 to 19 S t SA L thO t 59 
Qdd Word SA 0 to 59 r--

e aces 0 

IA Odd Gate to 20 to 39 A 

b]----1odd Gote to 40 to 59 
VI ~ 

Q) 

A Even Word SA 0 to 59 Set SA Latches 0 to 59 t: 
r--:.:i 

I Even Gate 0 to 19 ..... 
A Ol Even Gate 20 to 39 

~ I c I B I rt:l Even Gate 40to59 Ol 

.~ '--
A "0 - - - - -- -Ir- - - -- - --

lrTCodj Decode T-Lines ~ l ...J 

IE <: 
VI 

TO TIS TO Tl5 
W-Register X-Register 

1/ +V 

~\ 
+V 

P 3 4 5 6 7 P 0 1 2 3 4 5 6 7 

fJ Pi 1~ l:~ ..... 
-.0 

* '""" 
N -.0 00 

'""" 
N ~ co '""" N ~ r- ) g; N ll) ~ -.0 C") -

1 
'-- -0 ll) N .... ~ .... 

J I .... 
'""" 

N ~ 

I t-- - r-- -
r- -r-- -,-- -r--" ~8 +V 

+[ (I H Check fa, F A 
? 1 Y y y 

- \\ r-- 1 or ) 
L--

r--- Not 1 

~~/ 
~ 1; 71 k * 

Read Out Time r--
Gate Read TO 

~ r- r-.... l- I- I-Check Not 16 Out A Decode r- t-- r-
~ For 16 A 

T -Lines +V +V 
Or Not 16 

r~ 
T7 1 r I Y 1 \ LY I--16 

~ ~II -
Not Lr- I Check For Gated Read ~ T8 P 4096 Out B Decode 1 1;:\\ .1. h 4096 or 

A T -Lines Not 4096 
Read Out Time I 

TIS r- I-- I-- t--
~ I ..... - ..... ..... 

4096 
1 

I-- I-- I-- I---

AO +V +V 1- - - - - -- --

L~ 1 ~ Y 1 Board 0 Decode 1 ....--
A-Lines High,Middle High Gate 

* A7 I and Low 

Ir- Gates Middle Gate ) 
BO 

r-L Decode Low Gate Bl l""- I---
Decode 82 I Boord 0 Boord 41 

B-Lines B3 
I 48 Drivers 48 Drivers Matrix 

F ~ - :( * Board 41 
3 x 16 Matrix 3 x 16 

1 High,Middlel High Gate 
~ 

CO 
Cl I and Low Middle Gate 
C2 '-- Gates 

C3 I Decode Low Gate 

* * T- Note: Each Driver Selects and Reads Out Two ROS Words 
* Lines to Address 2nd ROS Module On The Selected Boord - Example Word 0 (Even) Word 1 (Odd) 

---- ------- -- ------



F'unctional Units 

F'igure 2-26. Driver Cards 

Figure 2- 27. ROS Module, Rear View 

DRIVER T 
INPUTS 

10 11 12 13 14 15 

2030 FETOM (9/1/66) 2-21 



tv ":J 
I .... 

tv i.Q 

tv ~ 

r----------- ----- -- - - - - - - - - - - - - - - - - - - - -- ---------, -Board 1-41 
I TO T7 TS TIS 

1"1 
ro 
tv 

'-'l I 

" tv 
~ 00 

" 0', 
0'1 

0 
1"1 .... 
<: 
(C 

1"1 

+~ I--=-
- t----- --- --- --I , 

W-wmdr~ 1 Word 00 Word 30 
Word 01 Word 17 Word 31 

I I I 
Read Out Time r--- Gate Read Out A 

1 

A 

I 
Not 16(X3) 

" 

, 

Not 4096 
' \ 

, , ., 
" (.') 

CD 
I-" 
ro 
n 
:-t 
~. 

0 
;:s 

L; (W3) 

I 
I 

Gate Read Out B Word 32 Word 4S Word 62 I 

Word 33 Word 49 Word 63 I 

I 
I 

I 

16(X3) 

I 

I 

'--- ,---
I 

2(X6) 
L...-

TD 
I 

TI 
' ... , "- I 

4(XS) T-Line 
-. 

T2 ,,.. d--
I 

S(X4) Decode T3 I 
I 

SAND 14 
I 

Not 2(X6) Blocks Word 64 Word SO Word 94 

Not 4(XS) TO- T7 
TS 

I 
Word 6S Word SI Word 9S 

T6 I 
Not S(X4) I- T7 

I 
1.....-- - I 

4 I I 

1......-'---
TS , ... ... ~ 

T-Line 
I- T9 

Decode 
I- TID 

I ROS Board 0 1 SAND 
I- TIl Driver Card A Driver Card B 

Tl2 
Blocks 

~ 
TS- TIS 

Tl3 

I 

Tl4 

I 
J f- TIS CO Al CO 

I 

32(X2) r--- '--- High Gate Middle Low Gate I--- I 

~ BO BO I 
AO Decode CO Gate Decode 

~ 
Decode I 

64(Xl) Al 

1_ .. -+. 
A~ 1 AND 1 AND 1 AND _I I 

12S(XO) A-Lines A2 
.--

IJ 
r-- I 

I----- - I-- I 
Decode A3 -~ -- --

Not 32(X2) SAND A4 I 
I 

Program Card I 
Not 64(Xl) Blocks AS I 

AO-A7 A6 
L_ _ - ----- - - ----- - ---------- - -- ________________ J 

Not 12S(XO) 
A7 

_Board 141 

L-----' 

2S6(W7) ...------- BO 
-Board 1-41 

S12(W6) 
B-Lines 
Decode Bl 

Not 2S6(W7} 4 AND B2 
-Board 1-41 

Not S12(W6) 
Blocks B3 
BO-B3 
L-----

1024(WS) .----- CO -C-Lines 
2048(W4) Decode Cl 

Not 1024(WS) 4 AND C2 

Not 204S(W4) Blocks C3 
CO-C3 
L--



FUnctional Units 

1. The Base: Three driver bases are com­
mon. The darkened line that connects 
these three drivers is a r input line. 
Since one T line feed three drivers, 
there must be 16r lines going to each 
ROS board. 

2. The Emitter: si xteen drivers have 
their emitters commoned. The darkened 
line that connects these 16 drivers is 
a driven gate decode line. Notice that 
the gate decoders are on the driver 
cards. Two :iecoders are on driver card 
A, and one decoder is on driver card B 
in reference to each HOS board. 

3. The Collector: The output from the 
collector drives two ROS words. 

The T-lines for a 4K module are devel­
oped from 16 four-input AND circuits. Only 
one T-line is active at a time. Both the 
bit and not-bit lines are routed from the 
CPU to condition the AND inputs. Three of 
the four inputs come from the X-register 
positions 4, 5, and 6. The fourth input is 
~ate Read Out A or Gate Read Out B, these 
lines are developed-from the condition of 
X-register position 3 and w-register posi­
tion 3 AND with Read Out Time. The T-lines 
are routed to alI-42ROS boards. Note that 
if W3 is on. the second 4K module is 
selected and another address decode network 
is used. Addresses for the first 4K are 
0000 through 4031 (decimal) and for the 
second 4K are 4096 through 8127 (decimal). 

At this time we have one T-line active 
and this line conditions the bases of three 
drivers on each ROS board. The next 
requirement is to condition just one driver 
on one ROS board. 

Each ROS board has three driver gates 
(high, middle, and low). Each gate on a 
board is commoned to 16 drivers on that 
board. So by activating one gate on one 
ROS board, we can select one driver. 

The selection of the gate is controlled 
by three lines (A. S, and C> which are 
developed from the X-register O. 1, and 2 
pOSitions and the w-register 4. 5, 6, and 7 
positions. By looking at Figure 2-28, we 
can see that eight A-lines (AO through A7) 
are decoded from the bit and not bit lines 
of the X-register positions O. 1, and 2. 
we also have four B-lines and four C-lines. 
The B-lines are developed by ANDing the 
w-register positions 6 and 7 bit and not­
bit lines. The C-lines use the w-register 
positions 4 and 5 bit and not-bit lines 
ANOed together. 

From Figure 2-28 we can tell that the 
high gate for ROS board zero is developed 

by ANDed AO, BO. CO. By using the address 
table in Figure 2-29, we can determine what 
five lines are used to form the three gates 
for any ROS board. The lines from the A, 
B, and C lines busses are routed from the 
bus to the gate decode circuits through a 
program card. A program card is nothing 
more than a pluggable card to jumper a line 
fram one place to another. 

AO I A1 I A2 I A3 I A4 I AS I A6 I A7 

0 §I ~I 
L() 

BO 0 0 1 2 L() 
0 ~ 0 0 

2 ~I ~I ~15 
~ 

B1 3 4 ~ 

~ 
co 

B2 5 @I §I " 6 7 ~ 
0 

~I ~I 
(") 

B3 8 9 ~ 10 N 

~ 

BO 10 ~I 11 §I 12 "<t 13 " "I ~ 
~ ~ 

B1 13 ~I 14 §I 15 ~ 
~ 

C1 
B2 16 ~I 17 §I 18 0:: 

" ~ 

18 ~I ~I ~121 " B3 19 20 "<t 
0 
N 

BO ~I ~I 
(") 

21 22 23 0 
(") 

N 

~I ~I 
~ 

B1 24 25 26 L() 
L() 
N 

C2 

B2 26 ~I ~I (")1 L() 
27 28 ~ 29 00 

N N 

B3 29 ~I 30 ~I 31 r:::: 
0 
(") 

BO ~I ~I " 32 33 34 N 
(") 
(") 

B1 34 ~I ~I ~I (") 35 36 :2 37 ~ 
(") (") 

C3 
B2 ~I ~I 

~ 

37 38 39 (") 
co 
(") 

B3 40 ~I 41 ~1 
Figure 2-29. Address Table 

When a driver is fully selected, it 
provides the drive to two ROS words. An 
even address in ROAR selects that address 
and the next high-order odd address. An 
odd address in ROAR selects that address 
and the next lower even address. As an 
example: If ROAR contains the decimal 
address 0063. this address and address 0062 
are selected. However, only the ROS word 
at address 0063 is gated to the SAL's. 

These two ROS words are read out to 
sense amplifiers. 

2030 FETOM (9/1/66) 2-23 



Functional Units 

SENSING AND DECOD ING ROS OUTPUT 

• There are 120 sense amplifiers used to sense the two ROS words read out of the 
selected 4K module • 

• There are 60 SAL·s (sense amplifier latches) used to store the selected ROS word. 

Each ROS word has 60 bits and there are two 
words read in each ROS cycle. Therefore, 
there are 120 sense amplifiers. Depending 
on the condition of X-register position 7, 
bit or not-bit, one set of sense amplifiers 
(Figure 2-30) are gated to the SAL at a 
given time (strobe time) in the cycle. The 
information is held in the latches until 
the reset pulse is activated. 

+v 

Note: The second 4K module has another 120 
sense amplifiers which are routed to 
the same SAL and are gated by the 
condition of X-4. Remember only one 
driver is activated in either module. 
The module selected depends on the 
condition of W-3. 

o 59 
fh-r-I-r--T'"I-'Ir--r"r--rr-IT'""""""TI-I"--'-I-11 (Even Word) 

I 
f--"---! Gate 

1 (Xl) 

Strobe 

111I1111I1 
59 

1 

I111111111 
J1 I I I I I I I I I 1 
II11I1111I 

Sense 
------4 Amplifier I----....;...~ 

Bit 0 Even 

Bit 0 Even - 8K 
Sense 

....... __ -! Amplifier Bit 0 Odd - 4K 

Bit 0 Odd 

Odd Gate 0 to 19 
Odd Gate 

Odd Gate 20 to 39 3 AND 
Circuits Odd Gate 40 to 59 

Bit 0 Odd - 8K 

Even Gate 0 to 19 

OR 
Dot 

A 

A 

(Odd Word) 

Sense 
'----------1 Amplifier 

Bit 59 Even 

OR 

Latch 

N 

Sense 
Amplifier 1-----­

Bit 59 Odd 

SAL 0 Bit 

Even Gate 
Even Gate 20 to 39 OBit 

Not 1 (Xl) 
3 AND Bit 0 to 19 

A Circuits Even Gate 40 to 59 

Figure 2-30. ROS Sensing 

2-24 (9/1/66) 



FUnctional Units 

CONTROL REGISTERS 

• The outputs of SAL's 34 through 51 are transferred to con­
trol registers. 

CCROS CPU 

r- - -, 
1 

S I 
AI 
L 1 

N ~----+--~ ___ --I OE ~--I CN Field Parity Check 

01 
I 
I 

N 

---"'----l 
N 

I 

I 
I 

N 

51 1 

52
1 N 

I 

~, 
:---------..... 
1 N I 

I 
I 

5~1_ 

A 

~---( X - Bus 0 Bit 

SAL 

OE I--__ --{Control Register Parity Check Network 

I 
Set Control Register 

Bit 
A 

'------§ CA Field Alternate Decode 

SAL 59 Bit 

Figure 2-31. ROS SAL Output and Control Registers 

N 

CD Reg 0 Bit 

N 

CD Reg 1 Bit 

N 
CS Reg 3 Bit 

--' 

Because of timing conditions. the informa­
tion in SAL 34 through 51 is transferred to 
another group of latches called control 
registers (Figure 2-31). 

The outputs of the SAL's are decoded and 
used during the first part of a ROS cycle 
and the outputs of the control registers 
are decoded and used during the latter part 
of the cycle. 

2030 FETCH (9/1/66) 2-25 



Functional Units 

BASIC ROS TIMING 

• ROAR is set using a P1 pulse and selected set inputs. 

• The CPU CROS GO pulse is used to develop a ROAR decode pulse 
and a SAL's reset pulse. 

• The SAL's are good by T4 time. 

• The control registers are reset during Tl time and set dUr­
ing T2 time. 

Tl T2 T3 T4 T 1 T2 T3 T4 Tl T2 T3 T4 

o o 
Set Wand X Reg 

~ -
Read Out Time Bit 

TD- J r n r l 
Read Out Ti me r II r "I 
TD-2 n n 
TD-3 In in 
Reset n Ull 

TD-4 n n 
TD-5 rn rl 

~ ~ 

Strobe 

Set Control Register 

- ~ 

Tl (Normal Reset) 

S.A. Input to SAL Hl n 
SAL Output I 11 I II 

CROS Driver Input [f" ., K: , 
Control Register Output 

Figure 2-32. ROS Timing, Basic 

Figure 2-32 shows the basic timings asso­
ciated with ROS. Each cycle is divided by 
the CPO timing Tl, T2, T3, and T4. The 
figure shows three ROS cycles. The first 
cycle represents the time to set ROAR, 
because before any ROS word can be read out 
and executed, there must be an address in 
ROAR. The pulse to condition the set of 
ROAR is a Pi pulse, but the information to 
set ROAR is active by the first part of Tl, 
so ROAR is set during T1 time. Once ROAR 
has been set and the latches have settled 
down, the output of the latches can be used 
to bring up the gates and drive lines for 
addressing ROS. 

2-26 (9/1/66 ) 

o o 

~I 

r 1 

r I 
I 

n 
n 
n 
rn 

r---

I 

r---

JnI 

I 11 

0-n 
u 

This is done at 12 time using the CROS 
GO pulse from the cpu. The CROS GO pulse 
becomes a line called Read Out Time Bit and 
is delayed to bring up the Read Out Time to 
condition the decode of the ROAR output 
lines and a B~set pulse for the reset of 
the SAL's. 

The decode of the ROAR output lines 
conditions one driver on one ROS board to 
impulse two ROS words. The output, rep­
resenting the bits of the ROS word, of the 
capacitors is routed to 120 sense ampli­
fiers. The CPO routes a line called CCROS 
Strobe to CROS at T3 time; this line then 



Functional Uni ts 

is called strobe an1 is ANDed with the 
condition of the X-register position 1 to 
select the correct sense amplifier to be 
routed to the SAL's. 

The information in the SAL·s is good 
from about T4 time of the cycle of which 
the ROS word was read out until the SAL's 
are reset during the next ROS cycle. 
Because of timing conditions, some of the 
information in the SAL'S is needed after 

SETTI ro OF ROAR 

reset time. Therefore, at Pl, the informa­
tion is routed to the control registers. 
The control registers are reset during T1 
time of the cycle; they are set during T2 
time of the cycle. 
Note: Should the clock be stopped at T4 
time, the SAL's would contain the informa­
tion of the ROS word just addressed and the 
control registers would contain the infor­
mation from the previous ROS word. 

• The address in ROAR may be stored in one of two backup 
ROARs • 

• The address to be set into ROAR may come from many sources. 

Backup ROAR Indicating WX Multiplexor Selector 
P 

==tJ--1BB 3 

GW Backup 
PH A X7 W WI 

ROAR 7 
P 

FWX-WX 

GWX-WX 

GX CA -W 

Fl< K-W 

SFG SHJ 

UY -WX 

CN FIELD 

PRIORITY 

CH CL 

Figure 2-33. ROAR Controls 

Figure 2-33 shows ROAR and two backup 
ROAR's, one for selector channel and one 
for multiplexor channel. ROAR is set under 
control of the microprogram by many differ­
ent sources. Some of the microprogram 
mnemonics are shown in Figure 2-33 and are 

0 

XI 
X 

Address 

Decode 

discussed in detail under the microprogram 
section. 

ROAR is set at T1 time from one of the 
inputs. ShOUld the selector channel or 
multiplexor channel cause a break-in, the 

2030 FETOM (9/1/66) 2-21 



Functional Units 

address in ROAR is transferred to either GW 
and ~X or FW and FX registers at T4 time. 
when the channel operation is completed, 
the microprogram transfers back to where 
the interrupt occurred and the address in 
the backup ROAR is transferred to ROAR 
allowing the original program to continue. 

INDICATING ROAR 

• The console lights for a ROS word address are controlled by 
an indicating ROAR. 

rhe indicating W- and X-registers are shown 
in Figure 2-33. Because of timing consid­
erations, the output from ROAR is gated to 
the indicating ROAR latches at T4 time. 
Since the clock stops at the end of T4 
time, the 3ddress displayed is the address 
of the ROS word we have just read out. 

=ROS LOCATION 

Figure 2-34 shows the addresses as they 
appear on ROS board 0 and 1. Even address­
es are on the left side of a ROS board; odd 
addresses on the right. As an 
example: address 0017 (decimal) is on ROS 
card number 1. Card 1 is the uppermost 
card on the right side of board O. Figure 
2-35 shows 3 4K ROS module as viewed from 
the left side of the console. The ROS 
cards are inserted from this side. 

From our knowledge of a ROS board and 
the fact that words 0000 and 0001 are read 
out at the same time, we can see that one 
word is read from each side of the ROS 
board each cycle. 

Figure 2-36 shows the layout of the ROS 
card. The drive tabs are located on the 
colUmn 80 end of the card. rhe card is 
inserted into the module, drive tab first. 
Because the capacitor plates on the cards 
must be next to the ROS board, all the ROS 
cards that contain words at odd addresses 
most first be flipped over before inser­
tion. 

2-28 (9/1/66) 

If all the ROS cards are viewed with 
column-80 of the card to the right, then it 
follows that the odd addresses are numbered 
from the 9-edge to the 12-edge of the card. 
The cards that contain the ROS words at 
even addresses are numbered from top to 
bottom as viewed (Figure 2-37). 

ROS Board ROS Board 

o 

I Console:> 

Figure 2- 34. ROS Document Addresses 



Functional units 

Pressure 
C9 Switch 

1&2 

Air 
Pump 
Asm 

,- -- -, 
: CB2 : 

In ver ter / Converte r 

o F4A 

o F3A 

o Re set Switch 

I TB1 A I 
I TB2A I 

~ o F1A 

o F2A 

I TB5 I 
Air Pump 
Line Filter , WTl D o@@etF5

, 6 , / 

888 

2nd CCROS Unit 
Compat ibil ity Storage 

I , 
I 
I 
I 
I 
I 
I 
I 

CCROS Unit 
I 

I 
I 
I 
I 
I 
I 
I 

1st CCROS Unit 
Basic Storage 

C 
o 

n 

s 
o 

e 

A 
r 

e 
a 

Air p'lenum g: ~ 
~----------------~I ------~--~--~~ ~ l Fi Iter L...::..::::..: 

I TB3 I L:J 
-..!..;_~;;:....--II __ T~~L_ ...-:,11 irll=_=T=RA==;J1 , ___ -II -1--:~_~-~--L---__ ' ___ -....;.-ll __ ~_:~_~_~r-__ , ___ ---'--I ____ -l--___ -

Figure 2-35. IBM 2030, Left Side 

Figure 2-36. ROS Document Layout 

2030 FETOM (9/1/66) 2- 29 



Functional Units 

Drive Tab End 

I 
[0000 0 

0022 

(: 2 (0047 
3 

0025 

rOO48 
4 L

0071 
5 

_0070 0049 

(:: 6 G095 7 
0073 

Figure 2-37. ROS WOrd Numbering 

MICROPROGRAM 

• The microprogram is used to control the function of the 
2030. 

• Each machine cycle is controlled by one microprogram word. 

• A microprogram word is punched in a ROS card and becomes a 
ROS word. 

In all computers it is necessary to have 
some method to perform a sequence of logi­
cal steps. The 2030 uses a microprogram. 
Nithin the microprogram, the microprogram 
word is the functional statement. The 
microprogram word is punched in a ROS card 
to form a ROS word. 

A ROS word is selected by the decode of 
the address in ROAR (Read Only Address 
Register) and the ROS word contents are 

ROS Word Control Fields 

decoded to activate control points in the 
system. The ROS word consists of specific 
fields programmed to perform a logic state­
ment. The activated word sends back part 
of the next address for ROS to ROAR. Cou­
pled with branch control (machine status 
test), the partial address forms the com­
plete address of the next ROS word. To 
read and understand the ROS word, we must 
know what the ROS word can contain and what 
format is used to write the word. 

• The ROS word used in the 2030 is 60 bits wide~ 

.• The ROS word is divided into control fields. 

The 60-bit ROS word is divided into control 
fields (Figure 2-38) and these fields can 
be separated into six broad groups: 

1. Function control CA, CF, CB, CG, ce, 
CV, CD, CK 

2. Main and auxiliary storage CM, CU 

2-30 ( 9/1/66) 

3. Branching and ROS address CN, CH, CL 

4. Set and reset of status condition CS 

5. Alternate AA, AS, AK 

6. Parity for different sections of the 
control fields 



I',J 
o 
w 
o 

I',J , 
w 
CIC) . 

"I CN 

z 1 0 1 2 3 

~ 
Parity for the 
CN Field 

I 
Use to Set the o Through 5 
Positions of 
the X-Register 
for Next Address 

I 
Parity for the 
SALS and 
AA, AK Fields 

I 
Parity for the 
ROAR Address 

I 
Condition of the 
Status Indicated 
in the CH Field 
Determines Setting 
of the X-Register 
6th Position 

I 
Condition of the 
Status Indicated in 
in the CL Field 
Determines Setting 
of the X-Register 
7th Position 

. 
SALS 

~I~l 0 

CH I CL I CM I CUi 

4 5 1 2 31 0 1 2 31 0 1 21 0 1 I 0 

Read I 
Compute 

Section of Storage 
or 

to Read Out of; 
Write 

Alternate Codes 
Have Special Uses 

Source of Data I I to A-Register 

Control Registers 
Options 

CA I CB I CK I I CD I CF I CG I CV I cc I CS 

1 2 31 0 11 0 1 2 31 ~ nlo 1 2 31 0 1 2 10 1 I 0 1 10 1 21 0 1 2 3 
:l> ~ :l> 
:l> 7'\ 0 1 234 

I L I 
I 

Selects Alternate 
Codes in the CK 

I Field 

Called K-Register 

I Used to Emit 
Digits to the 

Selects Alternate 
B-Register; 

Codes in the CS 
Alternate Codes 

Field 
Have Special 
Functions 

I 
I Selects Alternate 

Codes in the 
Parity for the CA Field 
CK or CA Field 
for Certain 
Operations I 

Set and Reset of 

I S-Register and 
the FA, FB 

Parity for the Registers; Alternate 

Control Registers Code Used for 

and AS Field Selector Channel 

I I 
Designate the Carry Control for 

Register for ALU and ALU 

the ALU Output Special Functions 

I 
Determines ALU 
Operation; True 
or Camp lement, 
Binary or Decimal 

I 
Controls B-Register 
Output to ALU 

Source of Data I Coo'eol, A-Reg;"" I 
to B-Register Output to ALU 



Functional Units 

Notice the control fields vary in numbers 
of bit positions. Example: the CU field 
is two bits wide and the CD field is four 
bits wide. If the field is two bits wide, 
we can set and decode four 
combinations: 0-00, 1-01, 2-10, 3-11. A 
three position field can be set and decoded 
in eight combinations, 0-000 through 7-111, 
and a 4-bit field has 16 combinations, 
0-0000 through F-1111. 

FUNCTION CONTROL. The function control 
fields (Figure 2-39) are used to control 
all data movement in the CPU and the ALU. 
ALL DATA M~VEMENT IS THROUGH THE ALU. The 

KZ 
KY 
KW 

YD 
YE 
YF 
YG 

GR 
GS 
GI 
GJ 

Activated By 
AA =- l 
Selected By 
Hardware 

Figure 2-39. ROS Function Control Fields 

2-32 (9/1/66) 

function control fields can be subdivided 
into four groups. 

1. Source to the A-register and control of 
the A-register output to the ALUi CA, 
CF. 

2. Source to the B-register and control of 
the B-register output to the ALUi CB, 
CK, CG. 

3. Function and control of the ALUi CV, 
CC. 

4. Destination of the ALU outputi CD 

Source to the A-register (CA): This 4-bit 

8 
9 
A 
B 

C 
D 

O---DIAG 
UV-WX 
WRAP- Y 
WRAP-X6 

HJ--B. 
AC FORCE 
YM 
YN 

1--0E 
ASC"--X6 
INT-X6X7 
O-MC 

Y--WRAP 
O-LOAD 
O--F 
l-FO 

Acti vated By 
A K = l 

TA 
H 
S 
R 

D 
L 
G 
T 

V 
U 
J 
I 

SP 
XL 
XH 
X 

Acti vated By AS = 1 
Selected By Hardware 



Functional Units 

field is decoded to select the data to be 
routed to the A-register. It can be decod­
ed to 16 combinations, but by using the AA 
field (explained later), the CA field has 
16 alternate sources to select. This makes 
32 combinations for the A-register source. 

Control of the A-register output 
<CF): This 3-bit field controls the method 
that the data from the A-register is pre­
sented to the ALU. The field is essential­
ly bit significant. There are eight bits 
routed to the ALU from the A-register; we 
can block all of them, block the four high 
bits, block the four low bits, or allow all 
eight bi ts. 

If we block any bits, zeros are routed 
to the ALU in place of the blocked bits. 
we can also cross the four low bits with 
the four high bits or cross and block four 
bits. Figure 2-40 shows: if the 2 bit is 
on, the four low bits are allowed, if the 1 
bit is on the four high bits are allowed 
and if the 0 bit is on the high and low 
bits are crossed. 

Cross the Block the Block the 
A-Register A-Register A-Register 
Four High Four Low Four High 
Bits with Bits Re- Bits Re-
the Four place with place with 
Low Bits Four Zeros Four Zeros 

and Allow and Allow 
High Bits Low Bits 

Bit 0 Bit 1 Bit 2 

0 0 0 Block A-Register-Route Zeros 
to ALU 

0 0 1 Block High Bits-Route 0000 and 
Low Bits 

0 1 0 Block Low Bits-Route High Bits 
and 0000 

0 1 1 Route A-Register to ALU 

1 0 0 Conditional Machine Stop 

1 0 1 Block High Bits-Route Low Bits 
and 0000 

1 1 0 Block Low Bits-Route 0000 and 
High Bits 

1 1 1 Route A-Register Crossing Low 
and High 

Figure 2-40. CF Field Bit Significant 

If both the 1 and 2 bits are off, the 
information in the A-register is blocked. 
Notice there are two possible conditions 
for this, all three bits off or just the 
O-bit on. The condition of just the O-bit 
on has been selected as the machine stop 
function since it did not serve any other 
useful purpose. The stop function is 

explained in greater detail later in this 
section. 

Source to the B-register (Ca): This 
2-bit field is decoded to select the data 
to be routed to the B-register from either 
the R, L, 0, or K register. The K-register 
is the CK field of the ROS word. 

The R-register (CK): The K-register is 
also called the emit field or the constant 
field. This 4-bit field can be decoded to 
16 combinations; there are 16 alternate 
combinations which are active when the AK 
field has a 1 bit. 

The primary bit configuration can be 
used to emit a digit 0 through F. The same 
digit is presented to both the high and low 
four bits of the B-register. For example, 
the K-register has a 1 in it and the CB 
field decodes to route K-register to B­
register, the 1 enters the high four bits 
and the low four bits giving us the number 
11. By using the CG field, we can route to 
the ALU from the B-register the number 01, 
10, 11, or 00. The W-register can be set 
from the CK field if desired. 

The R-register can also be used to 
create an address to set in the N-register. 
This is explained in greater detail later 
in the section. 

Control of the B-register output 
(CG): This 2-bit field controls how the 
data from the B-register is presented to 
the ALU. The operation is the same as the 
CF field except the B-register cannot be 
crossed. We can block the output and route 
eight zeros, or block either the high or 
low four bits and route zeros where the 
bits were blocked. The B-register output 
can be routed direct (both high and low 
four bits) to the ALU. 

Control of ALU (CV): This 2- bit field 
decodes to select what type of arithmetic 
operation (true/complement and 
binary/decimal) is to be performed. The 
B-register input to the ALU is the 
true/complement side. 

(CC): This 3-bit field decodes to con­
trol the carry-in and carry-out to the ALU 
and permits the setting of a carry-out into 
the carry latch. This field also decodes 
to control the AND, OR, and EXCLUSIVE OR 
function of the ALU. 

MAl NAND AUXILIARY STORAGE CONl'ROL. The 
t~o ROS fields which control main and aux­
iliary storage are the eM and CU fields 
(Figure 2-41) and work in conjunction with 
each other. To understand the functions of 
the two fields, it is easier to explain the 
operation of the two fields together. 

2030 FETOM (9/1/66) 2-33 



Functional Units 

0 0 
1 1 
2 CAhh-W 
3 GW AI 

4 5T 5VO 
5 OP R=VOD 
6 AC OBC 
7 SO z=O 

8 R2 51 G7 
9 52 53 
A 54 S5 
B 56 57 

C GO Gl 
D G2 G3 
E G4 GS 
F G6 INTR 

1401 Mode 

Rl 

R3 

LS 
Store MPX 

IJ -- MN MI LS 

UV--MN S 
T -- MN LT -- MN H 
*aa FI 
YP R 

/ 
1401 Mode 

F 
GR FG 
K-W MC 

Acti vated By FWX- WX VC 
CM =!= 3- 7 _ 

"'"-----1----1 
C 
Q 

JI 
TI 

YO 
YE 
YF 
YG 

Activated By 
AA =- 1 
Selec ted By 
Hardware 

Figure 2-41. ROS Storage Control Fields 

The 3-bit CM field decodes to select the 
type of operation - read-compute or write. 
The 2-bit CO field decodes to select what 
section of storage to operate in: main 
storage or auxiliary storage. Auxiliary 
storage includes local storage and the 
multiplexor storage blocks. 

In the 2030, the four basic core storage 
cycles are: 

Read, Write CR, W) 

Read, Compute, Write (R, C, W) 

2-34 (9/1/66) 

OPTIONS 

4 TA 
5 H 
6 S 
7 R 

O-OIAG 
UV-WX 
WRAP-V 
WRAP-X6 

HJ-B 
AC FORCE 
VM GUY GeO 
VN GR-GK 

I-Of GR-OF R-I(f 
ASCII-X6 GR-GO R-KG 
INT-X6X7 GR-GU R-KU 
O-Me GR-GV R-KV 

V-WRAP K-GH K-KH e 
O-LOAD GI-GR R-KS 0 
O-F K-G8 K-K8 E 
I-FO K-GA K-!<A F 

t 
Activated By Activated By AS = 1 
AK = 1 Selected By Hardware 

Read, Store (R, S) 

Read, Compute, Store (R, C, S) 

Remember from the study of ROS hardware and 
timing, that the data from core storage is 
not ready for use until the beginning of 
the next ROS cycle. Therefore, if a read 
call is given, the next cycle must be a 
write, a store, or a compute cycle. Also, 
a write or store cycle should follow a read 
cycle within three ROS cycles. If this 
rule is not followed, it is possible to 
have an oVer-run condition of an I/O unit 
on the selector channel. Over-run is where 



Functional Units 

new data is ready but can not be accepted 
before more data is ready. There is an 
allow write latch on the 2030 which is used 
to recognize whether the last cycle was a 
read or a write. If a read is followed by 
a read, there will be a position in storage 
with all bits missing. This happens 
because the position read first had ndthing 
written into it before its storage address 
was changed. If a write is followed by a 
write, the second write becomes a compute 
cycle beca use the allow write latch is off 
(set to allow a read cycle). 

If the read cycle is followed by a write 
cycle, the data is set in the R-register 
and is routed to the core storaqe unit from 
the R-register during the write cycle. If 
the read cycle is followed by a store 
cycle, the output from core-storage is ndt 
used. Instead, new information is in the 
R-register at the end of the read cycle and 
is then written into core-storage during 
the store cycle. 

If the read cycle is followed by a com­
pute cycle, the output from core-storage 
during the read cycle is set into the R­
register. During the next cycle, the 
information in the R-register mayor may 
not be used in the computation. The next 
cycle is either a write or a store cycle 
and the R-register may contain the original 
information or the result of the computa­
tion. In any case, what is finally in the 
R-register is written in core-storage dur­
ing the write or store cycle. 

The core storage read-write control 
(eM): This 3-bit fields is decoded to 

determine if the cycle is a read, compute, 
or write cycle. A 0 or 2 decodes to a 
write cycle (2 is a store but brings up a 
write operation), a 1 is a compute cycle, 
while 3 tbrough 7 are read cycles. 

The section of core storage used 
(CU): This 2-bit field decodes to select 
which section of core storage is used dur­
ing the read cycle. Write at the same 
address. The alternate decodes for the CU 
field are activated when writing by the CM 
field having a decode of 0, 1, or 2. The 
alternate decodes are explained later in 
this section. 

Note: If the CU field is a 3 (M/LS), 
the operation must be checked further to 
see if main storage or local storage is to 
be used. This is done by checking the two 
high-order bits of the G-register which 
contain the op code during this time. If 
the two bits are 00, the op code format is 
RR and local storage is used. Any other 
combination of the two bits (01, 10, or 11) 
requires the use of main storage. 

BRANCHING AND ROS ADDRESS. The complete 
ROS address is held in the W- and X- reg­
isters. The W- registers hold the five 
high-order positions of the ROS address and 
can be set by a ROS statement CAhh->w 
(detail on this ROS statement later) and 
the eight low-order positiOns of the ROS 
address are in the X- register. Normally 
the X- register is set from the CN, CH, and 
CL fields (Figure 2-42). 

2030 FETOM (9/1/66) 2- 35 



Functional Units 

GW 

4 5T 5VO 
5 OP R=VDD 
6 AC OBC 
7 50 Z=O 

8 R2 51 G7 
9 52 53 
A 54 55 

56 57 

GO GI 
G 2 G 3 

E G4 G5 
F G6 INT R 

1401 Mode 

KY 
KW 

Acti vated By 
AA =- I 
5elected By 
Hardware 

Figure 2-42. ROS Branch Control Fields 

The 0 through 5 positions of the X reg­
ister are set from the CN field while the 6 
and 7 positions are set by decoding the CH 
and CL fields. If the condition of the CH 
field is satisfied, the 6th position of the 
x- register is set to the on condition and 
if the condition is not satisfied, the 
position is set to O. The same operations 
for the 7 position are used except the CL 
field is decoded to determine the on or off 
condition . 

2-36 ( 9/1/66) 

Acti vated By 
AK = I 

GR-GF 
GR-GG 
GR-GU 
GR-GV 

K-GH 
GI-GR 
K-G8 
K-GA 

Activated By A5 = I 
Selected By Hardware 

STATUS SET AND RESET. Certain bit posi­
tions in the S-register are controlled by 
the CS field (Figure 2-43). The FB and FA 
latches for the multiplexor channel are 
also controlled by the CS field. The 
alternate codes of the CS field are used 
for the selector channel. 



Functional Units 

KZ 
KY 
KW 

C 
Q 

JI 
TI 

YD 
YE 
YF 
YG 

GR 
GS 
GI 
GJ 

Acti vated By 
AA =- 1 
Selected By 
Hardware 

Figure 2-43. ROS status Field and Parity 

ALTERNATE DECODE. when the i-bit AA field 
has a 1, the alternate codes for the CA 
field are used. If the i-bit AS field has 
a 1, the alternate codes for the CS field 
are used. When the I-bit AK field has a 1, 
the alternate CK codes are used (Figure 
2-43). 

When the 2030 is in 1401 compatibility 
mode the AA field needs a 1 in conjunction 
with the mnemonic CAhh->W, to set the ROS 
address. 

HJ-B 
AC FORCE 
YM 
YN 

1-0E 
ASCII-X6 
INT-X6X7 
O-MC 

V- WRAP 
O-LOAD 
O-F 
1-FO 

Activated By 
AK = 1 

HZ-S4, LZ-S5 

ANSNZ-S2 
0-S6 
1-S6 

0-S7 
1-S7 
K-FB 
K-FA 

YH 
YJ 
KS -R 2 
KC-R 3 

KD-R 4 
KK - R 5 

GUV GCO KUV- KCD 6 
GR-GK R-KK 7 

GR-GF R-KF 8 
GR-GG R-KG 9 
GR-GU R-KU 
GR-GV R- KV 

K-GH K-KH C 
GI-GR R-KS D 
K-GB K-KB E 
K-GA K-KA F 

Activated By AS = 1 
Selected By Hardware 

CONTROL FIELD PARITY BITS. There are five 
parity bits associated with the control 
fields: PN, PS, PA, PK, and pc. (Figure 
2-44) shows the fields and the parity bits 
used for each checking circuit. 

2030 FETOM {9/1/661 2-37 



Functional Units 

PS 

CL 0-3 
CMO-2 

CU 0-1 

CA 0-3 

CB 0-1 

PA 

X7 Data 

P Bit 

CN 0-5 

Yes 

Good Parity 

AS SAL 

CS 0-3 

CC 0-2 

CV 0-1 

PC 

Yes CN Parity Check 

Goad Parity 

Figure 2-44. Parity Check Bits 

The PN parity bit is used to maintain 
odd parity for the CN field. This bit is 
used with X6 and X7 bits to set X- register 
parity bit when CN is gated to the X- reg­
ister. The PS parity bit is used to main­
tain odd p~rity for the AA, AK, CA, CB, CH, 
=K, eL, CM, and CU fields and the PA and PK 
bits. 

The PA parity bit is used to maintain 
odd pari ty for the ROAR. As an example, if 
the address of the ROS word is 01BF 
(0000 0001 1011 1111), the PA bit must be a 
one to maintain odd parity. 

The PK parity bit is used to maintain 
odd parity for either the CA or CK fields 
depending on the mnemonic used. 

Control Field Mnemonics 

When the CK field is used as a constant 
in an arithmetic statement, the PK bit is 
not specified. In this case, the PK bit 
can be 0 or 1; usually O. In the storage 
statement (*aa) or in a statement where K 
is used to change the W- register (K->W), 
the PK bit is used to provide odd parity on 
the W- register. 

If the CA field is used to set the w­
register (CAhh->W), the PK bit is used to 
maintain odd parity for the W- register. 

The PC parity bi tis used to maintain 
odd parity for the AS, CC, CD, CF, CG, CS, 
and CV fieldS. 

• Most of the control fields have from one to sixteen mnemonics • 

• Some of the control fields have alternate mnemonics which are 
activated by the condition of another field. 

By this time, we know the concepts of ROS, 
along with the names and functions of each 
ROS control field. Now we need to know how 
each control field is coded and how this 
coding is written in the microprogram so 
the microprogram can be read and punched in 
the ROS card. 

2-38 ( 9/1/66) 

Figure 2- 45 shows the symbols used in 
the mnemonics and the meaning of the sym­
bol. Figure 2-46 shows the mnemonics for 
each field and gives a brief description of 
the purpose each mnemonic serves. 



Functional Units 

Symbol 
Definition Example 

New Old 

+ + True Add/Positive A + B: B is Added (True) to A 

- - Complement Add/Subtract, Negative A - B: B is Complement Added to A 

= Equal A = B: A is Equal to B 

;I ;I Unequal A;I B: A is Unequal to B 

- = Is Set Into A-B: A is Set Into B (Destructive 
Read-In is Implied.) 

* Is ANDed With (Logical) A • B: A is ANDed with B 

, , AND (Non-logical) A-B, C: A is Set Into Band C 

IL $ Is ORed With (logical) AIlB-C: A is ORed with Band 
the Result is Set Into C 

/ / OR (Non-logical) A / B-C: A or B is Set into C 

¥ V- Is Exclusive ORed With A¥B-C: A is Exclusive ORed 
with B and Set Into C 

+ True or Complement Add/Positive or Negative A 2: B-C: B is True or Complement -
Added to A and the Resu It 
is Set into C 

± ± Binary Add Under T/C Control A±. B-C: B is True or Complement 
Added to A and the Result 
is Set into C. 

± '~ Decimal Add Under T/C Control ft. ± B-C: B is True or Complement 
Decimal Added to A and 
the Result is Set into C. 

< < Is Less Than A< B: A is Less than B 

---, ---, Not (Boolean - Used as the Not Function 

on CLD's) 

: : Is Compared to A: B: A is Compared to B 

() () Used for Normal Eng I ish runctuation or 
to Enclose an Expression Within a Statement 

* 
Special. 2030 Uses the * for One *a a: Explained in Mnemonic 

Mnemonic. Section. 

? ? Indeterminate Function (This Describes a A ? B-C: A and B are Logically 

function which is Hardware Controlled Combi ned (Under Hardware 

Rather than Under the Direct Confrol of Control) and the Result 

the Micro Program. is Set Into C. 

Figure 2-45. CLD Block Symbols 

2030 FETOM (9/1/66) 2-39 



Functional Units 

Field 

0-5 
CN 

0-3 
CH 
Set 6th 
Position 
of 

Hex 

o 
1 
2 
3 

Mnemonic 

o 
1 
RO 

X-Register 4 
.vz 

ST 
OP 
AC 
SO 

0-3 
CL 
Set 7th 
Position 
of 

5 
6 
7 
8 
9 
A 
B 
C 
o 
E 
F 

o 
1 
2 
3 

• SI 
S2 
S4 
S6 
GO 
G2 
G4 
G6 

o 
1 

.CAhh_W 
AI 

X-Register 4 SVI 

0-2 
CM 
Storage 
Control 

0- 1 
CU 
Storage 
Selection 

0-1 
Alternate 
CU 

5 
6 
7 
8 
9 
A 
B 
C 
o 
E 
F 

• R=VDD 
.IBC 

Z=O 
G7 
S3 
S5 
S7 

• Gl 
G3 
G5 
INTR 

o WRITE 
1 
2 STORE 
3 IJ-MN 
4 UV-MN 
5 • T-MN 

6 • *aa 
7 YP 

o 
1 
2 
3 

o 
1 
2 
3 

MS 
LS 
MPX 
MILS 

GR 
K-W 
FWX-WX 

0-3 
CA o 
A-Register 1 

FT 
TT 
YA 
YB 
S 

Source 2 
Control 3 

4 
5 
6 
7 
8 
9 
A 
B 
C 
D 
E 
F 

H 
FI 
P 
D 
L 
G 
T 
V 
U 
J 
I 

Old Form 

o 
1 
RO 
V=OO 
STI 
OPI 
AC 
SO 
S 1 
S2 
S4 
S6 
GO 
G2 
G4 
G6 

o 
1 
W=CA 
AI 
SVI 
RVDD 
lBC 
Z=O 
G7 
S3 
S5 
S7 
Gl 
G3 
G5 
INTR 

WRITE 

STORE 
IJ 
UV 
T 
K 
GUV 

MEM 
CPU 
UCW 
M,C 

Use GR 
W=K 
WX=FWX 

FT 
TT 

S 
H 
FI 
R 
o 
L 
G 
T 
V 
U 
J 
I 

Operation. Location of Field is in Reference to Automated CLD Box 

Shawn in Hex on Right Side of Line 7 in the CLD Box. 
Sets Position 0 through 5 of the X-Register for Next Address. 

Shown on Left Side of Line 7 in the CLD Box. 
Set X-6 to ZERO 
Set X-6 to ONE 
Set X-6 to the Condition of R-Register Position 0 
Set X-6 to ONE, if the V-Register Positions 6 and 7 are ZERO 
Status in (I/O) 
OP in (I/O) 
~et X-6 to ONE: if there is a Carry Out of ALU Position 0 

~ Set X-6 to ONE, if the Tested Position of the S-or G-Register is Equel to ONE 

Shown on Left Side of Line 7 in the CLD Box-Example; CH, CL 
Set X-7 to ZERO 
Set X-7 to ONE 
Set Value of CA Field into W-Register, Set X-7 to ONE. hh is the Hex Value of the CA Field and AA Field 
Address in (I/O Address) 
Service in (I/O) 
Set X-7 to ONE if the R-Register Contains Valid Decimal Digits. 
Set X-7 to ONE if there is a Carry Out of ALU Position One. 
Set X-7 to ONE if the Z-Bus (Bits 0-7) is ZERO 

} Set X-7 to ONE, If tho T."., Po,I,;oo of tho S~G-"9I,t., I, E,ool to ONE 

Test for any Interrupt, Set X-7 to ONE if ther is a Interrupt. 

Shown on Left Side of Line 4 in the CLD Box 
Write the Data in the R-Register into the Storage Position Addressed by the M-and N-Registers 
No Mnemonic-Compute Cycle, Storage not Used. 
Write NEW R-Register Data into the Storage Position Addressed by the M-and N-Registers 

Set the M-and N-Registers to the Address in the I-and d-Registers and Read from Storage at that Address 
Set the M-and N-Registers to the Address in the U-and V-Registers and Read from Storage at that Address 
Set the N-Registers to the Address in the T -Register and Read from Storage at that Address 
Set the N-Register using the CK Field (Note I) 
Dummy Symbol-No Action or Can be Used in a Diagnostic Area. (Old From was a Selector Channel Code). 

Shown on Right Side of Line 4 in the CLD Box 
Addressing MAIN Storage 
Addressing Auxiliary Storage-LOCAL Store Section 
Addressing Auxiliary Storage-Multiplexor UCW Section 
Addressing MAIN Storage or LOCAL Store Section, Depending on the OP Code-RR Format Selects LS 
In 1400 Mode this Selects the Local Storage Area for NPL Area 

Shown on Right Side of Line 4 in the CLD Box 
No Action 
Use the GR-Register in the Selector Channel in Place of the R-Register for Storage Input and Output 
Set the W-Register to the Hex Valve of the CK Field 
Set the W-and X-Registers to the Address in the Multiplexor Bock-Up Registers (FW and FX) 

Shown on Left Side of Line 3 in the CLD Box 
Multiplexor Channel Togs in 
1050 Tags in 
Dummy Symbol-No Action or Can be Used in a Diagnostic Area 
Dummy Symbol-No Action or Can be Used in a Diagnostic Area 
Gate the S-Register to the A-Register Via the A-Bus 
Gate the H-Register to the A-Register Via the A-Bus 
~ultiplexor Channel Bus In 

> Gate the - Register to the A-Register Via the A-Bus 

Figure 2-46. Mnemonics, Sheet 1 

2-40 ( 9/1/66) 



Fu net i onal Oni ts 

Field Hex Mnemonic 

0-3 - - -
Alternate 0 F 
CA I FG 
Activated 2 MC 
by "AA"=I 3 YC 

4 C 
5 Q 
6 JI 
7 TI 
8 YD 
9 YE 
A YF 
B YG 
C GR 
D KZ GS 
E KY GT 
F KW GJ 

0-1 - -
CB 0 R 
B-Register 1 L 
Source 2 D 
Control 3 K 

- -

0-3 - - - - -
CK 0 o 0 0 0 
Emit Value 1 o 0 0 1 

2 o 0 1 0 
3 o 0 1 1 
4 o 1 0 0 
5 o 1 0 1 
6 o 1 1 0 
7 o 1 1 1 
8 1 0 0 0 
9 1 0 0 1 
A 1 0 1 0 
B 1 0 1 1 
C 1 1 0 0 
D 1 1 0 1 
E 1 1 1 0 
F 1111 

0-3 - -
Alternate 0 O-DIAG 
CK 1 UV-WX 
Activated 2 • WRAP __ Y 

by IAK"=1 3 • WRAP-..X6 
4 HJ-B 
5 • AC FORCE 
6 YM 
7 YN 
8 .1-0E 
9 • ASCII_X6 
A • INT--X6, X7 
B O-MC 
C Y-"WRAP 
D o-LOAD 
E .O-F 
F • I-..FO 

0-3 - -
CD 0 Z 
Destination 1 TE 
of AlU 2 JE 
Output 3 Q 

4 TA 
5 H 
6 S 
7 R 
8 D 
9 L 
A G 
B T 
C V 
D U 
E J 
F I 

Old Form 

F 
FG 
MC 

C 
Q 

JI 
TI 

GR 
GS 
GT 
GJ 

R 
L 
D 
K 

o 0 0 0 
o 0 0 1 
o 0 1 0 
o 0 1 1 
o 1 0 0 
o 1 0 1 
o 1 1 0 
o 1 1 1 
1 000 
1 0 0 1 
1 0 1 0 
1 0 1 1 
1 1 0 0 
1 1 0 1 
1 1 1 0 
1111 

RESET DIAG 
WX = UV 
RESTORE WRAP 
TEST WRAP 
HJ 
AC FORCE 

OE = 1 
TEST ASCII 
TEST INT 
MC = 0 
STORE WRAP 
LOAD 
F=O 
FO = 1 

Z 
TE 
JE 
Q 

TA 
H 
S 
R 
D 
L 
G 
T 
V 
U 
J 
I 

Operation 

Shown on Line 4 of the CLD Box 
Gate the F-Register to the A-Register Via A-Bus {External Interrupts}. 
Gate the F-and G- Switches to the A- Register Via the A-Bus 
Gate the Machine Check Register to the A-Register Via the A-Bus 
Dummy Symbol-No Action or Can be Used in the Diagnostic Area 
Gate the C-Register to the A-Register Via the A-Bus (Interval Timer) 
Gate the Q-Register to the A-Register Via the A-Bus {Protect Storage} 
Direct Data Channel Bus In 
1050 Bus In 

} D"mmy Symbol. - No A,Hoo 0' Coo b. U"d io tho Qiogomtk A,,, 

Gate the GR-Register {Selector Channel} to A-Register Via A-BUS} 
Gate the GS-Register (Selector Channel) to A-Register Via A-Bus 
Gate the GT-Register (Selector Channel) to A-Register Via A-Bus 
Gate the GJ-Register (Selector Channel) to A-Register Via A-Bus 

Shown on Line 3 of the CLD Box 
Gate the R-Register to the B-Register Via the B-Bus 
Gate the L-Register to the B-Register Via the B-Bus 
Gate the D-Register to the B-Register Via the B-Bus 
Gate Hex Value of the CK Field to the B-Register Via the B-Bus 

I ... Shown on Line 2 of the ClD Box 

) Bi nary Bit Form of the Hex Number is Routed to the Se lected Area When Requested. 

Shown on Left Side of Line 6 of the CLD Box 
Reset the Diagnostic Latch 
Gate the U-and V-Register to the W-and X-Registers Via the WX-Bus 
Gate the Wrap Buffer Latch to the Wrap Latch 
Set X6 to ZERO if Wrap Latch is On 
Gate the H-and J-Switches to the B-Register Via the B-Bus 
Set X-Register to ZERO, if a ALU Carry Occurred in Previous Cycle 
Dummy Symbol-No Action or Used in Diagnostic Area. Old Mnemonic was Reset 1050 line Latch 
Dummy Symbol-No Action or Used in Diagnostic Area. Old Mnemonic was Set 1050 Line Latch 
Force an ALU Check {Note 3} 
Set X-6 to ZERO if the ASCII Latch is On. 
Set X-6 and X-7 per Stacked Interrupts (Note 4) 
Set Machine Check Register to All ZEROS 
Gate the Wrap Latch to the Wrap Buffer Latch 
Reset the LOAD, ODD/EVEN, and INTRODUCE AlU CHECK Latches 
Reset the F-Register to All ONES. Note: The Reset Condition of the F-Register is All ONES 
Set the F-Register Position 0 to ZERO 

Shown on line 3 of the CLD Box 
To Show That the Z-Bus is the Only Place the Output of the ALU is Routed 
1050 Bus Out {Exit} 
Direct Data Channel Bus Out (Exit). Set JE-Register from D-Register, Z-Bus not Used. 
Gate 'the Output of the ALU to the Q-Register Via the Z-Bus 
1050 Tags Out-

) Gate the Output of the ALU to the __ Register Via the Z-Bus. 

Figure 2-46. Mnemonics, Sheet 2 

2030 FETOM (9/1/66) 2-41 



FUnctional Units 

Field 

0-2 
CF 

A-Register 
to ALU 

0-1 
CG 
B-Register 
to ALU 

0-1 
CV 
Arithmetic 
Functions 

0-2 
CC 
Arithmetic 
Controls 

0-3 
CS 
Status 
Canditions 

Hex 

-
0 

1 

2 

3 
4 
5 

6 

7 

4 
5 
6 
7 

6 
7 
8 
9 
A 
B 
C 
D 
E 
F 

YH 
YJ 
KS-R 
KC-R 
KD_R 
KK-R 

Mnemonic 

-
0 

L 

H 

SP 
XL 

XH 

X 

-
0 

L 

H 

OC 
1C 
CC 
->.f-

HZ_54, LZ_S5 
0_54,55 
TREQ_S1 

0-50 
1-50 
0_52 
ANSNZ_S2 
0-56 
1_56 
0_57 
1-57 
K-FB 
K_FA 

-
-
-
-
-
-
-

Old Form 

-
0 

L 

H 

STOP 
XL 

XH 

X 

-
0 

L 

H 

+ 
@ 

CO 
C1 
CC 
-¥-

S5=LZ 

S4=LZ 

S4, S5=HZ, LZ 
54, 55=0 
Sl=TREQ 

SO=O 
50=1 
52=0 
S2=ANSNZ 
56=0 
56=1 
57=0 
57=1 
FB=K 
FA=K 

0-3 
Alternate 
CS 
Selector 
Channel 
Activated 
by "AS"=l 
Selected 
by 
Hardware 

o 
1 
2 
3 
4 
5 
6 
7 
8 
9 
A 
B 
C 
D 
E 
F 

KUV-KCD GUV_GCD GCD=GUV 
GK=GR 
GF=GR 
GG=GR 
GU=CR 
GV=GR 
GH=K 
GR=GI 
GB=K 
GA=K 

Note 1 
N-Register Set as 
Follows: 

R_KK 
R_KF 
R_KG 
R_KU 
R_KV 
K_KH 
R_KS 
K_KB 
K_KA 

GR-GK 
GR-GF 
GR_GG 
GR_GU 
GR-GV 
K_GH 
GI_GR 
K_GB 
K-GA 

Nate 2 Note 3 Nate 4 
Used an Timer/External 
Diagnostics Channell 
to Force Channel 2 

Operation 

Shown on Li ne 3 of the C LD Box 
Block A-Register Exit to the ALU. Route All ZEROS to ALU Entry for the 

A-Register. 
Block High 4 Bits of A-Register. Route 4-ZEROS and Bits 4-7 of A-Register 

to the ALU 
Block Low 4 Bits of A-Register. Route 4-ZEROS and Bits 0-3 of A-Register 

to the ALU 
Gote the Entire A-Register to the ALU 
Conditional Machine Stop (Note 5) 
Block A-Register Bits 4-7 Exit. Gate Register Bits 0-3 to ALU Entry 

Bits 4-7 and 4-ZEROS to Bits 0-3. 
Block A-Register Bits 0-3 Exit. Gate A-Register Bits 4-7 to ALU Entry 

Bits 0-3 and 4-ZEROS to Bits 4-7. 
Gate A-Register Bits 0-3 to ALU Entry Bits 4-7 and Gote A-Register Bits 

417 to ALU Entry Bits 0-3. 

Shawn on Line 3 of the CLD Box 
Block B-Register Exit to the ALU. Route All ZEROS to the ALU Entry for the 

B-Register • 
Black High 4-Bits of the B-Register. Route4-ZEROS and Bits 4-7 of the 

B-Register to the ALU. 
Block Law 4 Bits of the B-Registers. Route 4-ZEROS and Bits 0-3 of the 

B-Register to the ALU. 
Gate the Entire B-Register to the ALU. 

Shown on Line 3 of the CLD Box 
True Add B-Register Data 
Complement Add B-Register Data 
Binary Add or Subtract Dependi ng on the Status of SO 
Decimal Add or Subtract Depending on the Status of SO 

Shown on Line 3 of the CLD Box 
Block Carry 
Insert Corry 
AND Function-Check to See if Same Bits are Set to ONE in both the 

A-and B-Register Using the ALU 
OR Function-Check to See if Either Bit in the Same Position of the 

A-and B-Register is Set to ONE. 
No Carryin, Set S3 to ONE if A Carryout Occurs 
Insert A Carryin and Set 53 to ONE if a Carryout Occurs. 
Allow Corryin from Corry Latch and Set S3 to ONE if a Carryaut Occurs. 
Exclusive OR Function-Check to See if Only the A-or B-Register has the 

Same Bit Position Set to ONE. 

Shown on Line 5 of the CLD Box 
No Action 
Set S5 to ONE if Bits 4-7 of the Z-Bus Are O. Reset 55 if Non-Zero 

(Set 56 to ZERO). 
Set 54 to ONE if Bits 0-3 of the Z-Bus are O. Reset 54 if Non-Zero 

(Set 55 to ZERO). 
Combines the Conditions of CE Field Mnemonics LZ-S5 and HZ-54. 
Set 54 and 55 to ZERO. 
Set 51 to ONE if a 1050 Request has Occurred. Set 51 to ZERO if no 1050 

Request. 
Set SO to ZERO. 
Set SO to ONE. 
Set 52 to ZERO. 
Set 52 to ONE if the Output from the ALU is Non-Zero. (Note 6). 
Set 56 to ZERO. 
Set 56 ta ONE. 
Set 57 ta ZERO. 
Set S7 to ONE. 
Multiplexor Channel Tags Out. 
Multiplexor Channel Tags Out. 

Shown on Li ne 5 af the C LD Box. 

) Dummy Symbols 
I.., 

) Used for Selector Channel Operations 
These are Selector Channel Registers (Note 2) 

Selector Channe I Tags Out. 
Selector Channel Tags Out. 

X6 
0 
1 
0 

X7 
0-
o 
1 

Nate 5 
Micro Program 
Stop or Process 
Loop Stop 

Note 6 
In Diagnostic Mode, 
if the "Malfunction 

NO-Forced to ONE 
N1-Forced to ZERO 
N2-CN OBit 

These Mnemonic Depends 
on the Channe I Requested. 
Mnemonics may be of 
Three Types for one Hex 
Number. Example­
Alternate CA Field. 

Parity Multiplexor Channel 1 1 
T rap Latch" is Set, 
this Mnemonic will 
Cause Machine Stop. 

N3-CK OBit 
N4-Forced to ONE 
N5-CK 1Bit 
N6-CK 2Bit 
N7-CK 3Bit 

Hex E can be KY, GT, 
or HT 

Figure 2-46. Mnemonics, Sheet 3 

2-42 ( 9/1/66) 



Functional Units 

Some of the mnemonics need a more co~ 
plete explanat ion than given in the chart. 
There is a • next to the new mnemonic hav­
ing a more detailed description. The 
column to the left of the mnemonic contains 
the hex number punched in the bit positions 
for that control field. As an example, the 
CH field would be punched 1010(A) for a 
mnemonic S4. 

~Ahh->W: The value in the CA field is 
g~ted to the W-register positions 
4-7 and the AA field is gated to 
position 3. Example: to change 
from ROS address 01XX to 08XX, 
the mnemonic CAO S->W is used. 
Also, position 7 of the X­
register is set to 1 for the next 
address. Parity for the w­
register is maintained by using 
the PK bit. 

Note: If this mnemonic is used 
in the 1401 compatibility 
mode, the AA l-bit field is 
set to 1. This is routed 
to the 3rd position of the 
W-register to select the 
second ROS module or if set 
to 0, selects the first HOS 
module. Also when this 
mnemonic is used, the add 
statement normally has an A 
entry of 0 (CF = 000). 

R VOO: Each half of the R-register is 
checked for a valid decimal digit 
(0-9). set X7 to a 1 if both 
digits are valid decimal digits. 

K->FA: The CK field is used to set and 
reset latches in the multiplexor 
FA-register, singly or in 
combination. rhe value of the CK 
field is shown on the E line of 
the new CLO box which is 
explained later. The PK bit is 
necessary and it's condition is 
also specified on the E line. If 
the CK field value is 3 and PK is 
1, the E line will have K = 
0011,1. 

K->FB: The CK field and the PK bit is 
used to set and reset some of the 
multiplexor FB-register latches. 
This mnemonic also provides a 
gate for the set and reset of 
other latches. 

Y->WRAP: An ~ddress overflow (memory wrap) 
may arise on a 64K core storage 
unit. Additional circuitry is 
needed to detect the error which 
occurs when there is a carryout 
of the high-order position of the 
1- or U-register as a result of 
up-dating the address. 

If the 1- and J-registers are 
used to set the M- and N­
registers to address core 
storage, a memory wrap condition 
sets a wrap latch. Certain rou­
tines, which may be needed during 
the decode of an SS instruction, 
require the condition of this 
latch to be retained. The mne­
monic Y->WRAP gates the status of 
the wrap latch to another latch 
called the wrap-buffer-latch. It 
is retained there until the 
WRAP->Y mnemonic is used. 

WRAP->Y: When it becomes necessary to 
determine if there had been a 
wrap earlier, the mnemonic 
WRAP- >'i gates the status of the 
wrap-buffer latch to the wrap 
latch. This mnemonic is also 
used to reset the wrap latch in 
some routi nes. 

WRAP->X6: To test the status of the wrap 
latch for branching, the mnemonic 
WRAP->X6 is used. If the wrap 
latch is on, a 00 or 01 branch is 
taken. However, it if is off, 
the X6 portion of the branch is 
still controlled by the CH field. 
Note: A wrap condition can also Occur on an SK, 16K or 32K 
machine. This is detected by 
testing one of the three high­
order positions of the M-register 
to see if it is set to 1. The 
position tested depends on the 
size of core-storage the machine 
has. This does not use the wrap 
circuits used on 65K machines. 

AC Force:r his alternate CK mnemonic causes 
all positions of the X-register 
to be set to zeros if there was a 
carryout of the ALU during the 
previous ROS word. The 
information in the CN, CH, and CL 
fields is blocked. With the 
X-register equal to zero, the 
microprogram is branched to 00 of 
the block addressed by the W­
register decode. 

l->OE: This mnemonic is used in 
diagnostic testing. The first 
time this mnemonic is used in a 
routine, bad parity is forced by 
blocking the + L Z bus 0 line and 
+ L Z bus 4 line. The next time 
this mnemonic is used in the 
routine ,an ALU check is forced 
by forcing all the minus SUM 
lines and the minus carry O-bit 
line to a plus L levels (Figure 
2- 47) • 

The odd-even-control latch is 
turned on (EVEN) by the decoded 

2030 FETOM (9/1/66) 2-43 



FUnctional Units 

line l->OE, T2 and the introduce 
ALU check latch set off. A cir­
cuit to gate the + L Z bus 0 line 
and the + L Z bus 4 line requires 
that the odd-even latch be ODD. 
The introduce-ALU-check latch is 
turned on at Tl when the expres­
sion 1->OE is used again. This 
latch blocks the - L SUM lines and 
the -L carry O-bit li ne so the 
lines are all plus and an ALU 
check is forced. The odd-even­
control control latch is turned 
off three ways: machine reset, 
reset load line (which is 
developed when the mnemonic 
O->IPL is used), or at T2 time 
when the introduce-ALU-check 
la t£h is on. 

ASCII->X6:This mnemonic tests the ASCII 
latch to see if the ASCII latch 
is on. If the latch is on, the 
6th position of the X-register is 
set to O. If the latch is off, 
the 6th position of the x­
register is set by the CH field 
conditions. 

H: When the H-reqister is specified 
by the CD field coding of 5 
(0101), the 
priority-reset-control latch is 
set on. This latchANDed with T3 
time, turns the priority latch 
off so priori ties may be 
recognized. 

SP: This CF field mnemonic causes the 
~~at£h to be turned on at T4 
time (Figure 2-48). The output 
from the stop latch feeds two 
circuits. If the J-register is 
not specified by the CA field, 
one circuit causes a microprogram 
stop line to be active. This 
line stops the CPU clock by 
blocking the clock start circuit. 
If the J-register is specified 
and the ,EIocess stop latch is on, 
a proc~~.2::lo.Q.E::stop line is made 
active when the stop latch comes 
on. The process-loop-stop line 
allows the CPU clock to run until 
all ROS share requests or multi­
plexor share requests have been 
honored. The CPU clock is 
stopped by turning off the clock­
start latch. 'rhe process-loop 
stop line blocks the set of the 
W- and X-registers so the 
microprogram returns to the 
address of the STOP word after 
execution of any ROS or multi­
plexor share request. 

*aa: 

2-44 

This mnemonic addresses a byte in 
local storage. The expression on 

( 9/1/66) 

VZ: 

S1: 

IBC: 

Gl: 

T->MN: 

O->F: 

l->FO: 

the S line of the CLD box to read 
addressable byte 27 from local 
storage is *BB LS. Fiqure 2-49 
shows how the N-register is set 
to BB so byte 27 can be 
addressed. The CK field must be 
a B (1011). Since this is a 
constant, the CK field is speci­
fied on lineE of the CLD box. 

When operating in 1401 mode, this 
mnemonic appears as GW and is 
used to allow a branch on a group 
mark word mark combination. 

When operating in 1401 mode, this 
mnemonic appears as R2 and is 
used to allow a branch on the 
condition of the bit 2 in the 
R-register. 

~~en operating in 1401 mode, this 
mnemonic appears as R1 and is 
used to allow a branch on the 
condition of the bit 1 in the 
R-register. 

When operating in 1401 mode, this 
mnemonic appears as R3 and is 
used to allow a branch on the 
condition of the bit 3 in the 
R-register. 

When operating in 1401 mode, this 
mnemonic appears as LT->MN and is 
used to gate the L- and T­
registers to the M- and N­
registers. 'Ibis performs the 
functions of the A-star in the 
1401. 

The F-register is used to 
recognize external interrupts. 
This mnemonic resets the F­
register so the output lines of 
the F-register are plus, 
preventing any external inter­
rupts from being recognized until 
the F-register is set from an 
external device. Since the F­
register is reset so all output 
lines are plus, we say it is 
reset to ONE's. 

Since the F-register is reset to 
ONE's. this mnemonic set the 
O-position of the F-register to 
ZERO. 

special statements 

The following special statements 
are used in diagnostic 
programming: 

OVtO->Z: This expression brings up the 
control lines to check posi tions 



Functional Units 

4 and 5 of the R-register. If 
bit 4 is a one, the ASCII latch 
is set. If bit 5 is a zero, the 
suppress malfunction trap latch 
is set. Decimal mode is speci­
fied on line 2 of the CLD block. 

- OE 

L- Odd-Even 

Ctrl. Latch 
Even 

A 
T2 T1 

FL- -

Machine Reset"'----

Reset Load 
Reset Load 

OR 
Machine Reset .---

I---
A 

'---

T1 T2 T3 T4 
I I 

Odd-Even Ctrl Lat 
I I I 

I I I 

I I I 

Int. Alu Chk Lot I I 
I 

I I I 

Figure 2-47. 1 -> OE Control 

CF Sal 100 .----- Stop 
T4 

A 

FL --

Stop SW - Process 
Stop 

Inst Add Load SW 

DLYD Stop SW OR 

I nstr Step SW 

FL.--

Figure 2-48. stop Mnemonic 

Forced 

Forced 

CN-O is set to 1 

CK - 0 a 1 

N - Register 

r t 

T1 T2 T3 
I I I 
I I 

I 

I I I 

I 
I I I 

I I I 

(Not) J - Reg 

J-Reg 

r 

CK - 3 a 1 

CK - 2 a 1 

CK-1 a 1 

Forced 

Fiqure 2-49. N-Register Set from *aa 

I 

I 

I 

I 

I 

J ±O->Z: The wait latch is set on and the 
ROS word that contains this 
statement is continually executed 
until an interrupt occurs. Deci­
mal mode is specified on line 2 
of the CLD block. 

Introduce ...---
Alu Chk Latch 

A 

FL --

.--- ~ 

OR 

L...--

T4 

- Micro Program Stop 

A 

-

.---
Proc. Loop Stop Active 

A 

-

2030 FETOH (9/1/66) 2-45 



Functional Units 

CLD BLOCKS 

• Each Ras word is written in one CLD (CAS Logic Diagram) 
block. 

• There are eight lines in a CLD block used with the 2030 
mi coprogram. 

By this time, you know the different ROS 
fields and the mnemonics used with each 
field. The next step is to learn how the 
mnemonics are tied together into a logical 
statement and the format for this state­
ment. 

Figure 2-50 shows the CLD block format 
for both the development and unified style. 

We will discuss the unified style; the 
development style is shown in case you ever 
need to cross reference the two styles. 

First, let's look at the eight lines as 
shown in Figure 2-50. Notice that the 
letters in the edge of the block are pre­
sent only when there is information on the 
line. 

Symbolic Address (X6, Xl) Low Order Two Bits Actual Hexadecimal 
Branch Conditions in of the Actual Address / ROS Address 
Preceding Block or Blocks _______ / ~, 

Ros Control (X6, X7 Br h) 08A3 -Line 1 anc .--11 -
Condition Determines S 
6 and 7 Position of the -Line 2, CH and CL Fields 

etting of the ____ 
X-Register GO, G1 

Core Storage Control. 
and Section Used. Rea 

Misce Ilaneous Control s 

Source of Address __ 
d, Compute, or Write. 

-=-======== Includes~ 
e the Operation. 

Arithmetic Statement -
All Information to Defin 

Control of Status Latche s 
Set and Reset 

WRITE 

AC FORCE 

D=L$R 

S5=LZ 

'---CE 

Block Serial Number~ 

LEG IDENTIFIER 
Symbolic Address (X6, xl) 

-Line 3 CM and CU Fields 

-Line 4 CL, Alternate CU, Alternate CK, and PK 

-Line 5 Sometime Used for Line 4 

-Line 6 CA, CB, CK, CD, CF, CG, CV and CC Fields 

-Line 7 - CS Field 

C5_-_______ Line 8 

Block Location on CLD 
DEVELOPMENT STYLE 

Branch Conditions in Preceding~ Low Order Two Bits Actual Hexadecimal 
Blocks or Block. ~ /Of the Actual Address~ROS Address 

Emit Value (in Binary)______ 1===11 08A3=l-Line 1 

Arithmetic Statement - Includes~K 0110 DEC A-Line 2 CK, PK 
All Information to Define Operation _____ tt-----------------, 

A L ± R-D -Line 3 CA, CF, CV, CC, CB, CG, and CD 
Core Storage Control. Source of ____ It--------------------1 
Address and Section Used. ~ WRITE - Line 4 CM and CU 

I 

Control of Status Latches --------C LZ -S5 
f 

-Line 5 CS 

Miscellaneous Control-------__ R AC FORCE A03 V-Line 6 Alternate CK and Version No. 

I I 
ROS Branching ------------R GO, G 1 A4 R-Line 7 CH, CL, and Next Address 

L=C5------- * * --CE =J-Line 8 
Block Location on CLD ------....,,/ "" ~ 

'" Block Serial Number 

UNIFIED STYLE 

LEG SELECTOR 
Represents the digits 
whichare Set by the ROS 
Branching 

Figure 2-50. CLD Block Format 

2-46 (9/1/66) 



Functional Units 

Line 1 contains the leg identifier, that 
indicates which box to branch to from the 
previous ROS statement branching condi­
tions, and the actual hexadecimal address 
of this word. 

Line 2 contains K on the left edge. The 
value of the CK field and the PK bit are 
found here, an.:i on the right edge is an A 
when the type of arithmetic operation is 
defined here. 

Line 3 has an A on the left side when 
the arithmetic statement for the ROS word 
is found here. 

Line 4 has an S on the left side. The 
core- storage control statement is writt en 
here, and on the right side an S or an R 
can be found. The S is found here when 
there is a statement on the right side that 
has to do with storage control (MS), and 
the R is found here when a statement con­
cerned with ROS branching is present 
(K->W) • 

Line 5 has a C on the left edge, the 
mnemonics from the CS field are found here. 
Note: The C stands for control, miscel­
laneous. 

Line 6 can have a C (O->F), or an R (AC 
FORCE) on the left side; the alternate CK 
field is written here. On the right side 
of line 6 is a V; the version number of 
this ROS word is located here. 

Line 7 has an R on the left edge; the 
bits or conditions to be checked to deter­
mine the setting of the X-register 6th and 
7th pOSitions are written here. Also the 
right edge has an R; the actual lowest hex 
address that can be branched to is written 
here. 

Line 8 has the location of this block on 
the CLD page on the left side. In the 
center is the leg selector which represents 
the bits for ROS branching. On the right 
is the serial number of the block; this 
number normally changes if the block is 
moved on the CLD pa~e. 

Now let's break each line down and learn 
how to read a ROS statement using Figure 
2-51. The left edge of line 1 has two bits 
(in this case 10). This means that the 
conditions of ROS branching in the last 
word ca used X-6 to be set to ONE and X-7 to 

be set to ZERO. Also, when reading the CAS 
logic and it is possible to leave one block 
and go to anyone of four blocks, this 
identifies the block that ROS branching 
selected. On the right side, the hexadeci­
mal address of this word is written. The 
breakdown of the address is shown in the 
figure. 

The left side of line 2 has the value of 
the CK field written in binary form. This 
is shown when the CK field is to be used as 
a constant or the al ternate CK mnemonics 
are used. To the right of this is the PK 
bit condition, ZERO or ONE. Next to the PK 
bit, a character can be inserted to force 
bad parity (see Figure 2-52). 

On the right side of line 2, either DEC 
(decimal) or BIN (binary) is written, if 
the Decimal feature is installed to iden­
tify if the add is decimal or binary. 

In Figure 2-51, line 3 shows where each 
field of the add statement is found. CA, 
where the A-register data is gated from; 
CF, how the ~-register is gated to ALU; CV 
or CC, depends on what is wanted--an add or 
compare of the conditions of the A- and 
B-registers; CB, where the B-register data 
is gated from: CG, how the B-register is 
gated to the ALU: CC, carry in condition: 
cn, what register the ALU output is written 
into; CC, carry out condition. 

The CM field is found on the left side 
of line 4, and the CU field on the right 
side. 

The CS field is found on line 5, control 
of the status set and reset. 

The ~lternate CK field is found on the 
left side of line 6, and can have things to 
do with status control (C), add statement 
(A), or ROS branching (R). The version of 
this ROS word is identified on the right 
side of line 6 i a basic word is left blank. 

The CH and CL fields are on the left 
side of line 7. These two fields are used 
to test the status of certain conditions 
and set X-6 and X-7 from the test results. 
The next lowest ROS address that the CN, 
CH, and CL fields will allow the micropro­
gram to branch to, is written in hex on the 
right side of line 7. Note: just the 
setting of the X-register is shown. 

2030 FETOM (9/1/66) 2-47 



Functional Units 

Fields 

These Bits Equal the condition~ 
of the ROS Branching from the 
Preceding ROS Word. Bit 
Combination are: Low Two Bits of 
00, 01, la, 11, ox, XO,X1, This Address 
or 1X. 

W-Register 
3 4567 
a 1000 

X-Register 
0123 4567 
1010 0010 

Address of This ROS Word 

a Constant 

110 08A2l CK Field Used as PK Bit 

0011, (CK = 3) 
____ ~~ KI 0011, DEC A..------ Define Add Statement to DEC (Decimal) 

I
- or BIN(Binary). 

A DL ± KH + C--.RC 
CA CF CV or CC CB CG CC CD CC/ I 

D L t K H C- R C S IJ-MN MS S. Define What Section of Storage the 
I I Operation Will Work IN. CU Field 

CM Field CS Field C LZ-S5 
IJ~MN LZ-.S5 I ~Version Number of the Micro Word 

Alternate CK ..---
AC FORCE ~ C AC FORCE A05 V 

I I-1CN Field Possible Next Address 
CH,CL Fields ___ ~~ R RO, A5 R 0123 45 Combine CN Field and ROS Branch. 

RO 1 L J 1010 01 
C4-------:* 1--BC 

"I Bits of ROS Branching to Set Position 6 and 7 
Combination of Bits Are: 00, 01, 10, 11 

*0, 0*, 1*, *1, or ** 
* - Means Set by ROS Branching. 

Figure 2-51. CLD Block Line Breakdown. 

In the center of line 8, the leg selec­
tor is shown. This shows the bit condition 
that X6 and X7 are set to for the branch 
from this word. If the condition is deter­
mined by testing the status of some bit or 
condition an * is placed in that position 
of the leg selector. 

2-48 ( 9/1/66) 

Letter Creates Bad Parity On 
PN PS PA PC 

F 1 1 1 1 

E 1 1 1 0 

C 1 1 0 0 

8 1 0 0 0 

Note: 1 Indicates Bad Parity. 

Figure 2-52. Bad Parity Created 



Functional Units 

EXIT AND ENTRY CLD BLOCKS ARE FOUND. 

Figure 2-53 shows a CLD exit and entry 
block. The lines for each block is as 
fo11Qis: 

A: Entry block. 

Line 1: The leg identifier and a simu­
lated hexadecimal address (th.ree 
Xes). 

Line 2: The word from. 

Line 3: contains the page number and 
the block serial number that the 
entry came from. 

Line 4-17: Contains additional page 
numbers and block serial numbers 
that the entry can come from. 

Last line: Contains the block loca­
tion, leg selector, and block seri­
al number for this block. 

B: Exit Block. 

Line 1: The leg identifier and a simu­
lated hexadecimal address (three 
Xes). 

Line 2: The words ~. 

Line 3: Contains the page number and 
the block serial number of the 
entry block that this exit goes to. 

Line 4-7: Blank 

START 

Line 8: Contains the block location, 
leg selector, and block serial 
number for this block. 

[
**_XXJX 
From 
QA041NJ 
QC008E J 

AI-** -AA 

[
:*O-TO XXX] 
QAOOIQJ 

C9-**-QJ 

Figure 2-53. CLD Entry and Exit Blocks 

MICROPROGRAM SAMPLE PROBLEM 

Using Figure 2-54, determine the data in 
the R-register after leaving block 04B6 the 
second time. The conditions to start are: 

1. The UV registers contain the address 
xxxx. 

2. The D-register contains the value of 17 
in binary 0001 0001. 

3. The S-register is set to zero except 
for 52, Which is set to a 1. 

4. The R-register data is zero. 

The data in the R-register after completing 
block 04B6 the second time is 0001 0111. 

This is arrived at by executing the 
blocks in the follQiing order. 

ADDRESS 04AA: The data in the R-register 

L ::-D--+C-+-D--c-_04AAIrA~~ ~:iC-RC 
S WRITE 
C 0+-S7 0+-S6 

R 1,0 AER 

~~~EIrKOO----04B4 
A D+D-+C+-DC
S STORE
C 1~S7 ~

LA1----AA I R 0,0 B4R R l,S7 AER
LA2----AB I LA3----AC I

,11 04AF ,10 0486
K DEC K
A R±R+C~C A __ S

UV+-MN MS r-O""'S STORE 00 C 1~S6 C 0~S2

R 56,0 B4R R 52,0 AAR
LC2 CB I LC3 Cc I

Figure 2-54. Microprogram Test

2030 FETOM (9/1/66) 2-49

Functional Units

is returned to core (WRITE.) The data in
the D- is presented to both the A-register
and B-register inputs to ALU. There is no
carry insert because position 3 of the
S-register is zero. There is no carryout
as a result of the addition to set 53
(D+ D+C DC).

A source 0001 0001
B source 0001 0001
D-register-OOl0---0010

Postion 7 of the 5-register is set to zero
(0->57). An unconditional 1, 0 branch is
taken to address 4AE.

ADDRESS 04AE: The data in the R-register
is DECIMAL added to itself (R±R+C->RC).
Decimal mode is specified by the Kline.
S3 is still zero, therefore no carry is
inserted. Because the data in the R­
register is zero, the resultant addition
provides no carry out to set S3. Position
6 of the S-register is set to zero (O->S6),
Branch 0,0 to address 04B4.

ADDRESS 0484: The mnemonic STORE, does
nothing for us at this time because the
previous cycle was not a read. The data in
the D-register is again added to itself.
Still, there are no carries.

A source 0010
B source 0010
D-register 0100

0010
0010
0100

~ou can see that every time the data in the
O-register is added to itself, the data
shifts one position to the left.

Position 7 of the s-register is set to a
1 (l->S7). On the branch line a test is
made on S7. fhis test is done early in the
cycle before any status is set by the C
line statement. As a result, a 1, 0 branch
is executed to 04AE.

ADDRESS 04AE: Again, the R-register data
is decimal added to itself. And again,
since the data in the R-register is zero
and there is no carry insert, the resultant
answer is zero with no carry out. S6 is
set to zero (0->S6). Branch 0,0 to address
04B4.

ADDRESS 0484: The S line statement, STORE,
has no effect. The data in the D-register
is added to itself (D+D+C->DC)with

A source 0100
B source 0100
D-register 1000

0100
0100
1000

no carryout, S3 is still zero. position 7
of the S-register is set to a 1 (1->57).
Since 57 was set previously, the branch
conditions now set up a 1,1 branch to
address 04AF.

2-50 (9/1/66)

ADDRESS 04AF: The MN registers, set by UV,
address main core (MS) to read data at
address XXX X (UV->MN MS). The data in the
R-register is again DECIMAL added to itself
(R±R+C->RC). No carries are involved.
Position 6 of the S-register is set to 1
(1->56), but not before the branch test is
made and a 0 0 branch is taken to address
04B4.

Note that when a bit in the branch
statement (line 7) is set or reset during
the same word, the branch condition is
tested during the first part of the cycle.
The set or reset occurs during the latter
part of the cycle. Example of branching
statement is S6, 0 (line 7), and an example
of set or reset statement is 1->S6 (line
5). The sixth position of the X-register
is set to 0 or 1, depending on the condi­
tion of S6 when the word is read out. The
seventh position of the X-register is set
to 1. At the end of the cycle, when the
word has been executed, S6 equals 1.

ADDRESS 04B4: The data just read from
address XXXX is not used and the data in
the R-register, all zeros, is returned to
core (STORE). The data in the D-register
is added to itself with no carry in, but

A source 1000
B source 1000
D- register 0001

1000
1000
0000

with a carryout. Because of the C to the
right of the arrow, the carry out sets
position 3 of the S-register. Even though
S7 is set to a one, the expression 1->S7
sets S7 again. A 1,1 branch is taken to
address 04AF.

ADDRESS 04AF: The data in the R-register
is decimal added to itself with a carry
insert. The C to the left of the arrow
allows S3 to set a carry into ALU.
(R±R+C->RC). The data in the R-register is
now 0000 0001. The C to the right of the
arrow allows a carryout to set S3. Because
there is no carryout, S3 is again zero.
Main storage (MS) is again read (UV->MN).
Position 6 of the S-register is set to one
<1->56). S6 had previously been set to a
one so the branch test executes a 1,0
branch to address 0486.

ADDRESS 04B6: The data just computed is
written at address XXXX (STORE). position
2 of the S-register is set to 0 (O->S2) but
not before the branch tests (52,0) deter­
mine that a 1,0 branch is to be taken to
address 04AA. Remember, one of the condi­
tions given before starting the problem was
that S2 was set to a one.

ADDRESS 04AA: The expression WRITE has no
effect at this time, because it follows the
STORE operation of address 04B6. The data

F unctiona I Uni ts

in the D-register is added to itself with
no carry inserted and

A source 0001
B source 0001
D-register 0010

0000
0000
0000

no carryout 53 = o. Position 7 of the
S-register is set to zero (0->S7). A 1,0
branch is taken to address 04AE.

A.DDRESS 04AE: The data in the R-register
is DECIMAL added to itself with no carry
inserts. fhe resultant data in the R­
register is 0000 0010. S3 remains zero
(R±R+C->RC). Position 6 of the S-register
is set to zero (0->56). Advance 0,0 to
address 04B4.

ADDRESS 04B4: The mnemonic, STORE, does
not affect the prohlem because it does not
follow a read call. The data in the D­
reqister is added to itself with no carry
insert (D+D+C->DC) and with

A source 0100
B source 0010
D-register 0100

0000
0000
0000

no carryout, S3=0. Position 7 of the S­
register is set to a one (1->S7), but not
before the branch tests determines that a
1,0 branch to address 04AE is called for.

ADDRESS 04AE: The data in the R-register
is DECIMAL added to itself and becomes 0000
0100. No carryout therefore, S3 is still
zero (RtR+C->RC). Position 6 of the S­
register is set to zero (0->56). Advance
0,0 to address 0484.

ADDRESS 04B4: STORE, again accomplishes
nothing for our program at this point. The
data in the D-register is added to itself
with no carry insert (D+D+C->OC) and

A source 0100
B source 0100
D-register 1000

0000
0000
0000

no carry out, S3=0. S7 is set to as one
(1->S7). This position of the S-register
wa s previously set therefore a 1,1 branch
is taken to address 04AF.

ADDRESS 04AF: The data in the R-register
is DECIMAL added to itself. There is no
carry insert as 53 is a zero. No carryout
results. The resultant data is 0000 1000
in the R-register. Core address XXXX is
read (UV->MN MS). S6 is set to a one
(1->S6) but not before a 0,0 branch is
taken to address 04B4.

ADDRESS 04B4: The data just read is lost,
and the computed data, 0000 1000, is
returned to core (STORE). The data in the
D-register is added to itself with no carry
insert. A carryout results that sets S3 to
a one (D+D+C->OC).

A source 1000
R source 1000
0- register 0000

0000
0000
0000

S7 is set to a one (1->S7). A 1,1 branch
is taken to address 04AF.

ADDRESS 04AF: The data in the R-register
is DECIMAL added to itself. A carry is
inserted. No carryout results, and 53 is
set to zero (RtR+C->RC). The result is R
is 0001 0111. Core address XXXX is read
again (UV->MN MS). S6 is again set to one
(1->56). A 1,0 branch is executed to
address 04B6.

ADDRESS 04B6: The data read from address
XXXX is lost and the data just computed,
0001, 0111 is returned to core (STORE). S2
is set to zero (0->52). The data in the
R-register is 0001 0111, which is 17 in
decimal mode. Effectively then, this small
5 R06-word loop has converted a binary
number to a decimal number.

2030FETOM (9/1/66) 2-51

Functional Units

ARITHMETICAL LOGICAL UNIT (ALU)

• The ALU functions are controlled by ROS control fields •

• All arithmetic operations are performed in the ALU.

• ALU consists of control gating circuits for the A- or B­
Registers, an adder, and a decimal corrector circuit.
(Figure 2-55)

Data Registers

B Register
Indicators

I

I
I

ALU

+and-4 Bit Sum
+and-O Bit Sum
+and-O Bit Carry

+ 1 Bit Carry
+0 Bit Carry

ALU

Z Bus
Test

Perity
-Z Bus P Bit True

Compo
Register I-+~---"----+......-j Circuit

and
Zero
Condition

Generation +Z Bus P Bit

Register
Inversion

ROS Control Fields

CA-Read into A Register
CB-Read into B Register
CC-Function and Carry Controls
CF-A Input to ALl}
CG-B Input to ALU

and
Decimal

Circuit

CV-True/Complement, Binary or Decimal

Straight,
~t------........,j""""'-+eot Hi gh,

Low,
or
Cross

+ Circuit

+Sum Bits Decimal

-Sum Bits Corrector

To all

-Z Bus Bits 0-7 Registers
~~:....--~---------- Except

To Rand 5
Registers

ALU Output
Indicators

Rand 5

A
Register
Inversion Field

CC Control Field an Resulting Control Lines

Function Control Lines

012 Connect LM N
000 ADD Function X
001 Force a Carry X
010 AND Function X X
011 OR Function X
100 5et Carry Latch (53) X
101 Force a Carry-In and 5et (53) if ALU Carry-out Occurs X
11u It Carry-In, Allow 5et ot (~j) it ALU l:arry-out Uccurs X
111 Exclusive OR X X

Figure 2-55. ALU Data Flow and Controls

Data to be processed in the ALU is gated in
from the A- and B-Registers, which are fed
data from the A and B buses by ROS control
fields CA and CB.

line system is used throughout the ALU, and
for the output leaving ALU on the Z bus.

The data from the A-Register is gated to
the adder under control of ROS field CF
which may gate the data in the following
combinationsl

Each bit entering ADO is represented by
two line levels, plus and minus. This two

2-52 (9/1/66)

Functional Units

All eight bits straight into the adder

Block all eight hits to the adder

Four high bits only

Four low bits only

Cross the four high and low bits.

The data from the B-Register is gated to
the adder under control of ROS fields CG
and CV. The CG field gates the data from
the B-Register in the following
combina tions;

All eight bits straight

Block all eight bits

Four high bits only

Four low bits only

This data is further gated by the CV field
before entering the adder. The CV field
indicates binary addition under
true/complement control, or decimal addi­
tion under true/complement control. True
or complement binary addition, and comple­
ment decimal addition are handled in a
similar manner. The data gated under these
condi tions is fed to the adder in true or

DECIMAL CORRECTOR

complement form by the true/complement
circuitry.

If the CV field indicates a decimal true
addition, a special operation must be per­
formed. This operation consists of adding
six (0110) to both high and low 4 bit
groups of theB-Register output byte before
the number is gated to the adder. The
reason for this operation and examples of
the decimal add are contained in Chapter
One unner Packed Decimal True Addition.

The CC ROS control field causes the
control lines, connect, LM and N to be
activated in various combinations to con­
trol the operations of the adder cirCUitry
(Figure 2-55). The major functions of the
adder are:

ADD the data from the A- & B-Registers.

OR the data from the A- & B-Registers.

AND the data from the A- , B-Registers.

Exclusive OR the data from the A- and
B-Registers.

Other functions of the adder, controlled
by the CV field, are the handling of car­
ries in and out of the adder, and the set­
ting of the carry latch.

• Tests and corrects all decimal arithmetic results.

• All data passes through the Decimal Corrector circuitry to
the Z bus.

The Decimal Corrector circuitry tests the
results of a decimal operation, (either
true or complement) leaving the adder.
Binary results are gated through this cir­
cuitry unaltered. Each four bit group is
considered separately and tested for a
high-order carry. If a carry was not gen-

erated from the high bit of a four bit
group, the decimal corrector circuitry will
subtract six from that group. If a carry
had been generated, zero is added to that
four bit group. The output of the Decimal
corrector is placed on the Z bus.

CARRY HANDLING

• Carries in the adder circuitry may occur from one poSition
to the next higher position.

• Carries into adder position seven are controlled by the CC
ROS field and carry latch.

• Carry conditions are tested in various places throughout the
ALU circuitry.

2030 FETOM (9/1/66) 2-53

Functional Units

Gate S-Reg to A Bus A A Bus 3-Bit
S-Reg 3 Bit N

D

Z Bus 3 Bit A A
G T Z Bus to S Reg N (53) Corry-in = 3 N

D Corry Pl Time D Corry In Carr OBit 0 0
A A GT Corry to 53 N R N R

T4 Time D Insert Corry
D

-- FL -- -- FL --

Tl. Time
0 0 Recycle Reset

S-Reg Reset R Manua I Store R

Not 53
Corry In=53 A

Pl
N
D
A

Insert 0 Corry N
D

Figure 2-56. Carry Circuits

A carry that is developed within any of the
adder bit positions is allowed to transfer
to the next higher bit position. This is
true for both binary and decimal additions.

The carry into bit position seven of the
adder is gated in by the Carry-In Latch
under control of the CC ROS control field.
The Carry-In latch (Figure 2-56) is set by
the Insert Carry line, or the Carry latch
(53) being on. The cc ROS control field
also controls the setting of the Carry
latch for certain microprogram functions.
The three CC field decodings that control
adder carry operation are:

CC Field r~nction

001 Force a carry-in.

100 Set the Carry Latch (S3) if an
Adder carry-out occurred.

101 Insert carry and set S3 if an
adder carry-out occurs.

110 If a carry-in, allow set of S3 if
adder carry-out occurs.

The carries that occur from adder positions
o and 1 may be checked by the microprogram
for, address checking, arithmetic over­
flows, or sign analysis. The 0 bit carry

2-54 (9/1/66)

1 BC

Corry 0

A
Corry-In L

U
A Entry
0-7 Bits

Tic + 6 Entry

Corry 1
Latch

Z Bus
0-7

l To ROS
Branch
Decode

is also used to set the Carry latch <S3),
if specified by the ROS control field CC.
The carrier from bits 0 and 1 of the adder,
may be used to set the branching bits 6, or
7 of the X-Register, if specified by the
mnemonics AC or 1BC. The mnemonic AC used
in the ROS branch line of a CLD box will
set the 6 bit of the X-Register if an adder
carry had occurred in the previous arith­
metic statement. The mnemonic lBC used in
the ROS branch line will set the 7 bit of
the X-Register if a carry occurred from the
1 bit position of the adder in the previous
arithmetic statement.

When performing a true or complement
decimal addition, the carries from adder
positions 0 and 4 are tested, and the deci­
mal corrector will subtract 6 from the 4
bi t group for which a carry did not occur.
Any carry produced, by this subtraction,
from the high-order bit of a four bit group
is ignored.

The 0 bit position of the adder is test­
ed for a carry when doing complement deci­
mal addition to determine if the result is
in true or complement form. If a carry
from the 0 bit position had occurred the
result is in true form. If no carry
occurred the number will have to be recom­
plemented.

FUnctional Units

ALU CHECK (SEE FIGURE 2-51)

• All Z-bus lines and the ALU Sum Zero, Sum Four and Carry­
Zero lines are checked for complementary line levels •

• ALU Check will drop the CPU Clock start Line if Check Stop
is on.

Plus Z Bus 0 Bit OE 1------.
Minus Z Bus 0 Bit

Plus Z Bus 1 Bit OE
Minus Z Bus 1 Bit

Plus Z Bus 2 Bit
Minus Z Bus 2 Bit

Plus Z Bus 3 Bit
Minus Z Bus 3 Bit

OE

OE

Plus Sum 4 Bit OE
Minus Sum 4 Bit ~---

Plus Carry 0 Bit OE
Minus Carry 0 Bit ~---

Figure 2-51. AID Check

A

N
ALU Check

The use of two wire circuitry is also used
on the output of the ALU decimal corrector
to check for correct operation. Each bit
position will have both a plus and a minus
level output. For example, if bit 4 in ON,
the output of the decimal corrector will
produce "+L Z BUS 4 Bit" and "-L Z Bus 4
Bit". If the 4 bit position is OFF, these
two lines will have the opposite-VOltage
level output. Three bit positions are also
checked directly from ALU in addition to
the lines from the decimal corrector. All
of these complementary lines are fed to

exclusive-or circuits which produce plus
level outputs if one and only one input is
plus. If any OE has either both inputs
plus or both inputs minus the output will
be minus (-L). This minus level will
produce a plus (+L) level output through an
AI circuit to establish the line "+L ALU
check". Correct operation will result in
"-L ALU Check" (Not ALU Check). The Cor­
rect operation then is to condition all
OE's so that their plus outputs to the AND
block in Figure 2-58 will produce a minus
level out.

2030 FETOM (9/1/66) 2-55

Functional Units

o
Gate MC Reg to A Bus A A Bus 7 Bit

N

To Indicators

T4 A
MC7

OR
1--...... _ Any Machine Check

2nd Error Stop

1st Mach Chk A

P4

Mach Chk Reset

Reset Mach Check

ALU Check

A
N
D

FL

OR

MC 0- 6 Not Supp
Mach Chk Trap

Chk or Diag Stop Sw

Any Mach Check

A A
W or X Register

Inputs

.Check Stop N T4

Figure 2-58. AID stop Check Controls

The output of the ALU check circuits is
used several ways. See Figure 2-58.

1. It blocks the setting of the Wand
X-Register Indicating Latches if Check
Stop is on.

2. It sets the Machine Register 7 Latch
which can be used in microprogramming.

3. It produces -Any Machine Check- which,
depending on switch settings, will
cause a -Bard stop· and therefore stop
the CPU clock.

2-56 (9/V66)

1st Mach
Check Lat

T4

Hard Stop

PH

PH

PH

_---1.0-

Additional {
Set Lines

R

FL

Reset {'===~!J
Lines =

To Indicators
for WX Registers

Clock Start

FUnctional Units

M2 CORE STORAGE UNIT

• The M2 storage unit is the 2.0 microsecond read-write stor­
age unit for the IBM 2030.

• The M2 is a separately packaged unit within the 2030 frame.

The M2 memory provides the IBM 2030 Proc­
essing Unit with a 2.0 microsecond read­
write storage unit. The basic unit of
information stored is the eight-bit byte,
with an additional bit added to maintain
odd parity of data. Storage sizes are
8,192 positions C8K), 16,384 positions
(16K), 32,768 positions C32K), and 65,536
positions C65K).

The M2 storage unit is a separately
packaged unit that is installed inside the
2030. This separately packaged unit
contains the controls, timing generator,

FOUR-BIT ADDRESSING

core array, and sense/inhibit system for
the storage unit. If the 2030 requires the
full 65K of storage, two separate M2 units
are installed in the base of the 2030
frame.

Because the unit is entirely separate
from the 2030, communication between the
two takes place over a number of signal and
control lines known as the Memory/CPU
interface. This interface transfers
address information, input data, output
data, and timing signals.

• A storage location is a place where something may be kept.

• A number assigned to a storage location is its storage
address.

• Four binary digits form 16 different storage addresses.

By definition a storage location is a place
where something may be kept. Examples of
storage locations are shelves in a library
or mail boxes. To facilitate finding
things at different storage locations, it
is convenient to assign a number to each
storage location. These numbers become the
storage addresses.

Let's begin our study of storage
addressing with a simple sixteen position
storage unit. We can then expand to larger
systems. Finally, we will apply this
addressing system to the actual core stor­
age unit.

USing four binary bits, 16 storage loca­
tions can be assigned addresses. All items
numbered 0000 that we wish to store are
placed in storage location 0000; all items
numbered 0001 that we wish to store are
placed in storage location 0001; etc. It

is now possible to find any item by select­
ing the storage location with the proper
binary number. In Figure 2-59 storage
location 0101 has been selected by the
combination of binary bits that represent
the number 0101.

Binary Position 8 4 2

Binary Value 0 o

Figure 2-59. Four-Digit Addressing

2030 FETOH (9/1/66) 2-51

Functional Units

SIX-BIT ADDRESSING

• six binary bits fo~m 64 different storage addresses.

• Addresses range from 000000 to 111111.

If the original four binary bits provide 16
combination of numbers (2 4 =16), then six
binary digits can be used to provide 64
combinations of numbers (2 6 =64). By using
these 64 numbers as storage addresses, it
is possible to have 64 addressable storage
locations with the address range of 000000
to 111111.

There are several ways to apply the six
binary bits to an addressing scheme. To
keep our theoretical addressing system
compatible with the scheme used in the
actual core storage unit, we will expand
the original 4-digit addressing scheme
shown in Figure 2-59. Thus, in Figure
2-60, the four low-order binary bits des­
cribe some number in the range 0000-1111,
while the two high-order binary digits
describe which of the four groups of 16
numbers is to be used. In the example
shown, the four low-order digits 1111 com­
bine with the two high-order digits 10 to
select storage location 101111.

0---------1000000

b---------1001111

o------~ 010000

0--------1011111

o-------l100000

~-----4 101111

0--------1110000

'0---------4 111111

Figure 2-60. Six-Digit Addressing

2-58 (9/1/66)

Functional Units

TEN-BIT ADDRESSING

• Ten binary digits form 1,024 different storage addresses.

• Address range from 0000000000 to 1111111111.

If four additional binary digits are added
to the 6 digit addressing scheme, it is
possible to define 1,024 storage locations
(210=1,024). To accommodate the extra bits
in the addressing scheme, it is necessary
to add another dimension (Figure 2-61).
Once again, 'We will expand our theoretical
addressing scheme in such a way as to keep
it compatible with the actual core storage
addressing system.

The four low-order binary bits describe
some basic number from 0000 to 1111. This
basic number is represented by a storage

THIRTEEN-BIT ADDRESSING

location in each of the 64 blocks of 16
storage locations. To further select the
desired location, the next two binary bits
describe one of for blocks of 256 storage
locations. Each of these blocks is made up
of 16 blocks of 16 storage locations each.
The six low-order bits have narrowed the
selection to 16 storage locations. With
four high-order bits, it is possible to
make a final selection of one of these 16.
In the example shown, the four low-order
bits (0000) plus the next two bits (01),
plus the four high-order bits (1110), com­
bine to form 1110010000.

• Thirteen binary bits address 8,192 storage locations.

• Address range 0000000000000 to 1111111111111.

In the first example of theoretical
addressing, selection depended on one group
of binary bi ts. This was expanded to sel­
ection h¥ three groups of binary bits. If
a fourth group is added to provide a furth­
er means of selection, the total amount of
addressable storage can be increased.

with an additional three binary bits to
provide eight more combinations of numbers,
the total amount of addressable storage is
increased by a factor of eight from 1,024
to 8,192 (Figure 2-62). These additional
three binary bits provide a fourth direc­
tion to the addressing. Basic addressing
is the same as shown in Figure 2-61 except
that now there are eight groups of 1,024
storage locations. The three additional
bits determine which of the eight groups of
1,024 is to be used. Notice that address
selection depends on the coincidence of
lines from four directions.

Up to this point, reference has been
made only to storage locations, with no
attempt to describe the actual storage
device. In the examples given, the storage
locations could have been in any storage
device, depending on what was to be stored.
In the IBM 2030 Processing Unit, a storage
device is needed to store information,
program instructions, constants, and data
for processing. The storage device must be
capable of storing and/or supplying the
required information in the range of sever­
al microseconds. Thus the multiplicity of
switches and boxes used to demonstrate
storage addressing in Figure 2-62 are not
satisfactory. However, it is possible to
apply the same addressing scheme to faster
storage devices. An investigation into the
properites of magnetic core storage reveals
that this device can be readily applied to
produce an extremely fast storage device
capable of storing the information required
in the IBM 2030 Processing Unit.

2030 FETOM (9/1/66) 2-59

Functional Units

~f

Binary Position 512 256 128 64 32 16 8 4 2

Binary Value o o o o o o
v

Figure 2-61. Ten-Digit Addressing

2-60 (9/1/66)

FUnctional Units

8

Figure 2-62. Thirteen-Digit Addressing

2030 FETOM

""~

!:lIe

~Ie

(lO
N'~

~I~

N

'"
... f21-

~Ie

~Ie

z
Q w

~ :3
2 ~
r r

~ ~
Ciii in

(9/1/66) 2-61

Functiona 1 uni ts

MAGNETIC CORE THEORY

• A magnetic core is a small, doughnut-shaped object made of
ferromagnetic rrateria 1.

• A core can be magnetized to either of tNO polarities.

• Once magnetized, the core retains its magnetism until it is
deliberately changed by an external magnetizing force.

• The external magnetizing force is created by current­
carrying wires.

A magnetic core is a tiny, doughnut-shaped
object made of a ferromagnetic material.
The properties of this material are such
that if a ferromagneticic core is
introduced to a sufficiently strong magnet­
ic field, the core becomes magnetized.
Furthermore, if the core is removed from
the vicinity of the magnetic field, it
remains magnetized. Unless it is deli­
berately changed, the core retains its
magnetism indefinitely.

To deliberately change the core, it must
be introduced to a sufficiently strong
magnetic field of the opposi te polari ty.
This causes the core to be magnetized in
the opposite direction. Once again, unless
deliberately changed, the core retains its
magnetism indefinitely.

The fact that the core may be set to
either of two states makes it a very useful
binary storage device. If, when the core
is magnetized in one direction a binary
value of 1 is assigned, then a binary value
of 0 results when the core is magnetized in
the opposite direction.

Moving the core to the vicinity of a
magnetic field is not a practical method of
storing binary inf ormation. A more suita­
ble method is to have a controllable mag­
netic field near the core itself. To mag­
netize the core in either of two direc­
tions, this magnetic field must be reversi­
ble in polarity. The desi~ result can be

TWO-WIRE ADDRESSING

• Two wires pass through each magnetic core •

obtained by threading a wire through the
center of the core. If a sufficiently
strong current is passed through the wire,
the core will be magnetized by virtue of
the magnetic field created around the wire
as the current passes through the wire. If
the current through the wire is reversed,
the core becomes magnetized in the opposite
direction (Figure 2-63). ThUS, by con­
trolling the direction of current flow
through the wire, it is possible to magnet­
ize the core to a value of either binary 1
or binary O. Changing the core from one
magnetic polarity to another is called
flipping the core.

+

Figure 2-63. Magnetic Core

Using one wire for each core results in
an expensive, inefficient storage device.
with a slight change in the method of flip­
ping the cores, it is possible to produce a
more efficient device.

• Core is magnetized by additive effects of the two magnetic
fields.

By passing two wires through the core, and
by sending just half the current necessary
to magnetize the core through each wire,
the core is flipped ~ virtue of the addi­
tive effects of the two magnetic fields
(Figure 2-64).

2-62 (9/1/66)

Functional Units

1/2 Current

1/2 Current +

+

Figure 2-64. Half-Current principle

If this half-current is passed through
just one wire instead of both wires, the
core is not flipped because the magnetic
field is not great enough. rhus the core
can be affected only by the coincidence of
the two half-currents.

This half-current principle can be used
to simplify the setting of cores by forming
a screen of wires with a magnetic core at

CORE STORAGE ADDRESSING

each intersection of the wires (Figure
2-65). By sending current in the appropri­
ate direction through the appropriate pair
of wires, the desired core can be flipped
to the desired magnetic polarity without
affecting the other cores in the group.

+

+

Figure 2- 65. Coincident Current Addressing

• Transistors select address and provide selection current •

• Current flow in drive line determines core magnetic polari­
ty.

In the IBM 2030, there are sixteen binary
bits in each address. These sixteen bits
represent four hexadecimal digits in the
range 0000 to FFFF. For the 8,192-position
storage device, the three high-order binary
bits of the storage address are always
logical zero, providing a binary address
range of from 0000 0000 0000 0000 to 0001
1111 1111 1111 (hexadecimal 0000 to lFFF).
In Figure 2-66, magnetic cores have been
added to the 8,192-position storage device
discussed earlier. Also, hexadecimal
digits have been introduced. Each box in
the figure represents a magnetic core, and

the lines between the boxes represent the
screen of wires. If a battery is connected
between the bottom address selection switch
and the top address selection switch, and
if a simi lar battery is connected between
the left address selection switch and the
right address selection switch, coincident
current will be produced in one core. That
one core will be flipped to a polarity
dependent on the direction of current flow.
The core addressed can be flipped to the
opposite state by changing the direction of
curren t flow.

2030 FETOM (9/1/66) 2-63

'-l
IV ~ I' §
I 8 GROUPS OF 16 ROWS

0\ \Q DODO ----- ~
~ c::

11 ...
~ 0

&
IV ------

\Q I ~ , 0\

~ 0\ d
='

0\
'"

rt
CO CD

~ ------

en
rt
0
~

\Q
~

Functional Units

The use of switches for address selec­
tion produces the desired result. However,
having a series of switches is awkward.
Moreover, it is impossible for such a sys­
tem to be operatea at the speeds required
by the IBM 2030 Processing Unit. A much

Address Bits

Address Bits

Address Bits

Figure 2-67. Core Storage Drive

more practical approach is to let transis­
tors do the switching for address selec­
tion. Figure 2-67 shows the windings
through a typical core, and the method of
driving the windings with sufficient cur­
rent to flip the core to a logical 1.

Set Core to
Binary 1

Set Care to
Binary 1

2030 FETOM (9/1/66) 2-65

F unctioila 1 Uni ts

SENSE

• Core magnetized to either of two polarities, represented as
logical 1 or logical O.

• Logical 1 called bit status, logical 0 called no-bit status.

• When core changes from bit status to no-bit status, a pulse
is induced onto the sense winding.

• Changing core to bit status called writing.

• Changing core to no-bit status called reading.

A magnetic core stores information by
remaining in either of two magnetized
states. The two states are logical 1 and
logical 0, thereby forming a binary storage
device. The logical 1 state is called the
bit sta tus while the logical 0 is the no­
bit status.

The stored information is of little
value unless it can be retrieved from the
core. To accomplish this, a wire is
threaded through the core. When the core
is flipped from one magnetic state to the
other, a pulse is induced onto the sense
wire. This pulse can be amplified and used
to set a latch. The latch then provides
the usable output from the core.

If a core is to contain information, it
must be magnetized to the bit status.

2-66 (9/1/66)

Accomplishing this requires coincident
current in the proper direction. Flipping
the core to the bit status is called writ­
ing, and the coincident current that CaliS""es
writing is called write current. When
information is to be retrieved from the
core where it was stored, drive current is
made to flow through the windings such that
the core is flipped to the no-bit status.
This causes the pulse that is amplified and
used to set the latch (Figure 2-68).
Retrieving this stored information from
core storage is called reading, and the
coincident current that causes reading is
called read current. If coincident read
current is made to flow through a core that
is already in the no-bit status, the core
does not flip, and there is no pulse
induced onto the sense winding.

Functional Units

Set Core to
Binary 0

Address Bits o---i~

Address Bits o-~--I

Set Core to
Binary 0

+

Address Bits 0----1

Address Bits 0----1

Figure 2-68. Core Read

Notice that to read out the addressed
core requires the core to be flipped to the
no-bit status. As far as the core itself
is concerned, the information is lost.
This type of information retrieval is
called destructive readout. If it is nec­
essary to have the information remain in
the core after readout, it must be replaced
on a SUbsequent write cycle.

Address Bits

Address Bits

Address Bits

Address Bits

Set Core to
Binary 1

Set Core to
Binary 1

2030 FETOM (9/1/66) 2-67

Functional Units

STORAGE ADDRESS REGISTER

• M- and N-Register hold storage address •

• Together, M- and N-Register store a 16-bit binary address.

• Low-order 13 bits used to address basic 8K storage unit.

ro retrieve a byte of information from core
storage, the core-storage address must be
available to the address decode network
throughout the time when reading is taking
place. Similarly, the address where a byte
is to be written must be available during
write time.

Two 9-bit registers (8 information bits
plus a parity bit) are provided for core­
storage addressing. Called the M- and
N-Reqisters, these registers store a 16-bit
binary core-storage address. The low-order
pOSition of the N-Register has the value of
1, the next position has the value of 2,
and so on in binary increments up to the
high-order pOSition of the M-Register which

Name M-Register

Position 0 I 2 3 4 5 6 7 0 I

3 I

2 6 8 4 2 I

Binary
7 3 I 0 0 0 5 2 I

Value

6 8 9 9 4 2 I 5 2 6

8 4 2 6 8 4 2 6 8 4

Figure 2-69. Storage Address Register

8K'STORAGE ADDRESSING

2

3

2

has a binary value of 32,768 (Figure 2-69).
Used together, these registers provide
65,536 different hexadecimal numbers,
ranging from 0000 to FFFF. These numbers
are the core-storage addresses for the
core-storage unit in the 2030.

Thus far, we have discussed only the
basic or 8,192-position block of core stor­
age. To address this block requires only
the low-order 13 bits of the M- and N­
Registers (Hex addresses 0000 - 1FFF).

The remaining 3 high-order bits are used
to complete the addressing shceme up to the
maximum core storage size available (Hex
address es 2FFF - FFFF).

N-Register

3 4 5 6 7

I

6 8 4 2 I

• Address decode takes place for each end of the drive lines.

• Four drivers, 16 gate decodes, and 6. gate transistors for
each end of the X-drive lines.

• Eight drivers" 16 gate decodes, and 128 gate transistors for
each end of the Y-drive lines.

• The gate transistor, with both base and emitter conditioned,
is turned on to supply drive current.

2-68 (9/1/66)

Functional Uni ts

128 CORES ON EACH LINE 16 LINES PER GROUP
X 64 LINES ~ GROUPS

...--__ ---, 4 DIODES 64 DIODES 8192 CORES 64 LINES 64 DIODES 4 DIODES

READ t t ... ~ ... ~ ~ -' ~ -' t t WRITE
GATE _H":::+-.-!r>I-_~--------+.....,,~~~---4;.-~,n,.v~~vv'1f'--+---p--__ - __ --tAQ-,......,rQ-A~-; GATE
TERMINATOR v v TERMINATOR

-" _

v

FOU R GROUPS OF

00 ~. 15

-ifr§
16WR ITE GATE
TRA NSISTORS

(NOT) N-REG 3-BIT N-REG 3-BIT ,....----,

(NOT) N-REG 2-BIT A 00 N-REG 2-BIT J A ~
WRITE I WRITE U

4 WRITE DRIVERS
EACH DRIVES 16
READ GATE TRANSISTORS

(NOT) N REG 7-BIT

(NOT) N REG 6-BIT

(NOT) N REG 5-BIT

(NOT) N REG 4-BIT

N REG 7-BIT

(NOT) N REG 6-BIT

(NOT) N REG 5-BIT

(NOT) N REG 4-BIT

N REG 7-BIT

N REG 6-BIT

N REG 5-BIT

N REG 4-BIT

.0'-. A"
v 'v

-
A

~

-
-

A

.2l.....

-
r--

A

~
'---

J

48

(NOT) N-REG 3-BIT N-REG 3-BIT

(NOT) N-REG 2-BIT I A 00 N-REG 2-BIT J A 48

READ I READ J

4 READ DRI VERS
EACH DRIVES 16
READ GATE TRANSISTORS

I M-REGISTER N-REGISTER I

16 GATE DECODERS Ix
O I 2 345 6 7

X X X X X X X
0123456

1
7/

X X 0 0 0 0 0

Figure 2-70. X-Drive Address Decode

The examples of Figures 2-67 and 2-68
assume certain address values to be present
at the input of the transistor circuits.
Developing these address values from the
binary address presented to the core stor­
age unit is known as address decoding.
There is address decoding circuitry for the
64-1ine X-dimenSion, and similar address
decoding circuitry for the 128-line Y­
dimension. In addition, further address
decoding takes place at each end of the
lines. One end is address decode for read,
and one end is address decode for write.
Read and write address decoding for the
X-dimension is shown in Figure 2-70.

Four drivers and 16 gate decode switches
define which gate transistor is to conduct.
In Figure 2-70, a single X-line has been
selected to read from the binary value
shown as follows: The N-Register 7-, 6-,
5-, and 4-bits combine with the read signal
at a gate decode switch to condition the
bases of four gate transistors (one in each
of the four groups). From the N-Register
3- and 2-bits of the address, one of four

read drivers is turned on to condition the
emitters of one group of 16 ~ead gate
transistors. The connections form a matrix
so that only one gate transistor will have
both base and emitter conditioned for con­
d ucti on. At the othe r end of the sel ected
X-drive line, the read gate-terminator is
turned on to complete the current path.
Consequently, half-select current flows
through 128 cores located on the selected
drive line. To complete the addressing to
a single core, one of the 128 Y-lines must
be selected and driven with half-select
current to provide coincident current in
one core-storage position. To decode and
drive a Y-line, the N-Register 1- and
O-bits, and M-Register 7- and 6-bits
satisfy one of the 16 read gate decode
switches. This conditions the bases of 16
of the 128 read gate transistors. The
M-Register 5-, 4-, and 3-bits turn on one
of the eight Y-read drivers. This condi­
tions 16 read gate transistor-emitters.
The one read gate transistor with both
emitter and base conditioned turns on to
provide read current for one Y-drive line.

2030 FETOM (9/1/66) 2-69

Functional Units

CORE PLANES

• Nine cores required to store one byte •

• Nine core planes wired together to provide nine cores for
each address.

• Coincident current produced in nine core windings.

Up to this point, we have been speaking of
a single core plane consisting of 8,192
cores. This plane can store 8,192 bits of
information. At any time, by correctly
impulsing the proper drive line, a Single
bit of information can be stored or
retrieved. In the IBM 2030, it is neces­
sary to store a whole byte of information
at each storage location. Each byte con­
sists of eight information bits plus a
parity bit. To store a complete byte

Address
Selection
and Drive

Fiqure 2-71. Core Plane Stacking

INHIBIT

• Controls writin:j in cores.

• Sense winding shared by inhibit circuits.

requires nine cores (eight information
cores plus a parity core). In Figure 2-71,
nine 8,192-core planes have been stacked,
and the address lines have been tied
together serially. If two address lines
are selected and are driven with coincident
current, nine cores are affected (one in
each core plane), because coincident cur­
rent is produced in the same relative core
in each of the nine identical core planes.

• Inhibit current prevents core from setting.

• Inhibit current opposes X-drive current.

2-70 (9/1/66)

Functional Units

The 8~192-position core storage unit shown
in Figure 2-71 has a deficiency: it can
store only all bits or no bits in a given
storage location. To make the core-storage
unit useful, we must be able to wr ite in
only the desired cores within a given core­
storage location.

This is necessary because a core-storage
position containing useful information has
some cores set to logical 1 and some cores
set to logical O. Additional control over
the writing of the cores is provided ~ the
principle known as inhibiting. In Figure
2-68, we added a third wire to the core and

N - Register
4,5,6,7

M - Register 6,7
N - Register 0, 1

M-Register 3,4,5

Figure 2-72. Inhibit

used this wire to sense when the core
flipped. We can now use this same wire to
control writing in the core. This control
is accomplished by sending current through
the third wi re during the time when writing
is to take place (Figure 2-72). Called
inhibit current, this current is equal to
the drive current in the X-drive line, but
is opposite in direction. The effect of
this inhibit current cancels the effect of
the current through the X-drive line, and
the addressed core is not flipped.

A combined sense-inhibit winding is
threaded through all the cores in each of

Write

2030 FETOM (9/1/66) 2-71

FUnctional Units

the nine core planes. For each core that
is to be flipped to logical 1 during a
write cycle, we block the inhibit current
from flowing in the respective core plane.
With no inhibit current flowing through the
s~nse-inhibit winding of the addressed
core, coincident current in the drive lines
causes the core to flip. For each core
that is to be blocked from flipping to
logical 1 (ie: is to remain at logical 0),
we allow inhibit current to flow in the
respective core plane. Here the effect of
one of the coincident currents in the drive
line is cancellej by the effect of the
inhibit current and the core does not flip.

For example: if a core position is to
contain a byte coded with 0-, 1-, 2-, 5-,

Address
Selection
and Drive

Lines

Ol234567P

Figure 2-73. Composite Core Layout

AUXILIARY STORAGE FOR 8K

and P- bits, then inhibit current must be
made to flow in the 3-, 4-, 6-, and 7-bit
core planes so the 3-, 4-, 6-, and 7-bit
cores in the addressed position are not set
(Figure 2-73).

In the 2030 co.re-storage unit, each core
plane has two sense-inhibit windings. Each
winding is threaded through 4,096 cores.
The two windings are functionally the same.
However, using two windings for each core
plane rela xes the design requi.rements for
each inhibit current driver and sense
amplif ier, and provides more reliable oper­
ation.

128Y
Selection
and Drive

• Added area for CPU, and I/O control and status information.

• Additional addressing in Y-dimension only.

• Main-Auxiliary latch in CPU defines area to be addressed.

• M-Register 3-bit selects CPU local or MPX storage.

Included in the 8,192-position storage unit
is an additional 512-position auxiliary
storage section. In this section, 256
positions are reserved for use by the mil­
tiplexor channel. The other 256 positions
of local storage are used by the CPU for
special and general purpose registers

2-72 (9/1/66)

(Figure 2-74).

Functional Units

64Y
Lines

4 Lines
CPU Local
Storage

4 Lines
MPX Storage

{
{

32X Lines 32X Lines __ ----~,----~ __ ----A~------
('\('\

Main
Storage

r------------I

1

000
I

I Local Storage I
I I
L _________ 255\

1000-----------1
I I
I MPX I
L ________ 2551

64Y Main
Li nes Storage

Figure 2-74. Auxiliary storage

The additional 512 storage positions are
formed by adding eight lines in the y­
direction direction (eight Y-lines
intersect with 64 X-lines produce 512 addi­
tional storage positions). Eight Y read­
gate transistors provide read current for
the eight auxiliary Y-lines, while eight
write-transistors provide write current for
the auxiliary Y-lines.

At each end of the auxiliary Y-lines,
the auxiliary gate-transistors are
controlled by the Y-gate decode-switches
and two special auxiliary drivers. When an
address in the range of 00-255 is placed in
the M- and N-Registers, it refers to one of
three storage positions. The desired posi­
tion may be in main storage, CPU local
storage, or a multiplexor storage. To
select which of the three areas is to be
addressed, a latch in the CPU specifies
whether to use main or auxiliary storage.
However, just knowing that the desired
address is in auxiliary storage is not
enough, because there is more than one area
of auxiliary storage. To select CPU local
storage or multiplexor storage in the 8K
storage unit, the M-Register 3-bit is set
by the CPU in a code that determines which
area is to be addressed. In the case of
the 8K storage unit, if the M-Register
3- bit is zero, then the desired address is
in multiplexor storage. If the M-Register
3-bit is one, then the desired address is
in CPU local storage.

Figure 2-75 shows auxiliary Y read-gate
selection when the address 174 is placed in
the M- and N-Registers. The Y gate-decode
switch that is turned on by the M- and
N-Register contents conditions the bases of
18 Y gate-transistors (16 main Y gate­
transistors and two auxilairy Y
gate-transistors). However, only one Y
gate-transistor is further conditioned by a
Y-driver. In this case, the multiplexor
read driver is turned on because the M­
Register 3 bit is zero and because the CPU
Main-Auxiliary latch is set to Auxiliary.

2030 FETOM (9/1/66) 2-73

Functional Units

8 AUXILIARY STORAGE GATE TRANSISTORS
(4 CPU LOCAL, 4 MPX) 128 Y GATE TRANSISTORS

r-------______ ~A~ ______________ ~

16 Y GATE ~~ ~~ ~~ ~ ~~~. DECODE
SWITCHES

~
NOT NREG I BIT

NOT N REG 0 BIT A "
0-63

NOT MREG 7 BIT

NOT M REG 6 BIT

N REG I BIT

NOT N REG 0 BIT A

NOT MREG 7 BIT
64-127

NOT MREG 6 BIT

NOT N REG I BIT

N REG 0 BIT A
128-191

NOT M REG 7 BIT

NOT MREG 6 BIT

N REG I BIT

N REG 0 BIT A
192-285

NOT M REG 7 BIT

NOT MREG 6 BIT

:
NREG I BIT I

N REGO BIT A
960-1023

M REG 7 BIT

MREG 6 BIT

READ READ MAIN READ MAIN READ

~ ~ ~ LOCAL STORAGE I
A

I

A
NOT MREG 5 BIT

A M REG 5 BIT
A

NOT M REG 4 BIT M REG4 BIT I--
MPX I NOT MREG 3 BIT M REG 3 BIT

2 AUXILIARY READ DRIVERS 8 MAIN Y READ DRIVERS

Figure 2-15. Auxiliary Storage Gate Decode

STORAGE CLOCK

• There is a separate clock for the core storage unit.

• Delay lines produce timing pulses.

• control latches develop delay line drive pulses.

• Read and write clocking pulse lat·ches form storage drive
pulses.

• The storage clock is started by a signal from the CPU.

• Once started, the clock operates for a complete cycle.

The core-storage unit is operated on a
cycle-by-cycle basis. If a byte of
information is to be retrieved from the
core-storage unit, a read cycle in initiat­
ed. During the subsequent read cycle, a
storage position is addressed and the byte
of information stored in that position is

2-14 (9/1/66)

read out to the data register. If a byte
of information is to be placed into core
storage, a write cycle is initiated. Dur­
ing the subsequent write cycle, a storage
position is addressed and the desired
information is placed into the addressed
byte location.

Functional Units

A storage clock provides the necessary
timing pulses and gates to operate the
storage unit on a cycle-by-cycle basis.
This clock is started by the read or write
signal from the cpu. Once started, it
operates for a complete read or write
cycle.

For example, suppose a position is to be
read out, the byte of information thus
obtained is to be used in a computation,
and the result of the computation is to be
placed back into the same storage position.
rhe CPU specifies a storage location by
placing a storage .address in the M- and
N-Register. rhe storage circuitry is sig-

R or W Set
Clock Start

A

Mach Reset - - FL1·-

naled to read and the storage clock is
started (Figure 2-76). A storage read
cycle results, during which time the
desired storage location is read out, and
the resulting byte is placed in the CPU
R-Register. The CPU then makes the neces­
sary computation and places the result back
into the R-Register. Once again, the stor­
age unit clock is started. This time,
however, the storage unit is signaled to
write. ~ storage write cycle results,
during which time the byte from the R­
Register is written into the addressed
storage position. In each case (read and
write), the clock operated for a complete
cycle once it had been started.

TD I

OR 250 ns
r--------L-I--~

R or W Reset

Delay Tap --FL2--

From Line

Clock Sequence

1. Machine reset turns FLl off, FL3 off.

2. FL I going off turns FL2 on.

3. Clock start turns on FL I.

4. FLl and FL2 AND to impulse delay line. Leading
edge of pulse propagates down de lay line.

5. Depending on pulse width desired, a delay line
output tap turns FL2 off.

6. Drive pulse to delay line falls; trailing edge of
pulse propagates down de lay line.

7. FL2 going off turns FL I off, FL 1 going off turns
FL2 back on.

8, Leading edge of pulse from bottom tap of TD3 sets FL3.

9. Leading edge of drive pulse from FL3 propagates down
remainder of delay line.

10. Depending on drive pulse width requirements, a
delay line tap turns FL3 off.

II. Trailing edge of drive pulse propagates down TD4,
TD5, TD6.

Figure 2-76. Oelay Line Clock Drive

Mach Reset

Delay Tap

TD 2

500 ns

TD 3

750 ns

Ctrl R Width

r--____ ~ - FL3 - -

OR

TD 4

1000 ns

TD 5

1250 ns

TD 6

1500 ns

2030 FETOM (9/1/66) 2-75

FUnctional Units

The storage clock consists of a series
of delay lines, delay line control latches,
and read and write clockinq pulse latches.
rhe control latches develop the timing of
and control the width of the pulse that
drives the delay line. rhe delay line
consists of six separate delay lines
connected in series. Each delay line has
ten outputs. There is a 25 nanosecond
delay between each of the ten outputs for a
total delay of 250 nanoseconds per delay
line. Connected in series, the six delay
lines produce a total delay of 1,500 nano­
seconds from the start of the drive signal.

The pulses required to operate core
storage are formed by the read and write
clock pulse latches. The appropriate
delay-line taps are wired to the set and
reset inputs of these latches to develop
the required pulses at the outputs of these
latches. The same delay line is impulsed
regardless of whether a storage read cycle
or a storage write cycle is to take place.
The tap outputs are then gated to either
the read clock pulse latches or the write
clock pulse latches to cause either a read
or a write cycle to take place (Figure 2-71
and 2-18).

2-16 (9/1/66)

I T 25 De ay ap ns

A

Delay Tap 1050 ns -
A

Delay Tap 100 ns

A

Delay Tap 775 ns f--

A

Delay Tap 400ns

A

Delay Tap 775 ns I--

A

Delay Tap 525 ns

A

De lay Tap 800 ns r--
A

Delay Tap 700ns

A

Delay Tap 825ns I--

A

1
Set Rd

Delay Tap 500ns

Read Call Latches A
L--

--FL---
Set Wr Delay Tap 1200 ns

Write Coli Lotches - Deloy Top 150 ns

A

Deloy Top 950 ns I--

A

Deloy Top 150 ns

A

Deloy Top 725ns !----

A

De lay Top 250 ns

A
Deloy Top 750 ns I--

A

Deloy Top 250 ns

A

Deloy Top 750 ns r---
A

I
Delay Top 500 ns

A
L-

Deloy Top 150 ns

Figure 2-11. Memory Clock

f--
Phase
Read

--FL---

r-- Reod I

--FL---

t---R ead 2

I--"FL---

r--S trobe

-- FL---

--FL---

~
Doto
Reody

~
--FL--

~
Phose
Write

t--"FL---

!--1 nhibit

r--FL---

t--- Write I

f-- FL---

- Write 2

--FL---

~
-- FL---

Functional Units

SIGNAL NAME lOGIC
.3 .~ .5 J6 .7 .~ .9 1lo I. 1 d2 1.3 11.4 1.5 -+t-Delay-Line IOutputs Duri~g Read

Delav-Line Outouts Durina Write- .1 .2 .3 .4 .5.6.7 1.0 1 1

I. Clock Slart
I

Read CalL I
:

I

1 Write Call, 1

2. Delay-Line Drive Pulse

3. Read Call

I

---, I

From CPU I

I I :

r---i -+' ______ ~'------~----~------~----~
. : I •

1 From CPU

-4. Set Read Latche. 111
I

5. Phose Read 1 I 1

6. Read 1
I

I~--------~----------~:
7. Read 2

I

~----.... ----~ + I:
:

8. Strobe 1

9. Data Ready ·ri
I

• I
10. Read Reset Control I

11. Write Call 1 From CPU I 1

12. Set Write Latche. /II 31

13. Phose Write 1 I 1

1-4. Inhibit I ' I

15. Write 1 1

16. Write 2 i I
I

17. Write Reset Cantrol 1 I
L-------------------------L-----~======~====~==~;:-=~-=-=-=~-=-=~~~~~~~/A~~=-=-=-=-=-=-~=-=-=-=-=-=-=-=-~~v~=-::------------~

Read "'C:ycle Write Cycle

Figure 2-78. Memory Clock Timings

8K STORAGE SUMMARY

Before we go on to larger core storage
units, let's review the 8K unit by listing
the quantities of different components. If
you understand how these quantities give
the required addressing configuration, you
will have an easier time understanding the
larger storage units.

For an 8K storage unit, there are:

64X drive Ii nes
64X read gate transistors
64X write gate transistors
16X gate decode switches

4X read drivers
4X write drivers

128Y drive lines
128¥ read gate transistors
128Y write gate transistors

16¥ gate decode switches
8Y read dri vers
8Y write drivers
4Y CPU local storage drive lines
4Y MPX storage drive lines

1 CPU local storage read driver
1 CPU local storage write driver
1 MPX storage read driver
1 MPX storage write driver

As an example of how this provides a
convenient review, consider the 64X lines.
At each end of each of the 64X lines, there
is a gate transistor. That means there is
a total of 128 gate transistors. Checking
the preceding list reveals that there are
64X read gate transistors and 64X write
gate transistors, for a total of 128X gate
transistors. For either group of gate
transistors, each of the 16 gate decode
switches conditions the bases of four of
these gate transistors. Similarly, each
driver conditions the emitters of 16 gate
transistors. The resulting matrix produces
only one gate transistor with both base and
emitter conditioned. Therefore, only one
gate transistor turns on, and only one
X-drive line has current flowing through it
(Figure 2-70).

2030 FETOM (9/1/66) 2-77

FUnctional Units

PHASE REVERSAL ADDRESSING (16K)

• Phase reversal principle allows twice as many storage posi­
tions to be addressed with the same drive circuitry.

• Phase reversal takes place between 8K blocks.

• Y-drive lines wired through phase reversal plane; X-drive
lines are not.

• No cores in the phase reversal plane.

FUNCTION DRIVERS ON

Read Basic 8K XI YI

Write Basic 8K X2 Y2

Y2
Address
Select
and Drive

X2
Address
Select
and Drive

Read 2nd 8K

Write 2nd 8K

XI Y2

X2 YI

XI
Address
Select
and Drive

YI
Address
Select
and Drive

---------------v--------------- '--------------v~--------------
Second 8K Phase Reversal Plane Basic 8K

Y Lines go through

Figure 2-79. Phase Reversal X Lines do not

The basic 8K storage unit can be expanded
to 16K without changing the basic drive
scheme or the drive circuitry. This is
accomplished by wiring the same drive lines
through two 8K blocks of storage. Between
the two 8K blocks of storage is a phase
reversal plane containing no cores. The
Y-drive lines are wired through the phase
reversal plane, whereas the X-drive lines
are not wired through the phase reversal
plane (Figure 2-79).

When the addressing circuitry selects
and drives one x- and one V-drive line, two
storage positions (18 cores) are addressed.
However., the drive currents are in phase in
one 8K section and out-of-phase in the
other 8K section. Reversing the direction
of one of the drive currents causes the
drive currents to be in phase in the second
8K section. Reading and writing are con­
trolled by reversing both drive currents as
shown in Figure 2-79. TO read out a core­
storage position in the ti rst 8K block,
drivers labeled Xl and Yl are caused to
supply drive current while the circuitry at
the other ends of the drive lines accepts
these currents. The result is in-phase

2-78 (9/1/66)

read current in the desired position in the
basic 8K block. To write into the same
position, drivers X2 and Y2 supply drive
current and circuitry at the opposite end
provides a path for these currents. The
result is in-phase write currents in the
desired position in the basic 8K block.

To read out a core-storage position in
the second 8K block, drivers Xl and Y2 are
turned on. Circuitry at the opposite ends
of the drive lines is conditioned to
complete the drive current paths. The
result is in-phase read current in the
desired position of the additional 8K
block. Notice that the corresponding posi­
tion in the basic 8K block is not affected
because the read currents in this block are
out-ot-phase

Writing into a core-storage position in
the second 8K block requires drivers X2 and
Yl to be turned on. Circuitry at the oppo­
site ends of the drive lines must be condi­
tioned to accept drive current. The result
is in-phase write current in the position
in the additional 8K block. Once again,
the corresponding position in the basic 8K

Functional Units

block is not affected because the write
currents in this block are out-ot-phase.

Notice in Figure 2-79 that the Xl-driver
is turned on for each read cycle while the
X2-driver is turned on for each write
cycle. The Y1-driver is turned on for a
read cycle in the basic SK or for a write
cycle in the second SK. The Y2-driver is
turned on for a write cycle in the basic SK
or for a read cycle in the second SK. The

~UXILIARY STORAGE FOR 16K

desired SK block is selected by using the
M-Register 2-bit poSition in combination
with the function desired (read, write) to
condition the proper Y-driver. Absence of
an M-Register 2-bit indicates an address in
the range 00000 to OS191, causes Y1 to turn
on tor a read cycle or Y2 to turn on for a
write cycle. An M-Register 2-bit indicates
an address in the range OS192 to 163S3 and
causes Y2 to turn on for a read cycle or Y1
to turn on for a write cycle.

• Four 256-byte auxiliary storage areas included in a 16K
storage unit.

• M-Register 2-bit and 3-bit determine auxiliary storage area
to be addressed.

• N-Register determines specific address from 000-255.

• Local storage is in second SX storage unit.

Included in the 16,3S4 position storage
unit are 1024 additional byte positions of
auxiliary storage. These are divided into
four 256-position areas called MPX 0, MPX
1, MPX 2, and local storage. when the CPU
wishes to address one of these auxiliary
storage areas, the main-auxiliary latch in
the CPU is set to auxiliary, and the
desired address is placed in the N­
Register. The CPU further specifies which
area of auxiliary storage is to be
addressed by coding the M-Register 2-and
3-bits as follows:

M-Reg M-Reg Auxiliary storage
2-bit 3-bi!;; Area Selected

0 0 MPX 0
0 1 MPX 1
1 0 MPX 2
1 1 Local Storage

For example, if the CPU wishes to
address a byte of information in the local
storage area of auxiliary storage, the
desired byte-address would be placed into
the N-Register. rhe M-Register 2- and
3-bits would both be set to one. All other
M-Register bits would be set to zero.

The auxiliary storage un.it for 16K stor­
age has the four auxiliary drivers: two
read drivers and two write drivers. This
is exactly the same as the 8X auxiliary
storage arrangement. However, now the
drivers must drive the lines through two SK
storage units. This means that the auxil­
iary drivers must be controlled by the
M-Register 3-bit, the M-Register 2-hit, and
the functions read and write, because of

the phase reversal between the two SK
blocks of storage. The need for this sel­
ection can be seen on Figure 2-79.

16K STORAGE SUMMARY

Just as we did when we finished the 8K
storage unit, let's review the quantities
of drivers, gates, etc., in the 16K storage
unit.

For a 16K storage unit, there are:

64X drive lines
64X read gate transistor
64X write gate transistor
16X gate decode switches

4X read drivers
4X write dri vers

12SY drive lines
12SY read gate transistors
12SY write gate transistor

16Y gate decode switches
SY read dr ivers
SY write drivers

8Y auxiliary storage drive lines
2 auxil iary storage read drivers
2 auxiliary storage wr i te drivers

Notice that the quantities are all the
same as those quantities given for the 8K
summary. This illustrates why the phase
reversal scheme is used: double the size
of storage unit can be addressed with the
same dri ve scheme. 'lbe only quanti ty
changed was the number of core planes, and
this of course, dOUbled.

2030 FETOM (9/1/66) 2-79

FUnctional Units

PHASE REVERSAL ADDRESSING (3210

• There are four 8K blocks of core storage.

• Phase reversal occurs between the basic 8K and the second
8K, between the third 8K and the fourth 8K •

• Common Y-drive lines go through all four 8K blocks.

• Two sets of X-drive lines: one set for basic and second 8K
addressing, one set for third and fourth 8K addressing.

• M-Register 2- and 1-bits control drivers.

A 32K core-storage unit is formed by tying
two 16K units together in such a way that
the Y-selection and drive circuitry is
shared (Figure 2-80). Additional X-drivers
and X-selection circuitry is required.

2-80 (9/1/66)

Thus, there are two sets of Y-drivers (read
and write), and four sets of X-drivers
(read and write for the first 16K, and read
and write for the second 16K).

Functional Units

Address selection above 8K is provided
by the M-Register 2- and 1-bit positions.
rhese two bit positions allow unique selec­
tion of one of the four 8K blocks. AMence
of both M-Register 2- and 1-bits indicates
an address in the range of 0000-1FFF, and
therefore selects the basic BK block. An
M-Register 2-bit with no M-Register 1-bit
specifies an address in the range of
2FFF-3FFF. This selects the second 8K
block. The third 8K block has the address
range of 4FFF-5FFF, and is selected by an
M-Register 1-bit with no M-Register 2-bit.
If the address contains both M-Register 2-
and l-bits, the fourth 8K block with the
addresses 6FF~7FFF is selected. The driv­
ers are controlled by the M-Register 2- and
1-bits and the read or write signal.

AUXILIARY STORAGE FOR 32K

• Either four or eight 256-byte auxiliary storage areas
included in a 32K storage unit.

• M-Register 1-, 2 -, and 3-bits determine the auxil iary stor­
age area to be addressed.

• N-Register determines the specific address from 00-255 with­
in the auxiliary storage area defined.

• CPU local storage is always the high-order 256-byte auxil­
iary storage area.

Standard auxiliary storage for 32K storage
unit is four 256-byte areas (MPX 0, MPS 1,
MPX 2, and local storage). These four
areas are located in the first 16K of stor­
age, and are addressed as described under
Auxiliary Storage 16K. A feature is avai­
lable that provides four additional
256-byte blocks of auxiliary storage.

main-auxiliary latch in the CPU is set to
auxiliary, and the desired byte-address is
placed into the N-Register. The CPU furth­
er specifies which block of auxiliary stor­
age is to be addressed by coding the M­
Register 1-, 2-, and 3-bits as follows:

These additional blocks of auxiliary
storage provide additional subchannels for
the mul tiplexor channel.

M-Reg
1-bit

M-Reg M-Reg Auxiliary Storage
2-bit 3-bit Area Selected

With the four additional blocks, auxil­
iary storage is composed of eight 256-byte
blocks of auxiliary storage named MPX 0,
MPX 1, MPX 2, MPX 3, MPX 4, MPX 5, MPX 6,
and local storage. When the CPU wishes to
address a specific byte-location in one of
these blocks of auxiliary storage, the

CLOCK CONTROL ADDRESSING (64K)

o
o
o
o
1
1
1
1

o
o
1
1
o
o
1
1

• A 2030 with 64K of core storage has two separate 32K core
storage units.

• Each 32K unit is completely independent of the other •

• The O-bit position of theM-Register determines which
storage clock is started.

2-82 (9/1/66)

o
1
a
1
o
1
o
1

MPX 0
MPX 1
MPX 2
MPX 3
MPX 4
MPX 5
MPX 6
Local Storage

Functiona 1 Units

Not
M-reg
O-bit

Address Decode
and Drive

1st 32K

p

p

1st 32K
Core Storage

p 7 P 7
----r--- --~~--

7

P

7

2nd 32K
Core Storage

7 P 7
--~~-- --~~--

Address Decode
and Drive
2nd 32K .------1

M-reg
O-bit

MN BUS

Figure 2-81. Clock Control Addressing

Each 32K core-storage unit is a complete
package that cannot be further expanded by
merely adding more planes to the existing
array. The package includes the core
planes, the addressing circuitry, and -the
storage cloc k for 32,768 positions of core
storage. To expand core-storage capacity
requires the ad1ition of a similar 32K
unit, complete with core planes, addressing
cirCUitry, and storage clock. In addition,
the CPU provides a second MN-Register for
second 32K storage unit (Figure 2-81).

When the CPU requires information from
the 64K storage unit, a 2-byte address is
placed into both M- and N-Registers. The
gates and drivers are conditioned in both
32K storage units. However, the storage
clock is started in only one of the 32K
units. If there is no bit in the high­
order position of the M-Register, the
storage clock in the first 32K unit is
started and the desired cycle is completed.
This cycle may be either a read or a write
cycle. A bit in the high-order position of
the M-Register indicates an address above

the range 0000-7FFF, and starts the clock
in the second 32K storage unit.

MEMORY/CPU INTERFACE

Each 32K storage unit communicates with the
CPU over an interface. All addresses,
data, and control signals are transferred
over this interface. A brief description
of the interface signals follows.

Moo and N- Register Sit Lines

Sixteen bit-lines carry the address in the
M- and N-Registers to the core-storage
addressing circuitry. The address is set
into the M- and N-Registers at T1 time of
the CPU clock cycle following the cycle
when a CPU read is decoded by the control
circuitry. The address does not change
until the necessary CPU compute and core­
storage write cycles have been taken. The
M- and N-Register bit lines in order from
the high-order position of the address to
the low-order position of the address are:

2030 FETOM (9/1/66) 2-83

Functional Uni ts

M-Reg 0
M-Reg 1
M-Reg 2
M-Reg 3
M-Reg 4
M-Reg 5
M-Reg 6
M-Reg 7
N-Reg 0
N-Reg 1
N-Reg 2
N-Reg 3
N-Reg 4
N-Reg 5
N-Reg 6
N-Reg 7

store Bit-Lines

The nine store bit-lines provide the data
input to the core-storage unit. These
lines are direct outputs of the R-Register,
and they go to the core storage inhibit
drivers. The nine store bit-lines are:

store Parity Bit
Store 0 Bit
store 1 Bit
store 2 Bit
store 3 Bit
store 4 Bit
Store 5 Bit
store 6 Bit
store 7 Bit

Hem Sense Bit-Lines

These nine lines represent the core-storage
data output. They are active at memory
strobe time. If the data on the memory
sense bit-lines is to be used by the CPU,
the memory clock data ready pulse is
allowed to set the appropriate R-Register
latches from the data on the sense lines.
The nine sense bit-lines present at the
R-Register input are:

Hem Sense Par Bit
Hem Sense O-bit
Mem Sense 1-bit
Mem Sense 2-bit
Mem Sense 3-bit
Mem Sense 4-bit
Mem Sense 5-bit
Mem Sense 6-bit
Mem Sense 1-bit

M Bus 0 Bit

The memory clock must be started at the
beginning of Tl time so the CPU and memory
stay in step. selection of the first 321{
clock or second 32K clock is dependent on
the high-order position of the M-Register
(M-Reg O-bit). Ho~ver, the M- and N-

2-84 (9/1/66)

Register set pulse is at Tl time, and it
takes approximately 50 nanoseconds to set
the M- and N-Register latches. This would
not allow the M-Register o-bit to start
ei ther of the two memory clocks at zero
time in the CPU clock cycle. The M bus 0
bit occurs befo~~ the M-Register has set,
and is actua lly bef ore zero time in the CPU
clock cycle. If the M bus 0 bit -signal is
present at the clock control circuitry at
zero time of the CPU clock cycle, the CPU
read-call signal starts the second 32K
clock. If the M bus 0 bit signal is not
present when the CPU read-call signal
arrives, the first 32K clock is started.

The M bus 0 bit signal is called early
MO in the memory circuits. It is not
brought up for a write cycle because the M­
and N-Registers are not changed for a memo­
ry write cycle. For a write cycle, the
M-Register 0- bit line (output of
M-Register) switches with the CPU write­
call signal to control the two clocks.

Early Local storage

The function of this signal is similar to
that of the M-bus 0 bit signal: control of
the two memory clocks. Early local storage
occurs before zero time in the CPU clock
cycle to signal the memory that the next
access to memory will be in the first 321(.
When read call occurs, the first 32K clocks
starts.

Read Call

Read-call signals the memory that the CPU
control circuitry has decoded a read
operation. The read-call pulse occurs at
Tl-time of the CPU clock cycle and it is
used to start the memory clock. Read-call
specifies a memory-read cycle by setting up
the memory clock for a read operation
(Figure 2-71).

Write Call

Write-call occurs at Tl time of the next
cycle after the CPU control circlli try has
decoded a write operation. write-call
starts the memory clock, and specifies a
memory-write cycle by setting up the memory
clock for a write operation (Figure 2-71).

Data Ready

Data-ready is the memory data strobe pulse
to the cpu. The data-ready signal sets the
data (memory sense bit lines) into the
R-Register, provided the CPU has specified
memory as the source for the R-Register.

F unctiona I Units

Mach Reset S w

Machine-reset-switch is a signal from the
CPU that causes all memory control latches
to be reset to a starting condition when
the machine reset function is being per­
formed. The machine-reset function can
occur for several reasons, such as when
power on sequencing is complete or when the
system reset key on the 2030 console is
pressed.

Read Echo

This signal is required by the CPU for
manual store operations. It signals the

STORAGE RFAD EXAMPLE

CPU that a memory-read cycle is taking
place, and allows a write cycle to follow.

write Echo

This signal is required by the CPU for
manual store operations. It Signals the
CPU that a memory-write cycle is taking
place, and allows a read cycle to follow.

• Storage drive lines are selected by the M- and N-Register
bits.

• The appropriate clock is selected by the high-order bit
position of the M-Register, and is started by read-call from
CPU.

• Resultant data byte is placed into the CPU R-Register.

M-REGISTER

Position 0 1 2 3 4 5 6

3 1

Binary
2 6 8 4 2 1
7 3 1 0 0 0 5

Value
6 8 9 9 4 2 1
8 4 2 6 8 4 2

Gate
Clock Terminator and V-Driver

Purpose
Control Phase Reversal Decode

Control

Sample
Binary 0 1 0 0 1 1 0
Address

\...

Figure 2-82. MN Decode

To read out a byte of data, the core­
storage unit must interpret the bits in the
CPU M- and N-Registers and select the
appropriate lines so the desired position
can be read out. To read out this posi­
tion, an X-line must be driven, a Y-line
must be driven, and the resultant data on
the sense lines must be amplified and set

N-REGISTER

7 0 1 2 3 4 5 6 7

2 1
5 2 6 3 1
6 8 4 2 6 8 4 2 1

V-Gate X-Driver X-Gate

1

Decode Decode Decode

1 0 0 0 1 0 1 1

~--------------------------------------~/ V
4D8B

into a data register. Selecting the cor­
rect lines is the result of decoding var­
ious bit groupings in the M- and N­
Registers (Figure 2-82). To follow a
storage read example through the core­
storage circuitry, assume the address 408B
is in the M- and N-Registers.

2030 FETOM (9/1/66) 2-85

Functional Units

+18 +18 +40 +6

(Not) N-Reg 3-8it

(Not) N-Reg 2-8it

Not Used

Read 1 16-32K

X READ GATE TRANSISTOR MS391

/ TaX Write .:.:.:.:.:.:./ t Gate Terminator

X READ DRIVER MS061

N-Reg 7-8it

Not Used

N-Reg 6-8it

Not Used

N-Reg 4-8it and
(Nat) N - Reg 5 - 8it

X GATE DECODE MS021

M-Reg 5-8it

(Not) M-Reg 4-8it

(Nat) M-Reg 3-8it

R2-8+24K-W2-16+32K

Y READ DRIVER MS10l

(Nat) N-Re!1 1-8it

Nat Used

1 From 127 Other

+6

i.l.

+6

Phase Read B

I-4Ha---l)I--O (Not) M-Reg 2-8it A

Y READ GATE TERMI NATOR MS151

Phase Read A

HH3-..... fQ---o M-Reg 1-8it

N-Reg 0-8it

Not Used

Y READ GATE TRANSISTOR MS421 X READ GATE TERMINATOR MS151

M-Reg 7-8it and
(Nat) M-Reg 6-8it

Y GATE DECODE MS031

Figure 2-83. Storage Read Example

Circuit Objectives (Figure 2-83)

1.

2.

2-86

start the clock for the first 32K
storage unit MS321).
Start 1st 32K clock

(Not) Early MO (M-Register O-bit)
Read Call

Define area of storage to be addressed
(MS321).
Use Main Mem

(9/1/66)

Read Call
(Not) Early Local Storage

3. Decode and drive an X-line.

a. Read 1 16-32K. This read timing
pulse from the clock conditions the
proper X-drivers as required bv the
phase reversal addressing scheme
(MS161).

Read 1 (from clock)
M-Reg I-bit controlled

Functional Units

b. 11 Gate TX 16-32K. This is the X-
gate decode (MS021).

N-Reg 7-Bi t
N-Reg 6-Bit
(Not) N-Reg 5-Bit
N-Reg 4-Bit

c. Rd 1 0-15 16-32K. This is the X-
driver decode CMS061).

Read 1 16-32K
(Not) N-Reg 2-Bit
(Not) N-Reg 3-Bit

d. Ary Side C 15X Ln 11 Al. This is one
end of the X-drive line (MS391).

11 Gate TX 16-32K (conditions
emitter of read gate transistor)

Rd 1 0-15 16-32K (conditions base
of read gate transistor)

e. Read 16-32K. This line provides a
current path at the other end of the
X-line. This requires that the X
read-gate terminator be turned on
(MS151).

M-Reg 1-Bit Controlled
Phase Read A (from clock)
X Gate Term Current Source (from

power supply)

4. Decode and drive a Y-line.

a. R2-8+24K-W2-16+32K. This read timing
pulse from the clock conditions the
proper Y-drivers as required by the
phase reversal addressing scheme
(MS161).

Not M-Reg 2-Bit A
Read 2 (from clock)
(Not) Use Local

b. R-8+ 24K-W16+32K- 3012- 4095. This is
the Y-driver decode (MS101).

M-Reg 5-Bit
M-Reg 4-Bit
(Not) M-Reg 3-Bit
R2-8+24K-W2-16+32K

c. 384-447 Gate TX C1. This is the
Y-gate decode (MS031).
(Not) N-Reg 1-Bit
N-Reg O-Bi t
M-Reg 7-Bit
(Not) M-Reg 6-Bit

d. Ary Side D 99 Y Ln 54 Al. This is
one end of a Y-drive line (MS421).
384-441 Gate TX A1 (conditions base

STORAGE WRITE EXAMPLE

of read gate transistor)
R-8+24K-W-16+32K 3072 - 4095

(conditions emitter of read gate
tra nsistor)

e. R-8+24K-W-16+32K. This line provides
a current path at the other end of
the Y-drive line. It is the result
of the Y read gate terminator being
turned on (MS151).

Y Gate Term CUrrent Source (from
power supply)

Phase Read B (from clock)
Not M-Reg 2-Bit A

5. Sense and amplify the resultant data
byte. Each 8K block of storage has two
sets of sense amplifiers (one set for
each 4,096 positions). These ampli­
fiers are active all the time. Thus,
in a 32K storage unit, there would be
eight sets of sense amplifiers (two for
each 8K block). To help distinguish
between the byte of information from
the addressed 4K block and noise from
the other 4K blocks, a strobe pulse is
developed for each 4K block. The M­
Register 2- and 1-bit positions, and
the N-Register 2-bit position determine
which 4K block is strobed. In the
example given, there is an M-Register
1- bit, no M- Register 2-bit, and no
N-Register 2-bit, indicating the
desired byte is in the first half of
the third 8K block. The output of this
4K block is gated to the final ampli­
fier by the strobe pulse that is devel­
oped. For simplicity, only the 6-bit
position is shown. The other eight bit
poSitions operate similarly.

a. Strobe 6-Bit 16-24K A (MS181).
Strobe (from clock)
Not M-Reg 2-Bit A
M- Reg 1- Bit Controlled
N-Reg 2 Bit A

b. SA 6 Bit 16-24K A. This is one half
(4,096 positions) of the sense cir­
cuitry for the third 8K block
(MS231).

SA - Inh Line 6-Bit Al
SA - Inh Line 6-Bit A2
Strobe 6-Bit 16-24K A

c. Mem Sense 6-Bit 16-32K. (Final
amplifier output MS281).

SA 6-Bit 16-241< A

• X- and Y-drive lines are selected by M- and N-Register bits •

• The clock is selected by the high-order bit position of the
M-Register and is started by write call from the CPU.

• Data from the R-Reqister activates appropriate store cir-

2030 FE.TOM (9/1/66) 2-87

FUnctional units

cuits, allowing x- and Y-lines to write the data into the
addressed position.

To write a byte of data into a core-storage
position, the CPU signals the core-storage
unit wi th a write call. The address in the
M- and N-Registers does not change between
read and write cycles. Therefore, we can
assume the same address (408B) is in the M­
and N-Registers in binary form. To write
data into this position, an X-line must be
driven, a Y-line must be driven, and the
appropriate inhibit lines must be driven to
cause the desired bit configuration to be
set into the position addressed by the X­
and Y-lines.

Circuit Objectives (Figure 2-84)

1. Start the clock for the first 32K stor­
age unit (MS321). Start 1st 32K clock

(Not) M-Reg O-Bit
Write Call

2. Define the area of storage to be
addressed (MS321). Use Main Mem (This
latch was set on during the previous
read cycle and stays on until local
storage is addressed on a read cycle).

3. Decode and drive an X-line

a. write 1 16-32K. This write timing
pulse from the clock conditions the
proper X drivers as required by the
phase reversal addressing scheme
(MS161).

Wri te 1 (from clock)
M-Reg 1-bit controlled

b. 11 Gate TX 16-32K. This is the X
Gate decode (MS021).

N-Reg 6-bit
N-Reg 7-bit
(Not: N-Reg 5-Bit
N-Reg 4-Bit

c. WR1 0-15 16-32K. This is the X driv-
er decode (MS061).

Write 1 16- 321<
(Not) N-Reg 2-Bit
(Not) N-Reg 3-Bit

d. Ary Side A 15 X Ln 11 Al. This is
one end of the X-drive line (MS381).

11 Gate TX 16-32K
WR1 0-15 16-321<

2-88 (9/1/66)

e. Write 16-32K. This line provides a
current path at the other end of the
X-line. This requires that the X
write-gate terminator be turned on
(MS151) •

Phase write A (from clock)
M-Reg 1-Bit Controlled
X Gate Term Current Source (from

power supply)

4. Decode and drive a Y-line.

a. R2-16+321<-W2-8+24KA. This write
timing pulse from the clock condi­
tions the proper Y-drivers as
required by the phase reversal
addressing scheme (MS161).

Not M-Reg 2-Bit A
Write 2 (from clock)
(Not) Use Local

b.R-16+32K-W-8+24K-3072-4095. This is
the Y-driver decode (MS091).

(not) M-Reg 3-Bit
M- Reg 4-Bit
M-Reg 5-Bit
R2-16+32K-W2-8+24K A

c. 384-447 Gate TX C1. This is the
Y-gate decode (MS031).

(not) N-Reg 1-Bit
N-Reg O-Bit
M-Reg 7-Bit
(not) M-Reg 6-bit

d. Ary Side D 99 Y Ln 54 C1. This is
one end of a Y-drive line (MS401).

384-447 Gate TX C1 (conditions base
of write gate transistor)

R-16+32K-W-8+24K-3072-4095
(conditions emitter of write gate
tra nsistor)

e. R-16+32K-W-8+24K. This line provides
a current path at the other end of
the Y-drive line. It is the result
of the Y read gate terminator being
turned on (MS151).

Y Gate Term CUrrent Source (from
power supply)

Phase write A (from clock)
(not) M-Reg 2-Bit

Functional Units

(Not) N-Reg 3-8it

(Not) N-Reg 2-8it

Not Used

Write 1 16 - 32K

X WRITE DRIVER MS061

N-Reg 7-8it

Not Used

N-Reg 6-8it

Not Used

(Not) N-Reg 5 and 4 8it

X GATE DECODE MS021

M-Reg 5-8it

(Not) M-Reg 4-Bit

(Not) M-Reg 3-8it

R2-16+32K-W2-8+24K

Y WRITE DRIVER MS091

(Not) N-Reg 1-8it

Not Used

N-Reg O-Bit

Not Used

M-Reg 7-Bit and
(Not) M-Reg 6-Bit

Y GATE DECODE MS031

Figure 2-84.

+18 +18

+6

storage write Example

5. Activate the appropriate inhibit driv­
ers. For each core plane in an 8K unit
there are two sense/inhibit windings.
Thus, there are 18 sense/inhibit wind­
ings in an 8K block of storage. To
supply inhibit current, there is one
set of nine inhibit current drivers for
the one balf of the 8K block, and one
set of nine inhibit current drivers for
the other half of the 8K block (Figure
2-85). Only one of these sets of nine
inhibit drivers is allowed to be active
during any storage write cycle. This

1./

11

If

+40 +6

Phase Write B

1-4~-~~ (Not) M-Reg 2-Bit

Y WRITE GATE TERMINATOR MS151

Phase Write A

1-4~-"-kI---o M-Reg I-Bit

X WRITE GATE TERMINATOR MSI51

means that a set of nine inhibit driv­
ers must be selected as a part of the
address decode. Thus, to store a pro­
perly coded byte of information in an
addressed position, the proper set of
nine inhibit drivers must be condi­
tioned to turn on. Then the bit coding
of the byte to be stored causes the
correct inhibit drivers of that set to
be turned on at inhibit time. For each
bit position of the byte to be stored,
presence of a bit at the inhibit driver
input prevents that inhibit driver from

2030 FETOM (9/1/66) 2-89

~unctional Units

2 Sets of Ni ne
Inhibit Drivers

Figure 2-85. Inhibit Driver Control

turning on. Conversely, for each bit
position of the byte to be stored,
absence of a bit allows the inhibit
driver to turn on. As a result, there
is no inhibit current flowing where a
bit is to be stored, and inhibit cur­
rent flows where no bit is to be
stored.

a. To effect inhibit driver selection,
the Inhibit timing pulse is switched
with the N-Register 2-bit to produce
Inhibit A or Inhibit B pulse. These
pulses determine which set of inhibit
drivers will be allowed to turn on.
In this case, there is no N-Register
2-bit. As a result, the Inhibit A
pulse turns on (MS321).

Inhibit (from clock>
(not) N-Reg 2 Bit

b. To complete inhibit driver selection,
theM-Register 2- and i-bits define
in which 8K block inhibit current is
to flow.

2-90

Inhibit 16-24K A. This line iden­
tifies the address as falling
within one group of 4,096 posi-

(9/1/66)

tions of the third 8K block of
storage (MS16i).
Not M-Reg 2-Bit A
M-Reg 1-Bit Controlled
Inhibit A

c. SA-Inh Line 6-Bit A1
SA-Inh Line 6-Bi t Aa
These are the two ends of the inhibit
winding for the desired 4,096 posi­
tions of the 6-bit plane of the third
8K block of storage. For simplicity,
only the 6-bit is shown. Nine inhi­
bit drivers are involved to set a
byte of data into a storage position.
Notice that the inhibit driver is
conditioned and that inhibit current
is made to flow because there is no
store 6-bit input. Thus, a bit input
prevents inhibit current which allows
the X- and Y-dri ve lines to set the
core, whereas not-bit input enables
the inhibit driver. When inhibit
current flows, it opposes the effect
of the X-drive current and the core
is not set (MS231).

Inhibit i6-24K A
(not) Store 6-Bit

Functional Units

M2- I CORE STORAGE UN IT

• The M2-1 storage unit is the 1.5 microsecond read-write
storage unit for the IBM 2030.

• The M2-I is a separately packaged core storage unit in the
2030.

• A memory/CPU interface transfers all information between the
M2-I and the 2030.

The M2-I memory provides the IBM 2030 Proc­
essing Unit with a 1.5 microsecond read­
write cycle time. The basic unit of
informa tion in the 2030 is the eight-bi t
byte, with an additional bit added to main­
tain odd parity of data. storage sizes are
the same as for the 2.0 microsecond M2
memory offered on early 2030's. The 8K,
16K, 32K, and 65K refer to 8,192 bytes,
16,384 ~tes, 32,768 bytes, and 65,536
bytes of storage respectively.

Timing
and
Interface

Array
Gates
and

Heater
Area

Sense Amps
and Z Drivers

Array
Gates
and
Controls

R
E
S
I
S
T
o
R~
S

X, Y Drive
Resistors

Figure 2-86. M2-I Storage unit (SK, 16K,
32K)

Like the M2 memory, the M2- I is a s epar­
ately packaged unit that is installed
inside the 2030 processing unit. This
separately packaged unit contains the con­
trols, timing generator, core array, drive
system, and sense/inhibit system. An M2-I

may be 8K, 16K, or 32K in size (Figure
2-86). If the 2030 requires the full 65K
of storage, two separate M2-1 units are
installed in the 2030.

Because the unit is entirely separate
from the 2030, commWlication between the
two takes place over a number of signal
lines called the Memory/CPU interface.
Essentially, this interface transfers
address information, input data, output
data, and timing signals. Basic data flow
is as follows: the 2030 places a two-byte
address into the M- and N-Registers (Figure
2-87) •

Timing and Interlock Si9nols'--*l-----+-I

p~~p~~~--------------------------~ 7~7

~7;I'R~eg~ I~P7:--~~;;: l Systems

2030 Basic
Circuitry

Separate Memo!), Gate
Loco ted in 2030.

Figure 2-S7. Memory to CPU Data Flow

Inhibit

Sense

At the appropriate time, the memory is
signaled to begin a read cycle. The memory
timing circuits begin a read cycle and the
byte of information located at the address
in the M- and N-Registers is read out and
placed on the data lines to the 2030. The
memory signals that the data is Wreadyw.
This allows the 2030 to set the information
into the R data-register. When the read
cycle is complete, the memory stoIE. The
byte of data read out may be placed back
into the addressed location, or different
data may be placed into that storage posi­
tion. The data to be stored is placed into
the R- register. The 2030 then signals the
memory to begin a write cycle. The memory
timing circuit starts, and the same posi­
tion is addressed again. This time, howev­
er, the information in the R-Register is
placed into the addressed position.

2030 FETOM (9/1/66) 2-91

Functional Uni ts

CORE ARRAY

• The core array is composed of a number of core planes.

• Three wires go through each core •

• Horizontal drive lines are called X-lines.

• Vertical drive lines are called Y-lines.

• A common sense/inhibit winding is used.

The core storage array is composed of a
number of core planes. Each core plane
consists of a plastic-material frame
approximately 1/8 inch thick and 6 1/2
inches square. The basic core plane con­
tains 16,384 cores located at the intersec­
tion points of the 128 horizontal drive
lines and the 128 vertical drive lines
(Figure 2-88). The horizontal drive lines
are called X-drive lines, whereas the ver­
tical drive lines are called Y-drive lines.
The M2-1 uses a common sense/inhibit wind­
ing tha t is wound parallel to the X-line.
Thus, three wires go through each
core: one X-drive wire, one Y-drive wire,
and one sense/inhibit wire.

While an X-drive or Y-drive wire go
through 128 cores in a core plane, the
sense/inhibit wire goes through 4,096 cores
in a core plane. This means there are four
sense/inhibit windings in each core plane.

The 8K core array is composed of five
16,384-core planes (Figure 2-89). The
first plane forms bit-O and bit-5, the
second plane forms bit-1 and bit-6, the
third plane forms bit-2 and bit-1, the
fourth plane forms bit-3 and bit-P, and
half of the fifth plane forms bit-4. The
top half of the fifth plane is not used in
the 8K array.

2-92 (9/1/66)

Each X-winding travels through five
planes before crossing to the second half
of the core planes via an X-return card at
one end of the array. This X-return card
contains printed lines that carry X-drive
current from one X-winding in the lower
half of the array to another X-winding in
the upper ha If of the array. The winding
pattern of the array is such that alternate
X-drive lines are driven from opposite ends
of the core plane (see Figures 2-88 and
2-89 for core poSitioning).

The Y-drive lines are positioned S1m1-
larly. A Y-drive line starts at either the
top or bottom of the first core plane and
is wound through each plane (Figure 2-89).
ThUS, if drive current flows through one
X-line and one Y-line, ten cores will
experience the coincident dr ive current
necessary to affect the cores. The tenth
core, in the top half of the last plane,
experiences coincident drive current. How­
ever, this core output is not sensed.
Depending on the direction of drive cur­
rent, the ten cores are read from or writ­
ten into.

An 8K storage unit, such as shown in
Figure 2-89, has eighteen sense/inhibit
windings (two per bit). Each winding
serves 4,096 cores. The sense/inhibit
winding is parallel to the X-winding.

Functional Units

TOP

T ~
32 2048 Positions 2048 Positions

1 ~

T ~
32 2048 Positions 2048 Positions

1 ~

T ~
32 2048 Positions 2048 Positions

1 ~

T R:
32 2048 Positions 2048 Positions

1 ~

/. 64 Lines .\ I~ 64 Lines ·1
-t-------~;}-
f- ------7I"T

32
I I

Typical
Lines I I I Core

*------~;f_ Orientation

Figure 2-88. Core Plane Layout
;;f-------~T

64 Lines

2030 FETOM (9/1/66) 2-93

Functional Units

Printed X-Retum
Wires for Odd­
Numbered Lines
On This End of

2 Y-Lines
(One End
of Eoch)

Figure 2-89. 8X Storage Winding

The 16K core array consists of nine
16,384-core planes. The first plane forms
bit-O in both first and second 8K. (Figure
2-90). The second core plane forms bit-1
in both first and second 8K. This same
scheme continues through the ninth core
plane which forms bit-P for both 8K. An
X-winding travels through all nine planes
of one 8K unit before crossing to the sec­
ond 8X unit via an x-return card at the end
of the array. The x-return card connects
the X-winding to the second 8X unit. The
X-winding then continues through all nine
planes of the second 8X unit.

2-94 (9/1/66)

Figure 2-90. 16K Storage Winding

The Y-winding goes through both 8X units
in each of the nine planes. The signifi­
cant point is that the X-winding experi­
ences a phase reversal when crossing from
one 8X unit to the other. Because of this
phase reversal, the X- and Y-currents are
in-phase in only one 8K unit at a time.

Sense and inhibit consists of four wind­
ings per core plane for a total of 36 wind­
ings. Each winding passes through 4,096
cores in a plane.

The 32K array consists of eighteen
16,384-oore planes (Figure 2-91). This
array consists of two 16K arrays sharing a
single set of Y-windings. The desired
Y-winding is selected and driven. This
Y-winding goes through all eighteen planes.
The X-windings go through nine planes,
starting at one end, passing through nine
planes, crOSSing to the other half of the
plane via a printed X-return wire, and
returning through the other half of the
same nine planes. To address a particular
position, the appropriate Y-winding is
selected and driven. This makes it
possible to address four different core
locations. The desired location is driven
by selecting the appropriate set of X­
windings (first 16K or second 16K) by
selecting the appropriate X-winding within
the selected set, and by driving the
selected X-winding with current in the
appropriate direction. Current direction
control is necessary because of the phase
reversal between 8K blocks of storage on
the X-winding.

The 32K storage um t has 72
sense/inhibit windings (four windings per
core plane). Each winding passes through
4,096 cores, parallel to the X-windings.

FUnctional units

V-Winding Goes
Through All 18
Planes

Figure 2-91. 32K storage Winding

A 65K storage unit is actually two sep­
ara te storage units. Each unit can store
32,768 bytes of information. Each of these
32K units is the same as described pre­
viously (Figure 2-91). The units are sep­
arate physically, and each mounts on a
separate hinged gate in the 2030 (Figure
2-92).

CPU
Power
Supply

I/O Power
Connectors

Wires
(Second 16K)

Upper
32K

Figure 2-92. IBM 2030 showing Two 32K
Storage Units

2030 FETOM (9/1/66) 2-95

Functional Units

STORAGE CLOCK

• The M2-1 has a separate clock which allows it to operate
independently from the 2030.

• The clock consists of delay lines and timing latches.

• The clock is started by either read call or write call from
the 2030.

Read Call 750 ns
Delay 30 Delay Taps

Line
Write Call

Rd Set Ctrl

FL

Tap from
Delay line ____ ...J

Wr Set Ctrl

FL

Tap from
De lay line ____ ...J

Figure 2-93. Simplified Clock Logic

rhe M2-1 core storage unit contains a tim­
ing generator referred to as the storage
clock. Having a clock spearate from the
2030 clock allows the storage unit to oper­
ate independently from the 2030 once the
read call or write call signal starts a
storage cycle.

The clock is composed of three 250 nano­
second delay lines tied together with
appropriate controls to form a 750 nanose­
cond delay line. The delay line is tapped
at 25 nanosecond intervals. These taps are
wired to a series of latches to produce the
composite timing signals required by the
storage unit (Figure 2-93).

2-96 (9/1/66)

X Source Read

7 Read Timing Latches Y Source Read

FL Read 1 Latch

Read 2 Latch

Strobe

Data Ready

Read Echo

6 Write Timing Latches

Write A
FL

Write B

X Source Write

Y Source Write

Inhibit

Write Echo

When a read call signal arrives from the
20-30, the read set control latch is turned
on, and the delay line is driven. The read
set control latch allows the delay line tap
outputs to reach the read clock latches in
750 nanoseconds--the same time as one basic
2030 machine cycle (Figure 2-94).

Write call from the 2030 turns on the
write set control latch and drives the
delay line. The write set control latch
gates the delay line tap outputs to the
wri te clock latches (Figure 2-95). A write
cycle is completed in 750 nanoseconds--the
same time required for one 2030 clock
cycle.

FUnctional Units

Line Name Logic 200 ns 400 ns 600 ns

Read Call MM102 /\ \.1"--'- ~ - -- - - - -
Read Set Control MM102

~ J .- - ---
.-. -

~
.--

~ Read 1 MM103 - -
.....

Read 2 MM103 J "'w - ~ ~

-~
X Source Read MM102 r

-'" -V-

~

Y Source Read MM102 - ~--

Strobe MM103 -
...... .- -II -

" Read Echo MM113

Data Ready MM102 -) ~
Figure 2-94. Core storage Read timinqs

line Name Logic 200 ns 400 ns 600 ns

Write Call MM113 If
-,

1&
-...

Write Set Control MM113 V
.. - \

La-

Wr (Write) MM103 /' - \ -

A.

X Source Write MM112 V- \ -
.. ~

Y Source Write MM112 lI" - JO..--
~.JL.

Inhibit MM113 \, _ ..
Write Echo MM112

" Figure 2-95. Core Storage Write Timings

2030 FETOM (9/1/66) 2-91

FUnctional Units

CURRENT SOURCES

• Current sources supply drive current to the x- and Y­
windings.

• The drive current comes from the secondary winding of a
transformer.

• The primary windings of the source transformers are driven
by transistors signaled to turn on by the storage clock.

Read Current

I U05AE
I U05AF
I~05AG_

+6

+3

,

-, I-

I

,- - - - - - - - - -
I

__ I -=-

Driver

Y Source Read

1 Write Current

1-

I I
I I

-I 1~6~T ___ I

Go A ,
Write Clock Timing

1 U05AE
I U05AF

•

I~O~~ __ 1l!!6A~ __

Figure 2-96. Current Sources

,
1~16~Y

CUrrent sources are special circuits
designed to supply dri ve current to the x­
and Y-windings. In the basic 8K storage
unit, there are four current
sources: X-source read, X-source write,
V-source read, and V-source write. Each
current source consists of a transformer
secondary winding. The primary winding of
each transformer is driven by a transistor

2-98 (9/1/66)

Driver

Y Source Write

circui t (Figure 2-96). When the clock
signals V-read source timing, the V-source
read circuit is turned on to cause current
to flow in the V-source transformer primar­
y. This in turn causes transformer secon­
dary current flow. By this time, the sel­
ection circuitry has coupled the source
transformer to a single drive line and
current flows through the drive line. This

Functional units

same action occurs in the X-source read
circuit: the clock signals when to turn
on, the transistors provide transformer
primary current, and the transformer secon­
dary provides drive current for the select­
ed X-line.

GATE AND SELECTION SYSTEM

• The gate and selection system directs drive current to a
single X-line and a single Y-line •

• The gate and selection logic consists of control drivers,
address decoders, and gates.

The purpose of the gate and selection sys­
tem is to direct drive current from a cur­
rent source to a single X-line and a single
Y-line. The gate and selection system acts
like a switch at each end of the drive
lines to direct the current source drive
current to a single drive line (Figure
2-97). ThUS, the current source supplies
the current, and the gate and selection
circuitry simply girects the current to the
appropriate drive line.

The gate and selection circuitry con­
sists of control driver.s (SI5EX), address
decoders (U03AD), and gates (SISES, SI5ET).
In Figure 2-98, the composite logic is
shown for the Y-direction. Notice that the
gates are turned on to direct the current
source to the appropriate drive line.

2030 FETOM (9/1/66) 2-99

Functional Units

Current
Source

I
I
I
I
I
I
I
I
I
I
I
L_

000
o 0 0

Array

,
,

-------1
Gate and Selection I
System I

o 0
o

Gate and Selection
System

I
I
I
I
I
I
I
I
I
I

L _______________ --------------~

Figure 2-97. Gate and selection System

2-100 (9/1/66)

Note: Heavy Line Indicates
Selected Line.

Functional Units

SENSE/INHIBIT SYSTEM

• A combination sense/inhibit winding is used.

• Each sense/inhibit winding goes through 4,096 cores, paral­
lel to the X-drive lines.

• During a read cycle, the sense/inhibit winding senses pulses
caused by cores changing states.

• During a write cycle, the sense/inhibit ~inding can prevent
cores from changing state.

The M2-I uses combination sense/inhibit
~indings for storing and retrieving infor­
mation. This winding is wound parallel to
the X-winding and it goes through 4,096
cores in a single core plane. There are
four such ~indings for each 16, 384-core
plane. During a read cycle, a core that
switches (was logical 1) induces a pulse
onto the sense/inhibit winding. This pulse
is amplified by a sense amplifier (Figure
2-99) •

The sense amplifier senses a change or
difference in current on the sense winding
and is called a differential amplifier. To
prevent unwanted noise from being amplified
in other storage sections, only the sense
winding outputs for the 4,096 block of
storage being addressed are allowed to
reach sense amplifiers. The sense ampli­
fier gate allows the desired sense winding
output to be amplified. The output of the
sense amplifiers appears at the input of
the detector circuit. Here the strobe

pulse from the storage clock gates the
sense amplifier output to a data latch
~hich stores the bit until used by the
processing unit. During a read cycle, if a
core does not switch (was logical 0), no
pulse is induced onto the sense winding,
and therefore the data latch is not set.

During a write cycle, if a bit is to be
stored in a core, the core is switched by
the effect of the coincident X- and Y-drive
currents. In this case, the inhibit cur­
rent is not allowed to flow (Figure 2-99).
During a write cycle. if the bit is to be
blocked from setting, inhibit current must
flow to oppose the magnetic effect of the
X-write current. With the absence of a
store Signal at the inhibit driver input,
the inhibit driver turns on, inhibit cUr­
rent flows and the effect of the inhibit
current cancels the effect of the X-winding
current. As a result, the core is not set
to a logical 1 state.

2030 FETOH (9/1/66) 2-101

Functional Units

Figure 2-98.

Not-Bit

Use This
4K Block

A

Figure 2- 99.

Read Current Direction

To 15

To 15
other
Write
Gates

r Array 11
~)~---~

Gate and selection Logic

U61CD

III~ Driver
Circuit

'--r---r-'

Sense/Inhibit Winding

4096 Cores

Parallel to X-Winding

Pre - Amp Gate

1-------
I U61CG :

~---l~ :
Strobe

-30o---.-----~~

Sense and Inhibit Logic

Write Current Direction

Reset _____ •

Fl
-U03DP-

U03DQ
U03AF

2-102 (9/1/66)

To 15

A
Write
Gate
S15ET

To 15
other
Write
Gates

Bit

To other
Write Gates

Functional units

POWER SUPPLY AND TEMPERATURE COMPENSATION

• Four power supply voltages are required for operation of the
M2 - I : + 6, + 3, - 3, - 30.

• The logic boards are cooled by fans.

• The core array is heated by a heater element, and cooled by
a fan.

• A unit called the Proportional Controller controls the heat
generated by the heater element.

The M2-1 requires four dc power supply
voltages for operation of the logic and
drive circuitry. The voltages and the 2030
power supply from which they originate are:

+6 Power Supply 3

-30 Power Supply 6

+3 Power Supply 7

-3 Power Supply 8

A -18 volt supply is generated internal­
ly in the memory from the -30 volt supply.
This special voltage supplies bias current
for the sense ampl1fiers.

Also supplied to the memory gate is a
208 volt ac line aId a 24· volt dc line for
operation of the temperature control sys­
tem. This system consists of two
continuously-running fans to cool the logic
gates, and a core array heater and fan for
controlling the temperature of the core
array.

AUXILIARY STORAGE

A thermistor near the core array senses
the array temperature. The variation in
thermistor resistance Signals a separate
unit called a proportional controller.
this unit is located behind the memory gate
on the 2030 frame. Its purpose is to con­
trol the power supplied to a hea ter element
located near the core array. Varying the
power supplied to the core array heater
element controls the temperature of the
core array. The heater fan, located under
the core array, runs continually to blow
air past the heater element into the core
array.

The LP light on the ROS area of the 2030
consol e indicates low pressure in the C­
CROS air system. When the M2-1 is
installed, a thermostatically-controlled
relay turns the LP light on if the array
temperature is below its correct operating
limit. If the array temperature rises
above 120 deg. F, a thermal contact locat­
ed in the core array area initiates a
power-off sequence in the 2030.

• Auxiliary storage is an added area for CPU, and I/O control
and status int ormation.

• Auxiliary storage requires additional addressing in the
Y-dimension only.

• Auxiliary storage is referred to as bume storage.

• The amount of auxiliary storage available varies with the
size of the main storage unit.

Included in the storage unit is an addi­
tional area of auxiliary storage used by
multiplexor channel and by the proceSSing
unit. This auxiliary storage is formed by
adding eight extra Y-lines to the basic
core plane (Figure 2-100). An 8K unit,
~ith five core planes, has 512 positions of
auxiliary storage. Of these 512 positions,
256 are for CPU local storage, and 256 are
for multiplexor channel usage. Eight aux­
iliary storage lines (Y-lines) intersect

with 128 X-lines to form 256 byte-positions
for CPU local storage, and 256 byte­
positions for multiplexor storage. In the
8K unit, these 8 auxiliary storage windings
intersect with the 64 upper X-windings to
form the 5-, 6-, 7-, and P-bit positions
(see Figure 2-89). The eight auxiliary
storage windings intersect with the bottom
14 lines to form 512-byte positions for
lower bits. This would correspond to bits
0, 1, 2, 3, or 4.

2030 FETOM (9/1/66) 2-103

Functional units

T
32

1

T
32

1

T
32

~

T
32

~

Figure 2-100.

2048 Positions
+

128 Positions

2048 Positions
+

128 Positions

2048 Positions
+

128 Positions

2048 Positions
+

128 Positions

TOP

8 Auxiliary Storage Lines
4 for CPU Local Storage
4 for Multiplexor Storage

2048 Positions
+

128 Positions

2048 Positions
+

128 Posi tions

2048 Positions
+

128 Positions

2048 Positions
+

128 Positions

I"'~~--Y-~nes -----I~~14 f- --141 ... 411------Y~~ines---... ~~1

Eight additional Y lines intersect with 128 X lines to produce 1024 additional bit positions per plane.

Auxiliary Storage Core Plane Windings

2-104 (9/1/66)

Functional Units

In a 16K core array, four 256-byte
auxiliary storage areas are available. The
same scheme is used to create the extra
storage positions: eight auxiliary storage
lines in the Y-direction intersect with 128
X-lines to produce 1,024 additional byte
positions of auxiliary storage. The auxil­
iary storage areas are labeled MPX 0, MPX
1, MPX 2, and local storage.

A 32K storage unit provides the maximum
amount of auxiliary storage. In this unit,

BK STORAGE OPERATION

up to eight 256-byte auxiliary storage
areas are available. These areas are MPX
0, MPX 1, MPX 2, MPX 3, MPX 4, MPX 5, MPX
6, and local storage.

Expansion beyond 32K does not yield
additional auxiliary storage. Therefore,
auxiliary storage is always located in the
lower 32K.

• A complete storage cycle consists of a read cycle and a
write cycle.

• In a given storage cycle, drive current flows through the
selected drive lines in one direction for read, and in the
opposite 1irection for write.

• At the end of the read cycle, all cores at the addressed
position are logical o.

• An interlock in the 2030 ensures that a write cycle occurs
between read cycles so a storage position is not left blank.

• The inhibit drivers turn on for those bits where the core is
to be left at logical o.

Description (FigHre 2-101)

When the 2030 places an address into the M­
and N-Registers and requests a read cycle,
the storage clock is started. The address
lines from the M- and N-Registers combine
with clock timing to turn on X- and Y-read
current sources x- and Y-read gates, and X­
and Y-read control drivers. This causes
read current to flow through one X-winding
and one Y-winding. The coincident read
drive currents cause all the cores at the
addressed position to experience a magnetic
effect great enougb to switch all cores to

the logica I 0 magnetic state. Any cores
that change magnetic state from logical 1
to logical 0 cause a current pulse to be
induced onto the sense winding. The clock
signals combine with the M- and N-Register
bits to gate the appropriate sense ampli­
fiers. The amplified sense bits cause data
latches to set on. Toward the end of the
read cycle, the 2030 is signalled that the
data is ready. At this time, all cores in
the addressed position are set to logical
o. This means the addressed poSition con­
tains an even parity byte (000000000).

2030 FETOM (9/1/66) 2-105

Functional Units

X=N REG
5, 6, 7
X A
X

X
Source

RD 0-8K

x
X

X

X

X

X

Sink

A

A

WRO-8K

X

X

X

MM302
Address Decode
U03AD

MM302
X Read and Write Gates
S 15ES, S 15ET

157-16

Figure 2-101. 8K storage Operation

2-106 (9/1/66)

Y-line

M322
X Read and Write Gates
S 15ES, S 15ET

XX=N REG

2, 3, 4

A XX

XX
XX

Source

WRO-8K

A

A

XX

XX

XX

XX

XX

XX

RD 0-8K

MM322
Address Decode
U03AD

Functional Units

The write call signal from the 2030
starts the storage clock and conditions a
write cycle. The M- N-Register contain the
same address as during the preceding read
cycle. However, the address bits now com­
bine with write timings to turn on X- and
Y-write current sources, X- and V-write
gates, and X- and V-write control drivers.
rhe result is that current flows in the
opposite direction through the same two
drive lines as during the preceding read
cycle. With no further control, this would
result in all cores in the addressed posi­
tion being set to logical 1. However,
during a write cycle, it is necessary to
set some cores to logical 1 while leaving
the other cores at logical O. The byte of
information to be stored in core storage
was placed in the R-Register by the 2030
before the storage write cycle was initiat­
ed. To store the correct byte, the byte in
the R-Register controls the appropriate set
of inhibit drivers so inhibit current will
flow in the bit sections where the core is
to remain logical 0, and inhibit current is
blocked in the bit sections where the core
is to be flipped to logical 1. Thus, if
the R-Register contains the byte P00101101,
the 0-, 1-, 3-, and 6-bit inhibit drivers
are turned on while the P-, 2-, 4-, 5-, and
1-bit inhibit drivers are blocked .from
turning on. The result is that although
coincident write current flows through all
cores in the addressed position, only those
cores that experience no inhibit current
are set to logical 1. This causes the byte
that was in the R-Register to be stored in
the addressed storage location.

Circuit Objectives

Assume the binary address 0000 0010 1001
0010 is in the M- and N-Registers and that
the 2030 calls first for a read cycle, and
then a write cycle. The byte read out is
to be regenerated (placed back into the
addressed position) on the write cycle.

1. Start the storage clock (MM122).

Read Call

2. Turn on the read set latch to enable a
read cycle (MMI02).

Read Call
(not) Delay Tap 200 ns

3. Set the main/local storage latch to
define the area of storage to be
addressed (MM212).

Read Call
(not) Early Local storage

4. Select and drive one X-line with read
current. This involves turning on two
read control drivers (one for each end
of the X-line), two address decode

switches (one for each end of the
X-line), two read gates (one for each
address decode switch), and the X-read
current source.

a. Turn on Decode Switch---010 (MM302).

b.

This is the X decode switch for the
source side of the X-line.

N Reg 6 Bit
(not) N Reg 5 Bit
(not) N Reg 7 Bit

Turn on Decode Switch
This is the sink side

(not) N Reg 2 Bit
N Reg 3 Bit
(not) N Reg 4 Bit

010--- (MM322) •
of the X line.

c. Turn on Rdl 0-8K Wr 8-16KB and
Rd1 0-8 16-24 Wr 8-16 24-32
These are the X control drivers and
they condition the X read gates at
the decoded address 010010 in the
first 8K section CMM232).

RD1 (from clock)
Cnot) M Reg 1 Bit
(not) M Reg 2 Bit

d. An X-line has been decoded and a read
gate has been conditioned at each and
of the X-line. Now the read current
source and sink must be turned on to
cause current to flow CMM252).

X Source Read
Go (not M Reg 0 Bit)
(not) M Reg 2 Bit

5. Select and drive one V-line with read
current. This requires turning on two
read control drivers (one for each end
of the Y-line), two address decode
switches (one for each end of the
'(-line), two read gates (one for each
decode switch), and the Y read current
source.

a. TUrn on Decode Switch - 0 - - 010
(MM402). This is a '(-decode switch
for the source side of the Y-line.
The gates are on the same logic page
and are fed by the decode switches
and the control driver.

N Reg 0 Bit
(not) N Reg 1 Bit
(not) M Reg 7- Bit ctrl
(not) M Reg 4 Bit Ctrl

b. Turn on Decode Switch 0001---(MM442).
This is the Y-decode switch for the
sink side of the Y-line.

M Reg Not 3 and Not 4 Bits
(not) M Reg 5 Bit
M Reg 6 Bit

c. Turn on Read 2 Control o-32KA and
Read 2 Control 0-32KB.
These are the read control drivers
that condition the Y read gates at

2030 FETOM (9/1/66) 2-107

Functional Units

the decoded Y-address 0001010
(M-Register 3 thru 7, N-Register 0,
1).

Use Ma in Storage
Read 2 (from storage clock)

d. A Y-line has now been decoded and a
read gate has been conditioned at
each end of the V-line. Now the read
current source and sink must be
turned on to cause current to flow
(MM252).

Y Source Read (from storage clock)
Go

6. Develop the sense amplifier gate so the
appropriate sense windings are gated to
their respective sense amplifiers. The
gate for this address is SA gate 0-8KA
(MM692).

Not M Reg 1 Bit Cont
(not) M Reg 2 Bit
(not) N Reg 7 Bit

1. Gate the sense pulses to the sense
amplifier, strobe the detector and
latch the detector output. (MM512
through MM592).

SA Gate 0-8KA
SA In Bit 0-8KA
Strobe 0-16K (from clock)

8. After the SA detector latches are set,
the storage unit signals the 2030 CPU
that the read data is ready (MM002).

Data Ready (from cloc'k)

9. Without changing the address in the M­
and N-Registers, the 2030 CPU requests
a storage write cycle and starts the
storage clock (MM122).

write Call

10. Set up the storage clock for a write
cycle by turning on the write set latch
(MM113).

Write Call
Go

11. For the write cycle, it is necessary to
select and drive the same X- and Y­
drive lines as were driven on the read
cycle. However, now they are driven
with current in the opposite direction.
This is done by conditioning the write
gates instead of the read gates at this
address. Consider the V-line first.
For this, it is necessary to turn on
two control drivers (one for each end
of the Y-line), two address decode
switches (one for each end of the
V-line), two address gates (one for
each decode switch), and the Y-write
current source.

a. Decode switch-0--Ol0 is still on
because the M- and N-Registers have
not been changed. This is the Y-

2-108 (9/1/66)

decode switch for the sink end of the
Y-line.

(not) M Reg 1 Bit Ctrl
(not) M Reg 4 Bit etrl
N Reg 0 Bit
(not) N Reg 1 Bit

b. Decode switch 0001---is still on
because the M- and N-Registers have
not been changed. This is the Y­
decode switch for the source end of
the Y-line.

M Reg Not 3 and Not 4 Bits
(not) M Reg 5 Bit
M Reg 6 Bit

c. Turn on the Y control-drivers, Write
Control 0-32KB and write Control
0-32KA (MM222). These will turn on
the write gates at Y address 0001010.

Wri te B (f rom clock)
Use Main Storage

d. A Y-line has been decoded and a write
gate has been conditioned at each end
of that line. Now the write current
source and sink must be turned on to
cause write current to flow (MM252).

Y Source Write (from clock)
Go

12. Select and drive the same X-line with
write current. This requires two
control drivers (one for each end of
the X-line), two address decode switch­
es (one for each end of the X-line) and
two address gates (one for each decode
switch), and the X-write current
source.

a. Decode Switch---Ol0 is still on
because the M- and N-Registers have
not changed since the read cycle.
This is the X-decode switch for the
sink end of the X-line (MM302).

(not) N Reg 5 Bit
N Reg 6 Bit
(not) N Reg 1 Bit

b. Decode Switch 010---is still on
because the M- and N-Registers have
not changed since the read cycle,
this is the X-decode switch for the
source end of the X-line (MM322).

(not) N Reg 2 Bit
N Reg 3 Bit
(not) N Reg 4 Bit

c. TUrn on X-control drivers WrO-8 16-24
and WrO-8K Rdl 8-16K.
These in turn condition the X-write
gates at the decoded X-line 010010
(MM232).

Write A (from clock)
(not) M Reg 2 Bit
(not) M Reg 1 Bit

d. An X-line has now been selected and a

Functional Units

write gate has been conditioned at
each end of that line. Now the write
current source and sink RUst be
turned on to cause write current to
flow (MM252).

X Source write
(not) M Reg 2 Bit

13. The appropriate set of inhibit drivers
must be gated so that only one set of
these drivers turns on. For this
address, Inhibit O-BKA must be turned
on (MM502). The terminology 0-8KA
denotes all even addresses in 0-8K of
storage, similarly, O-BKB denotes all
odd addresses in 0-8K of storage.

(not) N Reg 7 Bit

AUX ILIARY STORAGE FOR 8K

(not) M Reg 1 Bit
(not) M Reg 2 Bit
Inhibit (from clock)

14. For those bits that are to he set ON,
the inhibit driver must be blocked from
turning on (MM732 through MM7?2). The
store lines block their respective
inhibit drivers.

15. For those bits that are to be blocked
from setting, the appropriate inhibit
drivers are turned on by the (not)
store lines. Inhibit current opposes
the affect of the X-drive current and
the core is not set (MM7 32 through
MM.? 7 2) •

• Auxiliary storage in the 8K unit consists of two 256-byte
storage areas.

• Eight additional Y-lines intersect with 64 X-lines to pro­
duce 512 additional storage positions.

• Two adjitional Y-read gates and two additional y-write gates
provide control of the extra Y-lines.

Circuit control of auxiliary storage for
the 8K unit requires two additional sets of
Y-line bump decode read-write gates (Figure
2-102). These gates are controlled by the
M-Register 3-bit (MM152). They control one

end of the eight additional drive lines.
The other ends are connected to four sets
of read-write gates used to address main
storage. X-line decode and drive is no
different than for main storage.

2030 FETOM (9/1/66) 2-109

Functional Units

r1<J-
me torage nd

Line 75
Size 8K 16K 32K 32K

Write Control 0-32K ---t<}
Wr. Current Sink DR Y-Lines

(WR) r--- for Bump 8 8 8 ---
N-Reg 0

1 ,;
J A N-Reg 1 X-Lines 64 128 256 ---

M-Reg 4,7 J L

~ DR
Available

(RD) Line 72 Bump Pos 512 1024 2048 ---

Line 73

L' 74 2

......- ~
~ - DR
~ ~~ Line 68

N-Reg 0 (WR)

~ 1
Line 69 8 Y-Lines

IA N-Reg 1

H-J L

~
Line 66

Line 67
DR
(RD)

Array

t--- r-Kt
DR H<1 ~ >-- (WR) ~

N-Reg 0

r ~~

IA N-Reg 1

~ :u L I

DR
---4 H>: (RD)

~~ X-Lines - ----- 1--- ----- - 1-, ~

~

~
-

DR - (WR)
N-Reg 0" r' IA N-Reg 1

LU L rl>i
Rd. Current Source DR

~ (RD) ~
Read 2 Control 0-32K

L-- ~~
--'---

Odd

rl>I 67

1] DR .1 69
(WR)

~ 73 -
Lt>f 75

M-Reg "3

IA

Bump Odd Drive Lns
Odd rl<}

Use Main Storage
IA

DR ~pg ~

Rd. 2 (RD)
r--

4J
Even

~
66

Write B 68

Wj DR

~~~ (WR) 72 

r ~ I-- Lt:t 74 

A 
Bump Even Drive Lns 

H2 M-Ileg 3 Bit ltJ 
Even 

DR 1 

(RD) --kJ ~ 

Wr. Current Source 

Rd. Current Sink 

*Each Y-line driver is connected to 8 additional main storage Y-lines. 
The 4 RD and 4 WR drivers shown are the only ones that drive 10 lines. 

Figure 2-102. Auxiliary Storage Drive Scheme 

2-110 (9/1/66 ) 



FUnctional Units 

16K STORAGE OPERATION 

• The 16K storage unit is. composed of nine core planes. 

• The x-return wires connect the two aK units in the X­
direction. 

• Phase reversal takes place between the two 8K units so only 
one unit is addressed at a time. 

X-2 
Drive 

X- I 
Drive 

Read 1st 8K Y-I X-I 

Read 2nd 8K Y- I X-2 

Write 1st 8K Y-2 X-2 

Write 2nd 8K Y-2 X-I 

Y-2 

Figure 2-103. 16K Storage Operation 

Description place at the X-control drivers and at the 
X-source drivers. 

The 16K storage unit contains nine core 
planes. The planes are wound so that tl«> 
8K storage units are produced (Figure 
2-103). The X windings thread through all 
nine core planes, cross over to the other 
half of the array, then thread back through 
the upper halves of these same core planes. 
The Y-windings thread through all nine core 
planes once. The result is that if one 
X-winding and one y-winding are driven with 
drive current, nine cores experience 
coincident drive current. Because the 
X-winding undergoes a phase reversal 
between 8K units, the respective cores in 
the other ha If of the array do not experi­
ence coincident drive current. To address 
the similar position in the second 8K block 
of storage, the drive current must be rev­
ersed (Figure 2-104). 'nlis reversal takes 

Circuit Objectives 

Circuit control for the 16K unit is exactly 
the same as for the 8X unit with the excep­
tion of the X-control driver and X-source 
driver. The X-control driver determines 
the direction of current flow in the X­
winding by switching on the proper X-gate, 
while the X-source drivers turn on the 
actual source current in the appropriate 
direction. 

1. The M-Register 2-bit combined with the 
function read or write, controls the 
X-control drivers (MM232). 

M Reg 2 Bit 

2030 FETOM (9/1/66) 2-111 



Functional Units 

Rd 1 
Wri te A 

2. The M-Register 2-bit, combined with the 
function read or write, controls the 

Array Pin X + 1 

Array Pin X (16 

(SK) 

K) ... -

Sid e B 

---

V-Line 

Side C 

Bit 5 (O-SK)j"'" 
Currents Aid 

""- .. • 
- - - BitO (s=i6K) --;7 ~------~-

X-Current must be 
Reversed to Aid 
V-Current 

Bit 0 (SK) 
Currents Aid "\. 

'4 

• 

Side A 

V-Line 

Figure 2-104. 16K Phase Reversal Wiring 

AUXILIARY STORAGE FOR 16K 

I 

I 

X-source drivers (MM242). 
M Reg 2 Bit 
Read 1 
Wr 

Phase Reversal because 
of Connection on 
X-Return Board 0 f 
16K Storage Unit 

\ 
SK 

---- --------- r- - - -~ 16K 

I 
Side D 

I 

• Auxiliary storage in the 16K storage unit consists of four 
256-byte storage areas. 

• The eight additional Y-lines intersect with 128 X-lines in 
each plane to produce 1024 additional storage postions. 

• Two additional Y-read gates and two additional Y-write gates 
control the additional Y-lines. 

The 16K auxiliary storage unit uses the 
same additional Y-line bump decode gates 
shown in Figure 2-102. These gates are 
controlled by the M-Register 3-bit and the 
main/local latch (MM142). The X-drive 
lines for bump storage are the same X-lines 

2-112 ( 9/1/66) 

that are used in main storage. Phase 
reversal ,is also used in bump storage to 
determine which 8K block is being exer­
cised. The controls for this phase rever­
sal are the same controls used in main 
storage. 



Functional Units 

32R STORAGE OPERAXION 

• One single set of Y-lines drives all 18 core planes. 

• Two sets of X-lines drive 18 core planes; each set drives a 
16K unit. 

• Phase reversal takes place between the first and second 8K 
on the first set of X-lines, and between the third and 
fourth 8K on the second set of X-lines. 

Description 

The 32K storage unit consists of 18 core 
planes. The Y-windings go through all 18 
planes in a serial manner (see Figure 
2-91). There are two sets of x-windings; 
one for the first 16K, and one for the 
second 16K. In each 16K, the X-winding 
undergoes a phase reversal between 8K 
units. Selection of a single core storage 
position requires control of drive current 
direction for the phase reversal. This 
control is obtained by using the M-Register 
2- and 1-bits to determine which X-control 
drivers and X-source drivers are turned on. 
~ircuit control for 32K takes place at the 
X-control drivers and X-source drivers. 
The M-Register 2- and 1-bits select the 
appropriate set of control drivers (0-16R, 
16-32K), and determine the direction of 
current flow by controlling the X-source 
drivers. 

AUXILIARY STORAGE FOR 32K 

Circuit Objectives 

1. Select the appropriate set of X-control 
drivers. The M-Register 1-bit deter­
mines which set (first 16K or second 
16K) of X-control drivers is used 
(MM2~2, MM242). The M-Register 2-bit 
determines which half of the 16K sec­
tion will be activated. 

M Reg 1 Bit 
M Reg 2 Bit 
Rd 1 
Write A 

2. Allow current to flow in the proper 
direction according to the 8K unit 
being selected and whether the opera­
tion is read or write (MM252). 

Go 
X-Source Write 
M Reg 2 Bit 
X-Source Read 

• Auxiliary storage for the 32K storage unit provides up to 
eight 256-byte storage areas. 

• One set of eight additional Y-lines goes through all core 
planes. 

• There are two sets of X-lines: one is for the first 16K, 
one is for the second 16K. 

A 32K storage unit can have up to 2048 
auxiliary storage positions in the form of 
eight 256-byte bumps. Two sets of Y-bump­
gates combine with the existing Y-decode 
gates to select a single Y-line. This 
selected Y-line goes through all four 8K 

storage units. However, only one 8K unit 
is selected because of X-line phase 
reversal, and because there is a separate 
set of X-lines and X-control drivers for 
each 16K of storage CMM232, MM242). 

2030 FETOH (9/1/66) 2-113 



Functiona 1 Uni ts 

65K STORAGE OPERATION 

• The 65K core storage unit consists of two 32,768-byte stor­
age units. 

• Each 32K unit contains all the necessary circuitry to 
address all positions in that unit. 

• The M-Register O-bit determines which 32K unit is used. 

A 2030 with 65K core storage capacity has 
two separate core storage units. Each is 
mounted on hinges in the lower-left side of 
the 2030. The first 32K is the one located 
nearest the 2030 console. The second 32K is 
between the first 32K and the power supply 
tower. Each is a self-contained unit con­
taining address decode and drive circuitry, 
and sense and inhibit circuitry. A single 
set of logics is provided to cover addresses 
up to 32,767. These logics contain appro­
priate notes to make one set of logics 
applicable for both units. All pin numbers 
and other locations are the same for both 
units. The only difference is the gate des­
ignation: the first unit is called gate C1; 
the second unit is called gate C2. 
15 bits of the M- and N-Registers (Figure 
2-105). The high order address bit 
(M-Register 0) forms the Go signal that 

p 7 

determines which unit is to be addressed 
and blocks drive current in the unit not 
being addressed. Thus, the M-Register 
O-bit can be thought of as having the value 
of 32,768. For example, if the binary 
address 00000000 00000000 is placed into 
the M- and N-Registers, and a read call is 
issued, both storage units begin addressing 
the low-order core storage position. 
Because the high-order address bit is logi­
cal 0 (not M-Register 0 bit), the low-order 
32K unit receives the Go signal and drive 
current in the second 32K unit is blocked. 

If the binary address 10000000 00000000 
is placed into the M- and N-Registers, and 
a read call is issued, both storage units 
begin addressing the low-order core storage 
position. Because the high-order address 
bit is logical 1 (M-Register 0 bit), the 
address desired is 32,768, and the high-

Lower 32K 
Core Storage 

Upper 32K 
Core Storage 

Not M-reg 
O-bit 

Figure 2-105. 65K Operation 

2-114 ( 9/1/66) 

MN Bus 

M-reg 
O-bit 



Functional Units 

order 32K unit receives the go signal. 
Drive current is blocked in the first 32K. 
The address read out is 00,000 + 32,768 
which is 32, 768. 

Circuit Objectives 

Circuit control for the 65K storage unit is 
dependent on the Go signal, developed from 
the M-Register O-bit on logic page MM142. 
This same page applies to both the first 
32K and the second 32K. For the first 32K, 
the M-Register O-bit is inverted to produce 
the Go signal •. In the second 32K, the 
M-Register O-bit is not inverted since the 
M-Register O-bit is required to produce Go 
for this unit. Thus, Go will be active for 
either one unit or the other, but never 
both. In the unit where the Go signal is 
not active, the following functions are 
blocked: 

Data Ready on Read Cycle (MMl13). 
x- and V-Source Drivers on Read cycle 
(MM252) • 
Strobe on Read cycle (MM692). 
write Set Latch on Write Cycle (MM113). 

esu INTERFACE 

Each 32K M2-1 core storage unit 
comIlRlnicates with the 2030 over a series of 
signal lines known as the CSU Interface. 
All addresses, data, and control signals 
are transmitted over this interface. A 
brief description of the interface signals 
follows. 

M- and N-Reqister Bit Lines (Logic Page 
~M001) 

Sixteen bit-lines carry the address in the 
MN-Register to the core-storage addressing 
circuitry. The address is set into the 
MN-Register at the T1 time of the CPU clock 
cycle following the cycle when a CPU read­
in is decoded by the control circuitry. 
The address does not change until the 
necessary CPU-compute and core-storage 
write cycles are taken. The MN-Register 
bit lines in order from the high-order 
position of the address to the low-order 
pOSition of the address are: 

M Reg 0 Bit 
M Reg 1 Bit 
M Reg 2 Bit 
M Reg 3 Bit 
M Reg 4 Bit 
M Reg 5 Bit 
M Reg 6 Bit 
M Reg 7 Bit 
N Reg 0 Bit 
N Reg 1 Bit 
N Reg 2 Bit 

N Reg 3 Bit 
N Reg 4 Bit 
N Reg 5 Bit 
N Reg 6 Bit 
N Reg 7 Bit 

The M Reg 0 Bit line serves an addition­
al function on a 65K machine. If there is 
an M-Register 0 bit present, the desired 
address falls in the second 32K. If there 
is no M-Register 0 bit, the desired address 
falls in the first 32K. Read Call occurs 
at around Tl CPU-time. This is before the 
address in the M- and N-Registers is valid. 
Therefore, a read cycle is started in both 
M2-1 units (on a 65K machine). Final sel­
ection of M2-I units occurs later in the 
read cycle. If there is no M-Register 0 
bit, the x- and Y-source drives are blocked 
in the second M2-I (second 32K). If there 
is an M-Register 0 bit, the x- and V-source 
drivers are blocked for the first M2- I 
(first 32K). In addition, the M-Register 0 
bit line controls the data ready pulse to 
the 2030 and the strobe pulse in the 
appropriate 32K. 

For the write cycle. the M-Register 0 
bit simply blocks the write Set latch in 
the low order 32K unit. This prevents any 
of the write latches from being set in the 
unselected 32K unit. This is possibe 
because the M-Register is not changed 
between read and write cycles and there­
fore, the M-Register 0 bit line is valid 
when the Write Call signal occurs. Thus if 
there is no M-Register 0 bit, the write 
cycle is blocked in the second 32K. If 
there is an M-Register 0 bit, the write 
cycle is blocked for the first 32K. 

Unlike the M2, the 65K M2-1 requires 
only one MN-Register for address drive. An 
intermemory cable supplies addresses from 
the first 32K to the second 32K. 

Store Bit Lines (Logic Page MM001) 

The nine store bit-lines provide the data 
input to the core-storage unit. These 
lines are direct outputs of the R-Register, 
and they go to the core storage inhibit 
drivers. The nine store bit-lines are: 

Store P Bit 
Store 0 Bit 
store 1 Bit 
Store 2 Bit 
Store 3 Bit 
Store 4 Bit 
Store 5 Bit 
Store 6 Bit 
Store 7 Bit 

2030 FETOM (9/1/66) 2-115 



Functional Units 

Read Call to Memory (Logic Page MM001) 

Read Call to Memory signals the M2-I that 
the 2030 control circuitry has decoded a 
read operation. It occurs at T1-time of 
the cycle when a memory read cycle is to 
occur. Read call starts the mempry clock 
and sets up a read cycle by turning on the 
Read Set latch (Logic Page MM102). Regard­
less of which 32K is being addressed, both 
clocks are started for Read Call. The 
M-Reg 0 bit line blocks the actual drive 
current for the 32K not being addressed. 

Write Call to Memory (Logic Page MM001) 

Write call to Memory signals the M2-I that 
the 2030 control circuitry has decoded a 
write operation. It occurs at about T1 
CPU-time of the cycle in which a write 
cycle is to occur. Write Call combines 
with the M-Register 0 bit line to determine 
which 32K storage clock is to run for a 
write cycle. If there is no M-Register 0 
bit, the desired address is located in the 
first 32K and the first 32K clock is start­
ed. If there is an M-Register 0 bit, the 
desired address falls in the second 32K, 
and the second 32K clock is started. 

Mach Reset Sw (~ic Page MM001) 

The machine reset switch Signal line blocks 
the advance of the memory clock. Machine 
reset turns off the Read Set control latch 
(Logic Page MM102), the ~rite Set control 
latch (Logic Page 113), and sends a pulse 
down the delay lines to reset the rest of 
the read and write latches (MM122). 

Early Local Storage (Logic Page MM001) 

The early local storage occurs before Read 
Call to allow setting the main/local stor­
age latch to the local position (Logic Page 
MM212). When set to the local pOSition, 
the main/local storage latch blocks the 
Y-control drivers, (Logic Page MM222), and 
allows the local storage control drivers to 
turn on (Logic Page MM142). The next time 
Read Call occurs and there is no request 
for local storage, the main/local storage 
latch is reset to the main storage state. 

Read Echo (Logic Page MM002) 

Read echo is a signal £"equired by the 2030 
in manual store operations. It follows a 

2-116 (9/1/66 ) 

Read Call, and indicates that the Read Call 
was received, the memory clock is running, 
and that a read cycle is in process. Its 
purpose is to interlock the 2030 until the 
data is read out of the addressed position. 
The read echo results when the delay line 
pulses set and reset the read echo latch 
(Logic Page MM113). 

write Echo (Logic Page MM002) 

Write echo is a signal required by the 2030 
in nanual store operations. It follows a 
write Call, and indicates that the Write 
Call has been received, that the memory 
clock is running, and that a write cycle is 
in process. The write echo occurs when the 
delay line pulses set and reset the write 
echo latch (Logic Page MM112). 

Memo~ Sense Bit Lines (Logic Page MMOO 2) 

These nine lines represent the data output 
of the core storage unit. They are active 
at memory strobe time. The core storage 
unit identifies the data with the data 
ready pulse to the 2030. If the 2030 wish­
es to use this data, the data ready pulse 
is allowed to set the data into the R­
Register. The nine sense lines presented 
to the 2030 in order from high order to low 
order are: 

Mem sense P Bit 
Mem Sense 0 Bit 
Hem Sense 1 Bit 
Mem Sense 2 Bit 
Mem Sense 3 Bit 
Mem Sense 4 Bit 
Mem sense 5 Bit 
Hem Sense 6 Bit 
Mem Sense 1 Bit 

Data Ready (Logic Page MM002) 

Data ready is the data strobe pulse to the 
2030. The M2-I uses this signal to notify 
the 2030 that the read data is a vailable on 
the memory sense lines. If the data is to 
be used by the 2030, the data ready pulse 
is allowed to set the memory sense data 
into the R-Register. The M-Register O-bit 
gates data ready from the second 32K, no 
M-Register o-bit gates data ready from the 
first 32K. This selection is necessary 
because both clocks are started for a Read 
Call. 



Principles of operation 

CHAPTER 3. PRINCIPLES QF OPERATION 

INSTRUCTION READ-IN 

• All operations start with the entry of the op-code portion 
of the instruction. 

• The address of the op-code byte is in the instruction coun­
ter (I and J registers). 

• The op-code in the first byte is decoded to determine the 
type of operation and the size of the instruction. 

• The I-cycle routine is included as part of each operation 
described in the following sections. 

• CAS logics are used to illustrate the first of these opera­
tions and the CLF charts for a second group. 

All operations are started in a common 
micro-routine called I-cycle start. The 
address of the new instruction is in the I 
and J registers either from the previous 
operation or from the IC restore routine at 
the end of the operation. The latter case 
results when the I and J registers are 
required to perform the operation. The 
sequence is described at the end of the 
pack operation. For the purpose of illus­
trating the I-cycle, all instructions are 
started through the normal I-cycle start 
entry at address 0100. 

The I-cycle start routine reads in the 
first byte of the new instruction from the 
specified address. This byte contains the 
operation code. By progressively testing 
the bits of the two character code, the 
routine is branched to the exit for a 
specific operation. The decode indicates 
the type of instruction, and thus, the 

ROS TIMING TO CORE STORAGE TIMING 

number of bytes to be taken. The branch on 
condition instruction and the binary add 
instruction in the RR format and the pack 
instruction in the SS format are discussed 
to illustrate the use of the CAS logic. 

The CAS logic illustrations used for the 
following discussions are composites of 
many logic pages. They should not be used 
for servicing. The entry and exit points 
used for discussion can be traced from 
sheet to sheet. Other entry and exit paths 
are terminated in a box showing the condi­
tions. The note blocks found on the indi­
vidual CAS logic sheets are not shown on 
the illustrations but are included as part 
of the text. 

A second group of operations are dis­
cussed with reference to the condensed 
logic flow (eLF) charts supplied with the 
system. 

• The information read out of core storage on one ROS cycle is 
used on the next ROS cycle. 

From the timing of a ROS cycle, we know 
that the SALs are set by T4 time of the ROS 
cycle that the ROS word is read out on. 
When ROS reads out a word that requests 
core storage operation, the memory delay 
clock is signalled to start at the begin­
ning of the next CPU cycle. In Figure 3-1 
we can see that during the first ROS cycle 
shown, a ROS word is read out requesting 
(for the next clock cycle) a read from main 
storage at the address in the I and J-

register, add 1 to the contents of the 
J-register, and reset position 1 of s­
register to ZERO. 

Note: Figure 3-1 assumes that previous ROS 
cycles have been done. 

During the second cycle, read call 
starts the memory clock, and the informa­
tion in core storage at a given location is 
read out and set into the R-register. At 

2030 FETOM (9/1/66) 3-1 



Principles of Operation 

the same time, the information in the J­
register is set in the A-register and 
routed to the ALU. The output of the B­
register is blocked and eight ZERO's are 
routed to the ALU instead. A carry is 
forced into the ALU so the result is the 
contents of the J-register is increased by 
ONE. The output is routed to the J­
register. Ourinq this time a new ROS word 
has been addressed and read out, which will 
cause the information in the R-register to 
be written back into core storage at the 

same location it was read from during the 
next cycle. Also, the information in the 
R-register is routed through the ALU and 
out on the Z-bus to the G-register. At the 
same time, the high four bits on the Z-bus 
are checked to see if they are all zeros; 
if so, the 4th position of the S-register 
is set to ONE. 

This example shows the timing 
relationship between the ROS word read time 
and the execution of the same word. 

First Two Micro­
Words of I-Phase [

OO-01°OH01-0109] 
J+O+l-J R-G 
IJ - MN M5 Write 0-57 HZ- 54 

52 1 1 ° 
CPU Clock 

Good 

Inhibit 

5et Destination 

Cycle 
Function 

TI T2 T3 

Read Word 

Figure 3-1. ROS to Memory Timings 

3-2 (9/1/66) 

T4 T 1 T2 T3 

Execute Word I 
Read Word 2 

T4 TI T2 I T3 T4 T I 

Execute Word 2 



Principles of Operation 

BREAK-IN-TIMINGS 

• A microprogram break-in, channel request, requires a dead 
cycle to keep the operation in step. 

01-0001 
From 000 

Set ROAR 

CCROS 

SAL Good 

Program Break-In 

Contro I Reg. Good 

Backup ROAR 

Backup X6 X7 

0104 

PNX+-WX 

Figure 3-2. Microprogram Break-In 

To help explain the timing during a micro­
program break-in, let's use the example 
shown in Figure 3-2. The main microprogram 
uses ROS words at address 0001 and 0002. A 
break-in causes the main program to stop 
and a branch to the ROS word at 0103. The 
sequence of operation is shown by the dar­
kened arrow. Let's examine the operation 
cycle by cycle. The cycles are labeled 
according to the time that the control­
registers latches are good for that 
address. Remember the ROS word 0000 is 
read out 1-cycle prior to this time. 

CYCLE 0000 

At Tl time of this cycle, the address of 
the next microprogram step, 0001, is set 
into ROAR. At T2 time, the CCROS GO pulse 
starts the ROS delay clock and causes the 
data at address 0001 to be read out to the 
SAL's. The SAL's are good by T4 time. Now 
assume that during T2 time, a microprogram 
break-in was called for. Because of this 
break-in the address in ROAR (0001), is 
stored in a backup ROAR at T4 time. 

DEAD CYCLE 

This is called a dead cycle, because no 

0001 0002 

MPXROSL~ 

ROAR Restore .c....La_tch ___ -' L 

controi register latches are set. The set 
pulse to the latches is blocked for the 
first cycle of the break-in. At Tl time of 
this cycle, a new address (0103) is forced 
into R~AR. This address is the first step 
of the alternate microprogram. 

Also at this time, the branch conditions 
for address 0001 are set into X6 and X7 
buffer latches. The branch conditions have 
been tested at this time by the SAL's that 
are good for address 0001. The status of 
the branch condition must be stored since 
the condition of the latch might change 
during the alternate microprogram routines. 
In our example, we tested bit-6 of the 
s-register for the X6 position, and X7 is 
automatically set to ONE. 

CYCLE 0103 

This is a normal cycle that executes the 
ROS word at address 0103. 

BREAK- IN CYC LES 

These are the normal cycles of the alter­
nate program. 

2030 FETOM (9/1/66) 3-3 



Principles of Operation 

CYCLE 0104 

This is the last cycle of the alternate 
program. During this cycle, the control­
register latches are good for address 0104. 
At Tl time, it is necessary to set ROAR 
with the next address to be executed. 
Since this is the last step of the 
alternate routine, the address where the 
main program was when the break-in occurred 
is needed. Therefore, the mnemonic FWX->WX 
causes the backup ROAR to be gated to ROAR. 

MPX ROS LATCH OR ROAR RESTORE BUFFER LATCH 
SX 

This latch is turned on at T2 time when a 
statement in the microprogram specifies 
that ROAR must be changed using the backup 
ROAR. In our example, tbe statement is in 
word 0104, FWX->WX. One purpose of this 
latch is to allow the ROAR Restore Latch to 
be set at T4 time of the cycle in which the 
ROS word at 0001 is read out. 

BINARY ADD 

CYCLE 0001 

The control-register latches are good for 
address 0001 during this cycle. Even 
though we have addressed this ROS word 
before, this is the first time that it is 
executed. The first time that 0001 was 
addressed, the control registers were not 
set. At Tl of this cycle, the branch por­
tion of address 0002 is set up by using the 
backup X6 and X7 latches. 

ROAR RESTORE LATCH OR ROAR RESTORE LATCH SX 

This latch provides a gate to set X6 and X7 
positions of ROAR from X6 and X7 buffer 
latches. 

CYCLE 0002 

This is the normal execution of the ROS 
word at address 0002. 

• The binary add instruction is in the RR format with an op­
code of lA. 

• The second byte of the two-byte instruction contains the 
addresses of two of the general purpose registers located in 
local storage. 

• The sum is stored in the first of the two general registers 
specified. 

• The value in the second register remains intact. 

• The adding routine loops while progressing across the 
register values. 

• After adding the last bits, the operation moves into a set 
condition routine to indicate overflow and sign conditions. 

You have see the many parts that, put 
together, make up the microprogram. To tie 
these pieces together, let's work our way 
through a microprogram for a fixed point 
binary add. 

The instruction for a binary add is 
written in RR format. The Op code for 
Fixed-Point Binary Add is lA in hexadeci­
mal. RR format, if you will remember, is 
two bytes in length. The first byte is the 
op code. The second byte of the instruc­
tion consists of two general purpose reg­
ister addresses in hexadecimal. 

In the example you will be working 
through, assume that the data in general 

3-4 (9/1/66) 

purpose register 5 must be added to the 
data in general purpose register 7. The 
instruction to accomplish this becomes 

1 A 7 5 

0001 1010 0111 0101. 

The first byte is the Op code 1A. The last 
byte represents the addresses of the two 
registers. 

Let's briefly review the addressing of a 
general purpose register. A register con­
tains four bytes of data. Since only one 
byte of data is addressable at a time, the 
N-register address must be constructed by 



Principles of Operation 

the microprogram. As an example: To 
address the units position of general pur­
pose register 7, the N-register must be set 
to 0111 0111. The first four bits specify 
the register to use. The last four bits 
specify a particular byte of the register. 

Before starting into the program itself, 
you should realize some functions that must 
be performed by the microprogram. The 
program must: 

1. Read the instruction, analyze the for­
mat, determine the Op code. 

2. Construct addresses to set the N­
register starting with the units byte 
of each register. 

3. Add four bytes of data from register 5 
to the data in register 7. 

4. Check for overflow conditions after the 
da ta has been added. 

5. Set the condition register to indicate 
the status of the resultant answer 
(greater than, equal to, less than 
zero). 

6. On overflow conditions, test program 
masks to determine if the condition 
should be ignored or not. 

7. Branch to I-cycles, or to another 
microprogram if an overflow is 
unmasked. 

The CAS sheets as written by a micropro­
grammer might appear as shown in Figures 
3-3, 3-6, and 3-7. The description of each 
ROS word that is used to execute the 
instruction will be made in reference to 
the actual address which appears in the 
upper right corner of each block. These 
facts will be assumed before starting the 
example. 

1. The instruction is 

1 A 7 5 

0001 1010 0111 0101 

2. The address of the instruction is in 
the IJ registers. 

3. The data in register 5 is: 

Byte 0 Byte 1 Byte 2 Byte 3 

00000000 00000000 00000000 01011101 

4. The data in register 7 is: 

Byte 0 Byte 1 Byte 2 Byte 3 

00000000 00000000 00000000 10011001 

5. The Land S registers are zero. 

Objective: The answer in register 7 as 
a result of the addition should 
be: 00000000 00000000 00000000 11110110. 
Using Figure 3-3 let's determine how the 
first function, the reading and decoding of 
the instruction, is accomplished. The 
first ROS word to be executed is at address 
0100 at figure location A2. Had it been 
necessary to change the instruction counter 
or test for interrupts, a ROS word at 
address 0101, 0102, or 0103 would have been 
executed. 

ADDRESS 0100 (FIGURE 3-3): The expression 
IJ->MN MS on the S line brings up control 
lines to read the first byte of the 
instruction from core storage. The address 
in the 1- and J-registers is set into the 
MN register. Main storage is specified by 
MS on this line. Once core has been 
addressed to read out the first byte, the 
address in IJ can be updated for reading 
the next byte of the instruction. To be 
more explicit, only the J-register need be 
increased by 1 because all instructions 
start at an even address. 

Assume that byte 01FE in main storage is 
to be addressed by the 1- and J-registers. 
The 1- and J-registers will then contain 
the address 

I J 

00000001 11111110. 

To address byte 01FF it is only necessary 
to add the value of 1 to the J-register. 
The registers now contain: 

I J 

00000001 11111111. 

2030 FETOM (9/1/66) 3-5 



w "s.l 
I .... 

0\ I.Q 
C 
11 
~ 

\D W 

" I .... I.tJ 

" • 
0\ 
0\ 

H 
I 

0 
'< 
0 
t-t 
~ 

en 
rt 
III 
11 
rt 

tx:l .... 
::s 
III 
1"1 
"< 
);,I 
0.. 
0. 

(X!e T! I I(~' CYCL~ sTAAT 

NORM I 
ST.~r 

CYa.£ 

(00.011 
PINCH I 
,YQ.£ sr.AT 

1

(011 
C()'PATIIILITY 
MOtE I/O 
INT~R"Uf'T 

10 - 010l 
Ie 0010,1 1 
- OtS 

1
••• L.S 

1.1 prj 
C2-- 11-<1 

RUD OUT LO IC 

Clll 
1t£5TORE IC 

STOR PROTECT I 
leO CPS A~D 
SloPER CALL 

(011 I ~~ AQ IR LINk. 
SET PAC; "'ASI( 

J, 
11 - OZ~ 

I "'.",..c 1 5 Io'flITE 
~C ANS"Ilf52 

1 0.C;? De 
..)1- 0- --JG 

"!ASk CClNO REt< 
BR CONDo COUNT 

00 10 

I 
L- INVALID OP 

00 - O)qC 

~ ~L'T I 
S UVIMN LS S 

l O.G7 ,01 
f2- .. -ee 

L.OAD. COHPAIlE 

11 - C2U 10 - O)qE 

COO.01) 
IIR CO~D COUllfT 

I( 0011.1 1 I( 0011 1 
• DX~L.IIC A DHtI(LtT 
5 u.. . __ -41_ 5 Lf'HMN LS '--<I~ __ _ 
C 0.54. 55 ,------ I 1 
~ (iI).G5 9C~ ~ 1.G1 '2 
£1- .. --£A G2- .. -<OB 

Cf> BRANCH TO ACO. SlJBTRACT 
SEPARATE ~y 

_ESTORE lL.C (111 I COlI 
L- w.n 

ANC DIv 
01 - 02E9 

Ie. 0001.0 l 
'--i 1

• DX~ 11~;w 1 
- G6.G'J 2e 

L6-- "-LF 
SET uP ~2 .CCR 
MI ORCER 

11 - 01prl 01 - 0105 01 - 0181 11 _ 010'1 
I t( 0001.1 I I I( 0100.0 I 

Rt..) • O+\.. • R·t! A S.-1(HtS 
5 IJRITE __ 5 u9 L5 5 __ 5 WRITE --5 *ac L5 S 

! 0.1 J _10" .. I ! I., 07 ! "'1 .. I 
:J 

E3- 1)1 -EC et- 01 --£0 E~ 11 ~E E6- 11 ~F 
p\'ACE IN ..) READ OUT HI IC PlACE IN I RESET STAT 51 

READ OUT PS'W eIT 
~D n.C 51 ON 

IS IC ItfSTCRE I--

1

(0l) 

HERE ON&." FOR 
STOPE PSW. 

(01011) 

I LOGICS RIl 

L~~O TEST 

I LOAD CClMP 
•• "',.DIv I 

CO 

~-I I- LOAD + 

~W.g5 'i3eU ) 
CI"P.L.O 



Principles of operation 

Should the value of 1- be added to the J­
register again, the resultant address in I 
and J is 00000001 00000000, or 0100. Thus, 
if the value 1 is added to the J-register 
when it is odd, it is necessary to take 
into account the possibility of a carryout 
which might affect the I-register address. 
Ther can be no carryout when adding 1 to 
the J-register address when the J-address 
is an even number. 

The statement in the ROS word to update 
the J-register is J KL->J, where K has a 
value of one. The A-register input of ALU 
is the data in the J-register, and 
0001 0001 is set into the B-register from 
the K-field. The A-register is gated 
directly to the ALU. Only the lower half 
of the B-register is gated to the ALU. The 
inputs are OR'ed, and the result is a 1 bit 
in the low-order position of the ALU, which 
is then gated to the J-register. 

The expression on the C line is 0->57. 
This statement brings up control lines to 
set position 7 of the 5 register to O. The 
function performed by this statement has 
little bearing on our operation. It is 
used in an indexing routine for RX format. 
This brings up an important point. In any 
ROS word, a statement such as 0->S7 may be 
used that seems to have no relation to what 
is being done. However, it may be used 
further in the microprogram and should not 
be ignored. 

The expression on the R line is 52,1. 
Remember that when the box format was dis­
cussed, this line was used for branching. 
If you look at the output line from this 
box, you will see that there are two ROS 
words that may be executed next. They are 
the ROS words at addresses 0109 or 010B. 
The expression S2,1 must somehow control a 
decision circuit. The convenient place to 
make this decision is the ROAR address 
itself. The two low-order positions of 
ROAR, X6 and X1, are controlled for branch­
ing purposes. To see how this is done, 
first convert the addresses of the two ROS 
words to binary. 

xx 
67 

Address 0109 in binary is 0001 0000 1001 
Address 010B in binary is 0001 0000 1011 

On the R line, the left portion of the 
expression controls the X6 position of 
ROAR. To carry this one step further, the 
S2 portion of the expression will determine 
the status of X6. For this example, posi­
tion 2 of the 5 register is zero, so the x6 
position of ROAR will be set to O. The 1 
in the expression (52,1) forces the X7 
position of ROAR to a one. A 01 branch is 
taken to address 0109. Notice that on the 
top line of the box for address 0109 you 

see 01. These are the two low-order bits 
of the actual address. Had position 2 of 
the S register been set, X6 would be set to 
a one and a 1,1 branch would be executed to 
address 0108. 

ADDRESS 0109: The first byte which was 
read and set into the R-register is trans­
ferred to the G-register by the expression 
R->G. The G-register is interrogated later 
in the program to determine the Op code. 
The data movement from the R-re3ister to 
the G-register is through ALU. The output 
of ALU feeds the Z bus. 

On line C, the expression, HZ->S4, 
brings up control lines that check the four 
high bits of the Z bus for zero. position 
4 of the S-register is set to a one if the 
high bits are zero. Since the data on the 
Z bus is: 

1 A 

0001 1010 

S4 is not set. The 54 bit is interrogated 
in a Branch and Link routine and has no 
bearing on our example. 

Because core readout is destructive, the 
information in the R-register is returned 
to core by the statement, WRITE. 

The expression on the 5 line is K->W. 
The W-register, remember, controls the 
high-order positions of the ROAR address. 
The CK control field (K) value sets the 
W-register to the value shown on the Kline 
of this block. 

On the lower R line, an RO,O branch is 
executed. Since RO is off in our example, 
the branch is to address 02EO. This branch 
determines that the RR or RX format will be 
used. 

All the ROS words until now have been at 
addresses 01XX. When the second high-order 
poSition of the ROS word address changes 
value, the W-register must be set to a new 
value. Since we are at address 01XX and 
must step to 02XX, the expression K->W is 
used. Notice, the K line specifies the 
binary value of 2. The high six bits of EO 
carne from the eN field of address 0109. x6 
and X7 controlled the two low bits. 

ADDRESS 02EO: The next byte of the 
instruction is read from core by the 
expression IJ->MN MS. This is the byte 
that contains the addresses of the two 
general purpose registers. 

Once the MN registers have been set, the 
J-register is again updated by the expres-

2030 FETOM (<}/1/66) 3-7 



Principles of Operation 

sion J + 0 + l->JC. Notice that a new 
element has been added to the arithmetic 
statement. The C to the right of the arrow 
allows a carryout (if there is one) to set 
the third position of the S-register. If 
no carryout results, the S3 position is set 
to zero. This is necessary because, should 
a carryout result, the I-register address 
portion must also be updated. At this 
point there is a carryout, and S3 is set to 
a one. 

The C line of the ROS word causes the 
control lines to set so to zero. The 0 
position of the S-register is a control for 
true or complement add when the arithmetic 
operation is undetermined (t). If SO is 
zero, the arithmetic operation is a true 
add. If SO is a 1, the operation is com­
plement. 

The G-register positions 2 and 1 are 
interrogated by the expression G2, Gl. The 
data in the G-register is: 

1 A 

0001 1010 

Finding that Gl = 0, and knowing that GO = 
0, we find that this Op code must be in RR 
format. RX Op codes begin with 01, RS with 
10, and 5S with 11. 

Because G2 and Gl are both zero, a 00 
branch is taken to address 02E4. 

ADDRESS 02E4: The data in the R-register 
is again returned to core by the WRITE 
expression. 

The arithmetic expression LnR->D will OR 
the data in the L- and R-registers and 
transfer the resultant answer to the D­
register. The symbol for the OR fUnction 
is the omega. The L-register is always 
zero on entering I-phase except for the 
EXECUTE Op code. Since theL-register is 
zero and the R-register contains the second 
byte of the instruction, the D register is 
set 01110101. 

The low-order four bits of the Z bus are 
checked for a zero condition by the 
expression LZ->S5. S5 is set to a 1 if the 
data on the low portion of the Z bus is 
zero. Because the data on the low portion 
of the Z bus is 0101, S5 is not set to one. 

A test is made on other positions of the 
G-register to further decode the instruc­
tion. Looking at Figure 3-4, we see that 
by checking G4 and G3 our Op code must now 
be add, subtract, multiply, or divide. The 

3-8 (9/1/66) 

G4 and G3 positions should set X6 and X7 to 
11, the low order bits of address 02EB, but 
the AC-force condition overrides this and 
forces a branch to address 0200. 

ADDRESS 0200: The only function performed 
by this word is 1+0+1->1. This function 
updates the I register at the times when 
there is an address carry from the J­
register. After updating the I-register, 
the microprogram again branches on the G4 
and G3 positions to address 02EB. 

At this time, check the data in the 
registers. The D-register contains 0111 
0101, which is the specification for 
registers 7 and 5. The G-register contains 
0001 1010, the Op code. The S3 bit is set 
to a 1, all other positions of the S reg­
ister are still zero. 

ADDRESS 02EB: Before any data from the 
general purpose registers can be added, the 
microprogram must set up the address of 
each register. The address for the low­
order byte of general purpose register 5 is 
set up by the expression DXH + KL->VC. See 
Figure 3-5. To address the low-order byte, 
the N-register must be set to: 

Reg 5 Byte 3 
0101 0011. 

In the expression DXH + KL->VC, consider 
the DXH portion first. The A-register 
input of ALU is set with the data from the 
D-register. The data in the A-register is 
now: 

High Low 
0111 0101. 

Next, the output from the A-register is 
crossed (X) so that the data is: 

High 
0101 

Low 
0111 

The data is further controlled by the H. 
The H specifies that only the high portion 
of the data is to be used as A source data. 
The A source data to ALU then becomes, 0101 
0000. 

The B source input to ALU is controlled 
by theKL portion of the expression. K 
represents a value in the CK ROS control 
field. The constant is 3 and is shown in 
binary form on the K line·of this CAS 
block. The B-register is set with the data 
0011 0011. Only the low portion (L) of the 
a-register data is gated to ALU. The B 
source data is 0000 0011. 



Principles of Operation 

BITS 

I~t+-~ 0123 

4567 0000 

o 0000 

R R 

FIXED 

0001 0010 

Lood Lood 
Positive Posiqve 

FLT. PT. 

0011 

Load 
Positive 

0100 

Half 
Store 

FIXED 

0101 

Store 

~d ~~ ~~ ~~ 

1 0001 Negative Negative Negative Address 

2 0010 

Load & 
Test 

Load & 
Test 

Load & 
Test 

Store 

Char. 

3 0011 
Load Lood Load Insert 
Complement Complement Complement Char. 

Set Prog 
4 0100 Mask AND Halve 

Branch & Compare 

5 0101 Link Logical 

Bronch 01'"1 

6 0110 Count OR 

Branch on 

7 0111 Cond XOR 

8 1000 Set Tag Load Load 

Halve 

Load 

Execute AND 

Bronc h & Compare 
Link Logicql 

Branch on 
Count OR 

Branch on 
Cond XOR 

Half 
Lood Load 

RX 

FLT. PT. 

0110 0111 

Store D Store S 

Load D Load S 

1000 

Set Sys 
Mask 

Load 
PSW 

Diagnose 

Present 

R S 

1001 

Store 

Multiple 

Test 
Under Mask 

Move 
Char. 

AND 

Compare 
Accept Logical 

Bronch 

X HI OR 

Branch 
X LO-EQ XOR 

Shift 
RT S L 

Load 
Multiple 

INV 

A C 

1010 1011 1100 

HIOPS 

1101 

Move 
Numeric 

Move 

Move 
Zone 

AND 

Compare 
Logical 

OR 

XOR 

SS 

1110 

LO OPS 

1111 

Move With 
Offset 

Pack 

Unpack 

Zero and 
Add 

Insert Ha If Shift 
9 1001 T 09 Compare Compare Compare Compare Compare Compare Compare Left S L Compare 

Monitor Half Shift 
A 1010 Co II Add Add N D Add N S Add Add Add N D Add N S RT S A Add 

Half Shift 
B 1011 Subtract Sub N D Sub N S Sub Sub Sub N D Sub N S Left S A Subtract 

Half 
C 1100 Multiply Mult D Mult S Multiply Mult 

D 1101 Divide Divide D Divide S Divide 

Mult D Mult S 
Shift 
RT D L 

Start 
1-0 

Shift Test 
Divide D Divide S Left D L 1-0 

Translate 

Translate 
and Test 

Multiply 

Divide 

Convert Add Shift Halt 
E 1110 Add Add U D Add U S to Dec Logicol Add U D Add U S RT D A 1-0 Edit 

Subtract Convert Subtract Shift Test Edit and 
Mar. F 1111 Logical Sub U D Sub U S to Bin Logical Sub U D Sub US Left D A Chonnel 

Figure 3-4. Op Codes 

The result of adding the B source data 
to the A source data is set into the V­
register. 

A source data 
+ B source data 

= 0101 
= 0000 

0000 
0011 

Reg 5 Byte 3 
V-register data = 0101 0011 

The C-line of the block insures that the 
s-register S4 and S5 positions are blank 
(0) before proceeding. 

The S-line in this block has the 
statement K->W. Since the K-field contains 
a three, the next address to be used will 
be 03XX. 

The R-line is a branch on G6 and G5. 
This branch further breaks down the Op code 
and for this operation, the branch is to 
address 039E indicating an add or subtract 
Ope 

ADDRESS 039E: The arithmetic statement 
DH+KL->T sets up the units address of reg-

ister 7 in the T-register. Again consider 
the first portion of this expression, DH. 

The A-register is set wi.th the data in 
the D-register: 

High 
0111 

Low 
0101. 

Only the high portion (H) is presented to 
ALU. A-source data is therefore 0111 0000. 
Again, the expression KL brings up the 
control lines to use the CK field constant 
of 3. The B source data is 0000 0011 
because only the low portion (L) is gated 
to ALU. 

A source data 
+ B source data 

= 0111 
= 0000 

0000 
0011 

Reg 7 Byte 3 
T-register data = 0111 0011 

The expression UV->MN LS addresses core to 
read out the first byte from general pur­
pose register 5. The data read out is 
01011101. Local storage, rather than main 
storage, is specified by the LS portion of 
the expression. 

2030 FETOM (9/1/66) 3-9 



Principles of Operation 

o 2 3 4 5 6 7 

OX G. P. Reg. 0 Sense I 
Byte X X+1 I X+2 

1X 1 
, 

" i 

1050 Use 
2X 2 

3X 

4X 

5X 

3 ~ CPU 

~~ 
Store 

4 

I I 5 I m m rf 
6X 6 ~ 

LOCAL 7X I I 7 I 
STORAGE 8X 8 

9X 9 

AX A 

BX B 

CX C 

DX D 

EX E 

FX F 

OX Unit Control Word 0 

1X 1 

2X 2 

3X 3 

4X 4 

5X 5 

6X 6 

7X 7 
MPX 0 8X 8 
STORAGE 

9X 9 

AX 10 

BX 11 

CX 12 

DX 13 

EX 14 

FX 15 

Figure 3-5. Auxiliary Storage Map 

The last bit of the Op code is checked 
by the expression 1, G7. Since G7 is a 
zero, a branch is executed to address 03F2. 
The microprogram has fully decoded the 
G-register data to determine that the Op 
code must be a Fixed-Point Binary Add in RR 
Format. While this was being done, we have 
been setting up register addresses and even 
read our first byte of data from register 
5. 

ADDRESS 03F2 (FIGURE 3-6): The first byte 
of data from general purpose register 5 
must be stored before reading any data from 

3-10 (9/1/66) 

8 9 A B C D F 

Floating Point Reg. 0 

Floating Point Reg. 2 

Floating Point Reg. 4 

I J G U V L D S 

Floating Point Reg. 6 

Floating Point Multiply 

0 1 2 3 4 5 6 7 

8 9 10 11 12 13 14 15 

16 17 18 19 20 21 22 23 

24 25 26 27 28 29 30 31 

CPU Working Storage 

Unit Control Word 16 

17 

18 

19 

20 

21 

22 

23 

24 

25 

26 

27 

28 

29 

30 

31 

register 7. This is done by the expression 
R->DC. The information in the O-register 
is no longer needed and it is replaced by 
the data from register 5. The first byte 
of data is regenerated by the expression 
WRITE. The ftC· following the Woft will 
preserve a carry out of the ALU in S3 if 
there is one. Here there cannot be a carry 
so the result is a reset of S3 for future 
use. 

The branch condition on the R-line for­
ces a branch to address 03A3. 



tv 
o 
w 
o 

W 
I 

<'1't 
• 

,00.Olel0.111 
'"' ADD. 'SUB 
041. LOAD 

1_- "IT" 

\ :"L ...... 

\"" ., ...... CMP. LOAD 

t-

,....... 

L 

~ 

00 - 031'1 Il 0001.0 
A 0. C 
5 ~lTt .. w 
C ItS. I 
A hi C7& 
Cl- 11-CC 
DAD 

10 - 0'" 
~ 

l"toe 
S WRIT! 

1 hi 

A 
~ 
DD 

H~ 

(11 1 
LOAD ~q ~ ItlC 

01 - olC 
I( 0011.1 
A ~tD 
S WAITE "t" 
II.G3 A21 
0-- 1* --f.J 
~VE THE 2ND 
OPERAND INTO D. 

0·" 00 - 03'. 11 - ~ K OOO~O lIN" 1 'M)tV ; R! tRC Ir:tw , 

S Tt~ LS ~--------.... -c "",SNZ.S2 J 1 0.57 .J ~ 56.55 
E6- 0. ~D f6-- .. ~ 

READ OUT 1ST ADD (II SUB 
QPERAND 

10 - 0"2 

..... 1 HZtS6 AbI- 1--

0

, .NS1~2tS2 
Cfl hS1 leSS 

~ I- --GD G6- 1. -..0(,1' 
H~ IIID flCU COMPARE 

It 1000 1 • R.I(I4tZ 
S h"'14 U 

00 - 01'C 
" 001191 

UIi/ ~_ A T-otT 
.--s w~tTE I L,.ZtS5 I 

S4,1 ADA 
~ *1 --.IF 

Sf T 55 O~ LAST 
IYTE 

1~:1-] I( ooAf,O-- 03AI K lo8A --- O~D · _.Dc · ....... 1 ...--s T~~ U r~ ~~ ~ltS2Kt'rl ,........tr-·s W'IIITf 

1 hS7 1 0,$5 "c1 1 AC.lI1C De 
oJ'- I. -.10 .15- 0. -.IE L..... .. -L" 

flCTE'4D ","US, 'Ir.~ COMPA~E JAA~" ~ OVf'\.O 
oWD EST SIGN 

01 - 03AD 10 - 03'6 01 - OIM 
K AUI 1 • :1°,.0 1 .. 000 1 A t' A R ot<:.RC • :.ckHtD 

~·S 1+,..,. LS r~~S h'" ~oS Iff 
C ANSNZ.S2 i~ 1 hS1 J , 0.55 041 ! 'C.lIIC De 

a.- I- ...-cD 05-- 0* .-Qf N6- .. --ffF 
eXTENt> MIPIUS SIGt-4 ADD OR sue ~~N~~s;o;Ig(l-O 

00 - 0104 
K 00llel 

Itt'" L_ A T-O+T 
'--s WIlITE 

I ~;:E - 01

J
D3 

C OtSO _____________ _ 

~ 52.S3 f 
0&- .. --014 

IRANCN ON ZERO 
"ESLJ..T AND 

A 

0'_] Ie 1000 
A ~"""l _~ ITE 

1 AC.II!C 
.J6- .. -,.,.. 

IRANCH 'OR OV1"LO 
AND TEST SIGN 

10 - 01CE 

1 T-o.T 1 
5 UVt"'~ MILS 
e LZt" 1 
, 0.1 C1 
u- 01 --E:N 
~E.D OUT 2NO 
OPE~AND. 5~.1 
II LAST IYTE. 

AC.lI1C oe 

k 10M - 01eF

l I D,''''D 

Ga- .. --<iH 
II~ANCH ,~ O~LO 
MID TEST SIGH 

(00,01'10 
SfT ADD 
~ CR 



Principles of Operation 

ADDRESS 03A3: The first byte of data from 
register 7 is read from core by the expres­
sion T->MN LS. The N-register is set by 
the data in the T-register. LS defines the 
core area addressed as local storage. 

As this is being done, the expression 
v-o->v causes the value of one to be sub­
tracted from the V-register. The V­
register contains the address of byte 3 and 
must be changed before the next byte of 
data for this register is read. The 
example shows how ONE is subtracted by the 
expression v-o. 

V-register data 
minus 0 

Reg 5 Byte 3 
= 0101 0011 
= 1111 1111 

Reg 5 Byte 2 
V-register result = 0101 0010 

As you can see, some artithmetic statements 
should be worked out in detail. If not, 
the wrong impression might be assumed from 
just reading the statement. 

A 0,0 branch to address 03A4 is taken 
because 57 is still a zero. 

ADDRESS 03A4: The first byte of data from 
register 5 and register 7 is added together 
by the expression R±D+C->RC. The C to the 
left of the arrow is a conditional carry 
insert. If the third position of the S­
register is set to a 1, then a carry is 
inserted. The C to the right of the arrow 
allows a carry out that may result from the 
addition of the Rand D data to set S3. 
The arithmetic operation, i, is determined 
to be an add because the so position of the 
5-register is not set to a 1. Had it been 
the Subtract Op code, so would have been 
set to a 1 at ROS word address 03F3. SO is 
the true or complement control position o.f 
the S-register. We know that it is a 
binary add rather than a decimal add 
because binary is specified on the K-line 
of the CAS block. The result of the addi­
tion is: 

D-register 
Reg 7 byte 3 

= +01011101 
= +10011001 

R-register result = 11110110 

The expression ANSNZ->52 sets S2 to a 
one because the Z bus has on it the data 
11110110. ANSNZ means Answer Non Zero. 52 
is tested further in the program to deter­
mine whether our answer is plus, minus, or 
zero. 

Since positions 5 and 6 of the S­
register are zero, a 0,0 branch is executed 
to address 0100. Because we are again 
changing the second high digit of our 

3-12 (9/1/66) 

address, the expression K-->W is used. 
This time the value of K is 1 as shown on 
the I{-line. 

ADDRESS 0100: The sum of the first byte 
from each register is regenerated (WRITE). 
The data in byte 3 of register 7 is now 
11110110. An unconditional 1,0 branch is 
executed to address 01CE. 

At this time, again review the location 
of the data and addresses in the registers. 

1. The V-register contains Reg 5 Byte 2 
0101 0010 

2. The T-register contains Reg 7 Byte 3 
0111 0011 

3. Register 7 byte 3 data is 1111 0110. 

4. The S2 position of the S-register is 
set to one. 

5. The G-register contains 0001 1010 

ADDRESS OlCE: The second byte of data from 
register 5 is read by the expression, 
UV->MN MILS. MILS can be either main core 
(M) or local storage (LS). This portion of 
the expression further checks the G- reg­
ister. Since the G-register determines 
that the Op code is in RR format, only the 
control lines for local storage are brought 
up. The second byte of data read from 
register 5 is 000000000. 

while register 5, byte 2 is read, there 
is no reason why the address of the next 
byte from register 7 cannot be set up. 
This is done by T-O->T, which subtracts one 
from the data in the T-register. The 
resultant answer in the T-register is: 

Reg 7 byte 2 
0111 0010. 

The expression LZ->S5 does not set S5 to 
a one at this time. LZ is a check for zero 
on the four lower bits on the Z bus as a 
result of the arithmetic statement T-O->T. 
These four lower bits will not be zero 
until the last address of register 7 is 
obtained .. 

Reg 7 Byte 0 
0111 0000. 

A 0, 1 branch is taken to address OlCl. 

ADDRESS OlCl: The byte of data just read 
is regenerated (WRITE). This data is also 
stored in the D-register, R->O. The 0-
register now contains 000000000, or byte 2 
of register 7. 



Principles of Operation 

A 1,1 branch is executed to address 
03A3. Position 3 of the G-register is a 1 
because the Op code stored there is Add. 

ADDRESS 03A3: Entering this address for 
the second time starts a loop in the 
microprogram. The loop continues until the 
four bytes of data from the two registers 
are added together. 

The second byte from register 7 is read, 
(T->N LS). 

The V-register address is changed to: 

Reg 5 Byte 1 
0101 0001. 

A 0, 0 branch is executed to address 
03A4 because S7 is still zero. 

ADDRESS 03A4: The second byte of data from 
both registers is added and the result is 
stored in the R-register (RtD+C->RC). The 
result of this second addition is 
000000000. S2 is not set to a zero 
(ANSNZ->S2) even though there is nothing on 
the Z bus because the S-register is not 
made up of polarity hold latches. It takes 
a definite reset expression to clear an 
S-register position to zero (O->SO). 

S6 and S5 are again tested to determine 
the branch set up. Neither position has 
been set to one, therefore, the 0, 0 branch 
is again taken to address 0100. K->W sets 
the W-register of ROAR to the value of one 
because of the high-order address change. 

ADDRESS 0100: The second byte of the added 
data is regenerated (WRITE). A 1, a branch 
is taken to address 01CE. 

ADDRESS 01CE: Byte 1 of general purpose 
register 5 is addressed (UV->MN MILS). The 
address for byte 1 of register 7 is set up 
(T-O->T) • 

S5 is still not set to a one because the 
data on the Z bus is: 

Reg 7 Byte 1 
0111 0001 

Take the 0,1 branch to 01Cl. 

ADDRESS 01Cl: Byte 1 from register 5 is 
stored in the D-register (R->D). It is 
also regenerated (WRITE). K->W is again 
used for the address change. Take the 1,1 
branch to address OlA3. 

ADDRESS 03A3: Byte 1 from register 7 is 
read (T->N LS). The address for general 
purpose register 5, byte 0 is obtained 
(V-O->V). Branch 0,0 to address 03A4 
because S7 is still zero. 

ADDRESS 03A4: Add byte-l data from both 
registers (R±D+C->RC). S2 is still set to 
1 and cannot be reset by the expression 
ANSNZ->S2. S6 and S5 are still zero. 
Branch to Address 0100. 

ADDRESS 0100: Regenerate (WRITE) the sum 
to core. Branch 1,0 to address 01CE. 

ADDRESS 01CE: Read the last byte of data 
from register 5 (UV->MN MILS). 

Change the address in the T-register 
(T-O->T) • 

Reg 7 
Old T-register address = 0111 
minus 0 = 1111 

Byte 1 
0001 
1111 

Reg 7 Byte 0 
New T-register address = 0111 0000 

The information on the Z bUs as a result 
of the arithmetic statement is 0111 0000. 
The low-order four bits are 0000. The C­
line of the box has the expression LZ->S5. 
S5 is now set to a 1 because the low poSi­
tion of the Z bus is zero (LZ). Advance to 
address OlCl. 

ADDRESS 01C1: Store the last byte of data 
that came from register 5 (R->O). Regener­
ate this data (WRITE). Control the address 
change (K->W). Again check G3, set up a 
1,1 branch to address 03A3. 

ADDRESS 03A3: Address core and read the 
last byte of data from register 7 (T->N 
LS). Subtract one from the data in the 
V-register. This address, 0101 1111, is 
invalid for register 5 but it will not be 
used as we are in this loop for the last 
time. Check S7, which is still zero, and 
branch 0,0 to address 03A4. 

ADDRESS 03A4: Add the last byte of data 
from both registers and store the result in 
the R-register (R±D+C->RC). 

S2 is still set and cannot be reset by 
the expression ANSNZ->S2. K->W sets up an 
address change. Positions 6 and 5 of the 
S-register are tested. S5 had been set to 
a 1, therefore, a 0, 1 branch is taken to 
address 0101. 

2030 FETOM (9/1/66) 3-13 



Principles of Operation 

ADDRESS 0101: The last byte is stored in 
core (WRITE). Register 7 now contains the 
answer: 00000000 00000000 00000000 
11110110. The data in the R-register for 
the last sum is 00000000. In the expres­
sion R • KH->Z, this data in the R-register 
is ANDed (.) with the 1< source high CB) and 
gated to the Z bus. The value of K on the 
K-line is eight (1000). 

R data 
Constant 

ANDed result 

= 00000000 
= 10000000 

= 00000000 

On the branch line, R, you see the two 
mnemonics AC and IBC. AC CALU carry) 
brings up control lines to test for a car­
ryout condition of ALU as a result of the 
arithmetic expression executed in the pre­
vious ROS word (Address 03A4, expression 
R±D+C->RC). IBC (one-bit carry) brings up 
the control lines to test for a carry into 
the highest position of ALU as a result of 
the previous arithmetic statement. To show 
the positions of ALU effected, assume this 
data: 

A-register = 0100 

B-register = 1100 

11 carries 

ALU output = 0000 

AC 
IBC 

0000 

0000 

0000 

The previous expression R±D+C->RC added 
the last two bytes of data from both reg­
isters. Both bytes of data were zero, 
therefore the output from ALU was zero. We 
had neither an ALU carry nor a 1-bit carry. 
A 0,0 branch is taken to address 0108 which 
is in Figure 3-7. 

The AC and IBC mnemonics test to deter­
mine overflow conditions. An overflow 
condition would have caused branching to 
either address 0109 or 01DA. 

ADDRESS 0108: The expression * BB LS 
addresses a byte of local storage. See 
Figure 3-5. This byte contains the condi-

3-14 (9/1/66) 

tion code and program mask bits. Certain 
bits are set according to whether the 
answer is equal to, greater, or less than 
zero, plus overflow conditions. 

Program masks are checked further in the 
program. 

To address a byte in local storage, the 
N-register format is: 

NO 
1, 

N1 
0, 

N2 N3 N4 
CNO, KO, 1, 

N5 N6 N7 
K1, 1<2, K3. 

The NO and N1 positions are set 1, 0 res­
pectively. The 2 position of the N­
register is set by the CN ROS control 
field, 0 bit position. Position N3 is set 
by the CK ROS control field 0 position. N4 
is set to a 1 unconditionally. N5, N6, and 
N7 are set by the remaining positions of 
the CK field. Figure 3-5 shows that the 
coordinates BB address byte 21. BB in 
binary is: 

B 
1011 

B 
1011 

Match this with the address format, and you 
see that the CK field must be coded 1011. 
This is the value that app~ars on the K 
line of the CAS block. 

Format = 1, 0, CNO, KO, 1, Kl, K2, 1<3, 
Value BS = 1011 1011 

The control line expression o->SO sets 
SO to zero in case we had been in a 
complement operation. 

The branch tests are S2 and Z = O. 

S2 was set to a 1 because we had signifi­
cant data. The expression Z = 0 checks the 
Z bus for a zero as a result of the pre­
vious expression on the arithmetic line 
CReKH->Z). Had the resultant answer been 
minus, the expression ReKH->Z would have 
provided a 1-bit output for the highest 
position of ALU. Because our answer is 
positive, the Z bus is zero and a 1,1 
branch is executed to address 01ES. Had 
our answer been minus, the Z = 0 expression 
would have set X7 to a O. A 1,0 branch 
would have taken us to address OlEA. 



tv 
o 
w 
o 

00 - oue 

I
coo.ol.lo.111 : A~~R J 
~T LOGICS ~ .. ------------------------~~~ 0.56 _ 

~ 0.1 f 

00 - 01fI III 101hl 

! .SI LS 

! 0.1 n! 
G4- 01 ~D 

o NO CARRY 

10 - OlE 
It 10lltl 

I.!! 
! hO 

LS 

EA 
J4- 10 --.JD 

~OT O. ~o CARRY 

15-- 01 .....fE 
.S~T ZERO 
MD. (JR. )(Oq 

«. 01~ - 01E

j
' 

• A\.+t04+R 

i:~ f 
J5- 01 ~ 

MINUS OR LOW 

01 - 01El 11 - 01f! 
K 101 .1 0010 j ! • RL",~R 

---~----------------~-------~-l·n Ul--1~56 
100.01.10.11) ~ 
in LOC; AOD. hl fa ,. 0.1 f 
5U1I CII L4- 11 ~D L~ 01 ~f 

I 
COU 
SET OVERfl.OW 
''d) CHECK 
MASI< 

t 
COO.OhIO.U) 
$f.T ADD. sua 
at 
I 

o CARRY PlUS ~ HI 

I( IOU '-1 - 01f31 • oJf - OUj~ 
I • ALii(~1I 
S .!! LS -_~ 

Iltl ~1 , ::~ f 
Pf4-- 11 -NO ~5-- 01 ~ 

NOT 0 CARRY 

: ~~~~:;- 010

1

: ; ~;!l:t .. ::'! 
f o.so I-----------~ O,S6 1 
A 0.1 DO A O.lRO [A 
QZ-- 01 --Q! Q5-- ~ -0£. 

TEST PRG MAs.c SET Cj:Iool 
NOT COMPARE STORE CONDIT 10111 
oPERA TI ON cooe I 

ADD, SUBT, CMP 

~, ZERO 

lO,<O 

HI,>O 

OVERFLOW 

BITS STORED IN 
BB HIGH 

1000 

0100 

001 0 

0001 

N SET ~ 1,0,CNO,KO, 1,K1,K2,K3 

CO-01E
4-EJ I( 1000 

• Of«.L'L 
S STO~E J. PRG INT 
~ o.S2 

A 1.1 • 
Q6-- 11 --<IF 

GO TO PRG I~T ~OUTINE IF ~I)(ED 
PT OV(P'fLO~ MASK lilT IS A 
~E IN THE PRO~AM MAS!( 



Principles of Operation 

ADDRESS 01EB: The byte just read from core 
contains information pertaining to condi­
tion codes and program masks. The high 
4-bit positions are for the condition code 
settings according to the answer of the 
problem. The expression RL + KH->R pre­
sents the data previously read to the A­
register. A constant (K) sets the B­
register to the value of 2 as specified by 
line K. The low portion (L) of the data in 
the A-register is used as the A source for 
ALU. The high position (H) of the B­
register data is used as the B source for 
ALU. The data is then: 

A source 

B source 

0000 xxxx x are the 
program 
mask bits 

0010 0000 

R-register set 0010 xxxx 

The four high bits (0010) when returned 
to core signify that our resultant answer 
was greater than zero. Note the table in 
Figure 3-7. 

The expression 0->S6 sets S6 to a zero. 

A 0,1 branch is taken to address 01E5. 

ADDRESS 01E5: The mnemonic, STORE, returns 
to core the information that is in the 
R-register. This consists of a new 
condition code, and the original program 
mask bits. 

The L-register is set to zero by the 
expression O->L. 

Position S2 of the S-register is set to 
zero (0->S2). 

.The branch mnemonics test Sl and inter­
rupt. 51 is not set. If there is an 
interrupt, a 0, 1 branch is taken to 
address 0101, Figure 3-3. If no interrupt 
exists, a 0,0 branch is executed to address 
0100, Figure 3-3. Address 0100 is the ROS 
word where this operation began. Address 
0101 is the beginning of a microprogram to 
test the interrupt and determine what it is 
(selector channel, multiplex, etc.). 

This completes the Add operation. How­
ever, to carry the microprogram one step 
further, assume that the result of adding 
the two registers produced an overflow 
condition. An overflow makes it necessary 
to set a different condition code before 
returning to I-cycles (see chart insert on 
Figure 3-7). The problem program can, at 
some later time, branch on the condition 
code set. 

3-16 (9/1/66 ) 

Start at address 0109 in Figure 3-7. 

ADDRESS 0109: The local storage byte is 
read out by *BB LS. The L-register is set 
to 00000001 (O+O+l->L). 

Since 57 is not set to a 1 a 1,0 branch 
is taken to address 0106. 

ADDRESS 0106: The data just read consists 
of the condition code and program mask 
bits. It is regenerated to core (WRITE). 
The arithmetic expression RLeKL->Z tests 
the program mask bits by allowing or pre­
venting a bit on the Z bus. Assume the 
data in R is xxxx Oyyy. The x positions 
are those for the condition code. The 0 
means that this position is not set. The y 
positions are the remaining program mask 
bits. 

The data for this expression is: 

A source data (RL) = 
B source data (KL) = 

0000 
0000 

0000 
1000 

ANDed ALU output = 0000 0000 

Position zero of the S-register is set 
to zero (0->50). 

ADDRESS 0100: Again, the same byte of 
information is read by the expression: *SB 
LS. 

The condition code is set by the expres­
sion LXH+RL->R. The data in the L-register 
sets the A-register. The A-register now 
contains: 

High Low 

0000 0001 

This is crossed (X) 

High Low 

0001 0000 

and only the high (H) portion is used for 
the A source to ALU. The data in the B­
register is xxxx Oyyy. Only the low 
portion is presented to ALU (RL). The 
result of the addition becomes: 

A source = 
B source = 

R-reg set = 

0001 
0000 

0001 

0000 
Oyyy 

Oyyy 

The C-line statement, 0->S6, sets posi­
tion 6 of the S-register to a zero. 



Principles of Operation 

The branch conditions are 0 and Z = O. 
Z = 0 brings up control lines to check the 
Z bus as a result of the arithmetic state­
ment executed in the previous ROS word. 
This is how the program mask condition is 
checked. Our output was 0000 0000 as a 
result of the expression RL • KL->Z. 
Therefore, Z = 0 sets X7 to a 1. A 0,1 
branch is taken to address 01E5 because the 
overflow was masked off. 

ADDRESS 01E5: The data in the R-register 
is returned to core (STORE). The four 
highest bits are the new condition code: 

BRANCH ON CONDITION (RR FORMAT) 

High 
0001 

Low 
Oyyy 

0001 is the coding for an overflow. The 
L-register is set 0000 0000 by the expres­
sion O->L. The S2 position is set to zero 
and the branch conditions are Sl set to 
zero and no pending interrupt. This 
branches the microprogram to address 0100 
on Figure 3-3. 

• The updated instruction address is replaced by the branch 
address (R2) if the bit that is on in the condition code is 
also on in the mask • 

• The M1 field is used as a four-bit mask • 

• Normal instruction sequencing proceeds with the updated 
instruction address if the condition is not met. 

R2 RR Format 

o - 7 8 -11 12-15 

The branch will be successful whenever the 
condition code has a corresponding mask bit 
of one. The four bits of the mask corres­
pond with the condition code as follows: 

Condition Code Bit 

o 
1 
2 
3 

Op Code Bit (Mask) 

8 
9 

10 
11 

Description of a Branch-on condition 
instruction, RR format, with reference 
directly to the microprogram follows. 
Assume the previous instruction was a fixed 
point add which set bit 3 of the condition 
code, indicating an overflow. A Branch-on 
condition is issued with bit 11 of the Mask 
field at one. 

Starting at ROS address 0100 Figure 3-8, 
the Branch-on condition Op code is read 
out. The Op code is placed in the G­
register at ROS address 0109. 

ADDRESS 02EO: The second byte of the 
instruction is read out and a branch on 

G-register bits G2 and Gl is taken. This 
determines that the operation is in RR 
format. 

The second byte is placed in the 0-
register and S5 is set to 0 if the R2 field 
is not zero. If the R2 field had been 
zero, S5 would have been set to one and a 
no-branch condition would have resulted at 
address 0209 (Figure 3-9). 

ADDRESS 02E8: The R2 portion of the 
instruction is placed in the V-register in 
the event the branch address must be 
fetched. The condition code is read from 
local storage. A branch to 02EF is made by 
testing G-register bits 6 and 5. 

ADDRESS 02EF: The mask portion of the 
instruction is ANDed with the condition 
code and the result is placed in the L­
register. S2 is set to one if the result 
was not zero. A branch is made on G­
register bit 7 which results in going to 
address 0209 (Figure 3-9) • 

2030 FETOM (9/1/66) 3-17 



w "'l] , joot' 
~ I.Q 
ex> ~ 

11 
(1) 

W 
\0 , 
....... :x> 
~ I 

....... 
0'1 
0'1 H 

() 
~ 
0 
..... 
(1) 

en 
rt' 
QJ 
11 
rt' 

O:J 
11 
Pi 
!:3 
0 
:J" 

0 
::;, 

() 
0 
::;, 
a. 
joot' 
('1' 
joot' 

0 
::;, ...., 

I'~I [lIEe Tt I Cy~~ STAAT 

l 

"'QRf4 I 
START 

CYCi.f 

100,011 
&RAAlC~ I 
(Ya.E START 

1'011 COOP A TI8ILITY 
I'CJl)E ItO 
INTE:RRuPT 

10 - 02f2 01 _ 0285 
l.)tO+l • .x: I I( 0001," 
.5 IJ+/'W "'s .5 _____________________________ : ~~;~ 

c ~S6 I C LZ.S' &0.1 f'& I 
f4- 01 --EO A AC.l 

AS. 51. 55 cPS Gl-
MAO OUT 2ND BYTE 

00 - 02£0 00 - 02E4 

1 J+O+l·,JC 1 
S IJ.HN ~5 
i o.so I 
A c:.z,Gl f4A 
c- "'-CD 

I( 0101 I 
A Lj;;R'O 

~ ~!!~ I 
R ACF~CE I 
R (,4.G3 EsR 
cS- ... -<E 

RAt RX OPS RR UN (If' 5 
READ OUT 2ND BYTE 

00 - CZES 
I( 10 litl 
A OX-o+IIV 
S *B8 LS 

! G6.6~ Eck 
C6- - --c~ 

5£ T UP RZ AOOR 

(011 1 RR BA LINK. 
SET PRG "'ASI( 

1 0.~1 - 0108

1 

IIC') 

S WRITE _ INv AD:lR 

11 ,0 lbR 
Q4- 10 --(1D 

INV"1.:C ADDRESS 
5£T c;..C Foil 
C~HT I/O 

01 0101_ 00 - 03QC 1010 

l.'V' gil~l" "'I I( 0011 I A C.O 

"''' """TEeT I .. DKt«.L·T l 00 10 S UVtMN L5 S I(~ (lPS AND INvAUC OP INTtx60 5l."fR CAL.L l ,O! It 1.1 13 
N2- q ......us c.G? 

I"'TEARtA'T "AITlII:j f2- .. -€B 
P\JT TI~ R COtAti T IN L.OAD. COHPARE 

11 - ClEB 10 _ 0)9£ 

l DX\+tt(L·VC A O!++t(.LIT 

RIC INDE. 
RS. SS INOElf 

':~1~---- : ~~!~ - 0169

1 

1 RX: - 010

1
c 

iMS!T 'SW lIT __ I ~r S WRITE 

I ~ WRAPH I 

~
A 0.51' OCR A O.INTR oc 
E?- 0* -{Ii !8~ .,. ~H 

I( 0011.1 ! I( OCll 1 
S ICH{ S W /'IN L5 
C 0.54.5'5 1----------.-1· !'---1It----
I A ~~i85·~ell1 
ill G4 .G! 9C 1.Ci? FZ CI"P.LO 
fl- .. ~.. Gii'- .. -<OB RESET PSW aIT RESTOR£ II.C 

RES TORE WRAP lATCH TEST IF ~ 
57 fOR WAIT STATE INTERRI$'T 

(11) I RESTORE ILe 

10 - 0102 
I( 0010,1 1 
l 0.5 

1
_,.. L.S 

1.1 ~J 
COlI 

'- WAIT 

CZ-- 11.....ce 
MAD OUT LO IC 

11 - 010] 

OF> BRANCH TO AVO, SU8TRACT 
SEPARATE r-i'v 
~D DIV 

C1 - CZE9 
.. 0001.0 l 
l
A I) • .......a+ It~;iI I 

'-----1~ 

- ~.G'5 zeA 
Lb- .. ---LF 

SET uP R2 ADDR 
HI ORDER 

(010111 

I LOGICS RR 

I( 0010.1 i 
A o.s 

----- s .A" I..S :J s ::iTE --~ ~~ LS 5 __ 5 :ITE __ ~ !BC«~S L.S '5 

11 - 01'"3 01 - 0105 01 - 0181 11 _ 0107 1 j t( 0001.1 I! I( 0100.0 I 
L.~iD TEST 

I 
RR """IV 1 

Ie RESTORE 1101 prJ 
..go ruT t~ Itll 

(11 ) 
tll£5TO~f IC 

! 0.1 05 ,_..1 0.1 sJ 1101 07 ! 51'1 6.J 
f3- 01 -EC fl- 01 -fP E~ 11 -EE £6- l1--£F 
~ACE IN J READ OUT HI lC PlACE IN I RESET STAT 51 

READ OUT PSIr( 8IT 
AND ILC .51 O~ 
HERE cNl.Y fOR 
STC~f PSIt. 

LOAD CClMP 

00 

~ -I L.OAO + 



tv 
o 
I,.J 
o 

00 - 021 • 

A 0.5 
.. 000110 1 
S WRITE K.W '~&-________________________________ ~ ________________ ~ ________________________________ -I ______ _ 

1 ShI"JTR col 
£2- ... -u 

MJ BRANCH 

I 0051.0- 021

1
' 

A O~ 
S WRITE ".\0/ 
f o.S2 ,-

~ Sl.INTR ooA 
L2- "'-U 

NO 8A~CH 

01 - 027 , 

I( 000100 1 AOU 
S uw 

---1 51. Il4TR 001 ~ 
u-- .... -"'-D 

NO eAANCH 

Lll 00 - 027]4 C~ oo8t - 021

1
0 ".,J A ~I 

~l -4t-----------______ ~ o.SO K+JW '-,,--~ ..... 
(00.C1) 

I IR_NCM I 
51.1 10 III O.I~TR C"CL~ SUPT 

Q4- *1 --<l0 Q9- 0* -QJ 
8R LO A:)DR TO J HI AOOll TO I 

o 
HI 



Principles of Operation 

ADDRESS 0209: S2 and S5 are tested to 
determine if a branch will be taken. If S2 
is one (indicating condition code and mask 
have matched) and S5 is zero (indicating R2 
not zero). the conditions for branch have 
been satisfied. At address 0209. the 
second byte of the specified general reg­
ister is read out. and the V-register is 
set to address the low-order byte of the 
specified general register. 

ADDRESS 0216: The 2nd byte of the general 
register is set into the L-register and the 
S2 bit is set to one if this byte was not 
zero. This is done to check for an unavai­
lable address request. 

ADDRESS 0206: The low byte of the general 
register is read out. this is the low-order 
branch address. 

ADDRESS 0218: The low-order branch address 
is placed in the J-register. A test of S2 
is made here for a possible unavailable 
address. In this example correct operation 
is assumed. 

ADDRESS 0201: The third byte of the speci­
fied general register is read out. This is 
the high-order branch address. The J­
register is tested for being on boundary. 
and the S2 bit is set to one if not on 
boundary, or zero if on boundary. 

ADDRESS 0281: The high-order branch 
address is placed in the I-register. The 
branch is made back to I-cycle start where 
the next instruction read out of storage 
will be taken from the branch address that 
the IJ registers now contains. 

PACK WITH INDEXING 

You have gone through the I-cycle section 
for a binary add and a branch on condition 
operation. These two instructions were of 
the RR format and did not require any 
indexing. So. let's take an instruction 
Which requires modification of the main 
storage address in order to set up the 
address of the data field. For an example, 
the PACK instruction (F2) of the SS format 
is used. 

The pack instruction format has 6 bytes; 

byte 1 - Op code 

3-20 (9/1/66) 

byte 2 - field length count for first and 
second operand 

byte 3 - the general register number con­
taining the base address of the first oper­
and and the high four bits of the first 
operand displacement address byte 4 - eight 
bits of first operand displacement address 

byte 5 - the general register number con­
taining the base address of the second 
operand and the high four bits of the sec­
ond operand displacement address 

byte 6 - eight bits of the second operand 
displacement address. 

The Op code for the pack instruction is 
F2. For the example to explain the 
instruction, the first operand field length 
is 3 and the second operand field length is 
4. The base register for the first operand 
is general register 2 and the second oper­
and is general register 4. The displace­
ment for the first operand is 060 and for 
the second operand is 040. The instruction 
put together is: F2 34 20 60 40 40. The 
first operand base register contains 00 00 
OA 48 and the second operand base register 
contains 00 00 15 BB. The first operand 
data is DB F4 F2 CO and the second operand 
data is F7 F8 F2 F6 C3. 

The objective of the I-cycles, in addi­
tion to decoding the Op code, is to set up 
the low-order main storage addresses of the 
first and second operand bytes. The objec­
tive of the execute-cycle is to remove the 
zone bits from each byte in the second 
operand and pack the numeric bits of the 
bytes. The pack bytes are set into the 
first operand locations with the low-order 
byte containing the sign in the low four 
bits. When this example is finished, the 
result 0078 263C will be in main storage 
starting at address OAA8. 

Starting into I-cycles the S- and L­
Registers have been set to 00. The 1-
Register is AO and the J-Register is 40, 
the location in main storage where the Op 
code is stored. To start the microprogram 
start with word 0100 (Figure 3-10). 

ADDRESS 0100: Set the ~registers to A040 
and read out the Op code (F2) from main 
storage. Increase the J-register by one to 
41. The R-register is set to F2i the 
output of main storage. The branch state­
ment is S2, 1 with S2 at a 0 condition 
giving the next ROS address of 0109. 



IV 
o 
UJ 
o 

tor:] ..... 
~ 
~ 
r; 
Cb 

UJ 
I ... 

0 

H 

() 
~ 
(') ..... 
Cb 

en 
rt 
01 
r; 
rt 

H 
::3 
Q. 
Cb 
>c 

" "j 
~ 
(') 
~ 
'oJ 

(00) 

~~~~TLtT 

"OM I CYCU
SURT

'00,011
BRANCH I
CVCLE STAAT

I ~ATInLITY QE 110
INTUAuPT

00 - 0100
0001 J

A JAIILtJ
S I"'''N HS S

0+51 I
52.1 o9A
- ., .~J

READ DIJT liP
TEST VAUD A01)R

!cou
I~T 'SW In

10 - 0102
" 0010,1 1 A 0.5

1
*.A LS

1,1 !lJ
t2- 11e.

M.D OUT LO Ie

11 - 0103
K 0010.1 l
" a.s -----S... LS

Ie rESTORE 11,1 ,,1
..HD OJT tA it'

nil
.STORE Ie

01 - 0169
It 0010 I A RLtA

.l WAAP.'
0.51 OCR

E7- ()t --£G
REseT psw &IT
RES TORE ~IP LATCH
S7 fOR WAIT STATE

RUTOR! ILC (1U I

1 AX: - 01

J
OC

5 WRITE

1 O'lHT~ 0
18-- a.--f;M

RESTORE ILC
TEST IF ..
INTERRlI'T

cou
WAn

IT~ PROTECT I 1(0 QP5 AND
$\.PER CALL

11 - 01113 01 - 0105 01 - 01] 11 _ 010 1

J
t(OOOhl 1 1 It 0100.0

" • .1 A O+L RH " 5,-«"'5 S WRITE __ 5 .. , L5 __ , WRITE --5 *8C L5

1 0,1 0 .-1 0.1 811 1 h! 0 ! Slll 69
u- 01 -EC e-- 01 --£D c5- 11 --£E £6- ll--f

'UCE IN .I RUD OUT HI IC P\.ACE IN I "ESET SUT 51
READ OUT PSw 8t
~D ac 51 ON

IS IC RUTORf I-I
cou

":RE ON&.' FOR
STORE PS

lOll I . ~~ Rq IA LtHl< •
SET PltG "lSI(

1 1 "':~:-J S IilRlTE
~c AHSNZtS2

~ 0.G7
.1'- 0- --.JG

MASK COItD R!:Ci
JR COND. COUI'/T

00 10

I INVAlID DP

9

... 101.11)

I !
LOGICS AA

F

D
1

.. LA~o TEST

I LOAD COMP

F

T

co

~-I LOID +

11 - 0391l
Ie COli 1 • ~LtT
5 UVt""" L.S
C Its. I
l &.G7 !l2~
J2- "-..II!!

Sf T 56 !lOR IIlD
OR SUB LOGICAL

.. "Y,DIY I

... t"'''fx
AS. 55 I~DEX

COO.Ol)
SA CO~D COUllj1

Principles of Operation

ADDRESS 0109: Set the G-Register to the
value in the R-Register (F2) via the Z-bus.
write into main storage the contents of the
R-Register at the same location it was read
from; address A040. Test the high four
bits of the Z-bus for all zeros and set S4
to a 1 if they are. The Z-bus at this time
has F2 on it, so S4 is left at a 0 condi­
tion. The branch statement is RO, 0: the
R-Register contains F2 so the RO bit is a
1. This sets the next ROS address to 02E2.
Remember the K->w statement set the W­
Register to the value of the CK field which
is two in this word.

ADDRESS 02E2: Increase the J-Register by 1
to 42; no carry occurs from the update so
S3 is left at 0 condition. Set the MN­
Registers to A041 and read out the second
byte (34) of the instruction from main
storage. Set the R-Register to the output
of main storage (34). Set the S-Register
bit 6, S6, to a 1 condition. Branch
condition is 0, 1 so the next ROS address
is 02ES.

ADDRESS 02ES: The contents of the L­
Register is set into the A-Register and the
contents of the R-Register is set into the
B-Register. The outputs of the A- and
B-Registers are ORed together in ALU. The
L-Register was 00 and the R-Register has
been set to 34, so the result (34) is set
into the u-Register via the Z-bus. The low
four bits of the Z-bus are tested for a
zero condition. S5 is set to a 1 if the
four bits are all zero. In the example s5
is left at a 0 condition since the Z-bus is
set to 34. The branch statement is AC,l;
the AC is a check of the carry latch
setting from the last microprogram word.
Since a carry did not occur in the last
word, the condition of AC is O. The next
ROS address is 0115 (Figure 3-11 Part 1).

ADDRESS 0115: Increase the J-Register by 1
to 43. Set the MN-Register to A042 and
read out the third instruction byte (20)
from main storage. Set the R-Register to
the output of main storage (20). Set the
S-Register bit 0 to a 1 condition. The
branch statement is S2,0 with S2 at a 0
condition giving the next ROS address of
0184.

ADDRESS 0184: Set the low-order byte
address of the first operand base register
by setting the R-Register contents into the
A-Register and routing the four high bits

3-22 (<j/1/66)

(2) to the ALU. The B-Register is set to
33 from the CK field, but only the four low
bits are routed to the ALO. The ALU inputs
are 20 and 03 giving an output of 23 on the
Z-bus. The T-Register is set to the output
of the add (23). The four high bits of the
Z-bus are tested for all zeros. If the
high four bits are not all zeros, 54 is
left at a 0 condition. This test was made
to determine if the base register was gen­
eral register o. If general register 0 is
selected as a base register, the base reg­
ister amount is considered to be zero and
is not added to the displacement. The
branch statement is 0, S7 with S7 at a 0
condition giving a next ROS address of
012C.

ADDRESS 012C: Set the four high bits of
the displacement address from the R­
Register into the U-Register (00). Set the
MN-Registers to A043 and read out the
fourth byte of the instruction (60) and set
it into the R-Register. What was in the
R-Register at the beginning of a word can
be used in the add statement because the
output of core storage does not enter the
R-Register until the end of the cycle. Set
so to O. The branch statement is S4,1 and
S4 was left at a 0 condition giving the
next ROS address as 0131.

ADDRESS 0131: Increase the J-Register by 1
to 44 leaving the S3 bit at a 0 condition.
Write the fourth byte (60) into main stor­
age at the same address it was read from.
The branch statement is 10 giving the next
ROS address of 012E.

ADDRESS 012E: Set the low eight bits (60)
of the displacement address into the V­
Register from the R-Register. Set the
MN-Registers from the T-Register; the M­
Register setting will change depending on
the size of core storage in order to select
the correct local storage area. The T­
Register has been set to 23. This
addresses the low-order byte of general
register 2 in local storage and sets the
byte (48) into the R-Register. The branch
statement is 0, S3 with S3 at a 0 condition
giving a next ROS address of 0138.

ADDRESS 0138: Decrement the T-Register by
1 to 22. Write the low-order byte (byte 3)
into the same location it was read from.
The branch statement is 1.0 giving a next
ROS address of 010A.

IV
o
<..oJ
o

-\0

" ~
" 0'1
0'1

I'2j
I.Q
~
1"'1
en
<..oJ
I
~
~

•
H
:3
Q.
(D
~
1-1'
:3

I.Q

"tI
III
1"'1
rt

~

0
HI

IV,

55 2ND INDEX

.. X I~DEX
AS.SS INDEx

10 - 012f

l ... v I
S TtI1N LS S

1 0." 38 u- O--fA
ITAAT INDEXING
MAD OUT ReG
LOW CRDER ADOIII
~TDDINY

10_0186-8 K 0101
" o+tCl.+L

S =UE J NI 'NT I
1101 4
N5- 11 -He

1 ... : - oucl 1 ';1: 0133

1

~ ~~ 0114

1
S IJ+/'IN ~ , _______ - .. -S WRITE ~

;:: .1.:!l t~·O *0 ~G1~:: 1. ~
IUC.R5.SI OR 55 8'0 SET uP X REG
1ST PUT "I D IN ADD~ LOW ORDER
U READ OUT DO

1 RL~~ - o12f 1 ~~ - 0108 1 y.~l - olll1 1 .. :0
- 0136

1
S IJ+HN ... 0; ~S WRI TE 1 !
C o+so I 1 -
! 0.0 osA 54.1 35 hO 36 0.53 6()A
L6- 00 --'.' L?- .1 ~G L8- 10 ---i.H Jt-- 0. --.J.J

S5 ~D III PUT P\JT "I AODaESS ~TN~O~gD:~;lI R5.5I OR 55 He
HI 0 IN U FROI't lST I1fDElC FROM 1ST INOEX IN .J 'x PUT DO IN V
READ OUT DO IN I

01 - 0135

1 v.J
I

1 hO --
10 - 0146

1 utA+C+uc

01 - 01] 1 1+0+1+1

! 0.0 6
Ll- 00 ~A

1 :c -- 016°1

1 -. ·.·,·.S·'-IP,I-Df.
Gl.Gl 64

J2-- .. -..)8
1fT II TO 0 TO
I~DItAn NO HI
OROSI ADDRESS
SR TC 5I!PAl~ATE
SS !7S 11 - 013'

11+0+1+1 I

1 hO 3J
T+""" 1.5 ?-_______________ ...

1 GZ.Ol 641
N2- 10 -1111 12- .. ~8

Note 1

11 - 013~ 01 - 0141

1 ~+uc 1 IIt+O+C+DC 1 '5 T+P'W L5 __ 5 'WRITE
f OtS4.S5 I f ANSNZ+SZ

, 0.1 414 A GZ.G3 ..
G6- 01 --GI' G7- .. -GG

AX IHDfXING • RX I,.DEX OVER
or...y START OP 'RA~~

Note
ADD HI DISPlACEMENT TO HI BASE AO~ESS
jt£AD l14AVAILA8l.f ADDRfSS
'ROM BAse REC;ISTE~
lUNCH TO SEPAAA TE
IS OPS.
Note 2
.nc DOUIIU INDEX
OVER. STAAT CIP

9:A?C~&'r:..TO
AVln.AIILE ADOR

COO)
~oPS
COl)
... FIXED P
CiO.lU
fIX trl"OAT "

1 ,':,- olle, 1 v:.:v-; 010Al 1 T':T- 01] 1 ~: 013Dt ~ ~!t:: 01

J
.o 1 ~: oli

s "'ITE 5 ,..... 1.5 5 WRITE oS T+/'IH LS '5 ~ItE , T~M'4 LS ~ -1 J C 0.50 C 0154.55 J-l -c 1.56 'J
hO 0.1 5 •• 0 3 ~ 50.1 3D , 0.$5 4 hO , 0.0 J&4 r u- 10 -EC E~ .0 -ED E5- .1 -Ee E6>- 0. -u £7- 10fG !8- 00 --£H

I DlCMIENT ADDA AEAD ClJT HI !)fellatE"' ADM 'lX INDEXI~ I KT L" x A;G
ADDR. ADD LOW ---------TEST I' •• 0 --ADDA LOW ORDER
OIt!)fR DA'A TO Y ADD 'OR HI A~OR
'OR LOW ORD£R
e,'ICTIVE ADDR

Principles of Operation

ADDRESS 010A: Add the contents of the
V-Register (the A-Register input) to the
contents of the R-Register (the B-Register
input) and set the results into the V­
Register. The V-Register contained 60 and
the R-Register contained 48 giving an ALU
output of A8 without carry to the U­
Register. Set the MN-Register from the
T-Register: MN is set to XX22 where XX is
determined by core storage size. Byte 2 of
the general register 2 is read out from
local storage and is set into the R­
Register (OA). The branch statement is
S6,0 with S6 at a 1 condition, giving a
next ROS address of 013E.

ADDRESS 013E: Decrement the T-Register by
1 to 21. write the second byte into local
storage at the same address it was read
from. The branch statement is GO,O. The
G-Register has the Op code of F2, so GO is
a 1 giving the next ROS address of 0146.

ADDRESS 0146: Add the contents of the
U-Register (00), (the A-Register input) to
the contents of the R-Register (OA), (the
B-Register input) and set the results (OA)
into the U-Register. If a carry had
existed from the previous add, it would be
added in at this time. The MN-Registers
are set from the T-Register to xx21. Byte
1 (00) is read out of general register 2
and set into the R-Register. The branch
statement is G2. G1 which are at a 1 condi­
tion at this time giving a ROS address of
0167 (Figure 3-11 Part 2).

ADDRESS 0167: Add the contents of R­
Register (00), (the A-Register input) to a
forced output of 00 from the B-Register and
a carry if one had occurred during the last
add. The result of this add is set on the
Z-bus to see if the result is non-zero; if
result is non-zero, an address too large
for a 2030 has been developed. Write byte
1 into local storage at the same location
it was read from. Set S2 to a 1 condition
if the result of the add was non~zero; for
the example S2 stays at a 0 condition. The
branch statement is Sl,S7 with both bits at
a 0 condition at this time giving a next
ROS address of 0370.

ADDRESS 0370: Add twa to the amount in the
J-Register, this gives the low-order part
of the main storage location of the next Op
code. Set the results (46) into the R­
Register. Set the MN-Registers to xxAA and
read out the byte from local storage but do
not set the output into the R-Register.
This is blocked because the next word has a
storage statement of STORE. The branch
statement is 0,0 giving a next ROS address
of 0384.

3-24 (9/1/66)

ADDRESS 0384: Set the contents of the
U-Register (OA) into the D-Register via the
Z-bus. Store the contents of the R­
Register (46) into local storage location
M, byte 18. Check the WRAP latch. If it
is on, set the sixth position of the X­
Register to a O. For the example, the wRAP
latch is not on. The branch statement is
1,1 and the WRAP latch is not on,
therefore. the next ROS address is 035F.

ADDRESS 035F: Add one to the I-Register if
a carry occurred when the J-Register was
increased by two. For the example a carry
did not occur. Set the MN-Register to xxA9
and read out the byte in local storage.
Set the core storage output into the R­
Register. The branch statement is 0, 33
with S3 at a 0 condition giving a next ROS
address as 03AO.

ADDRESS 03AO: Set the contents of the
I-Register (AO) into the R-Register. If
the WRAP latch is set now, transfer the
WRAP-Iatch-on condition to the wRAP BUFFER
latch. The branch condition is 1,0 giving
a ROS address of 0306.

ADDRESS 0306: Set the 1 bit of the S­
Register by use of the add statement. Set
the contents of the R-Register (AO) into
local storage location A9, byte 17. The
branch statement is 1,0 giving the next ROS
address of 032A.

ADDRESS 032A: Set the G-Register into the
A-Register (F2) and set the B-Register to
44 from the CK field. Cross the output of
the A-Register but only route the four low
bits after the cross with the four high
bits set to zeros. Only route the four
high bits of the B-Register and force the
four low bits to zeros. The input to the
ALU is OF from the A-Register and 40 from
the B-Register. This output of 4F from the
ALU is set into the R-Register. The
location in local storage containing the
instruction-length count and the PSW-bit­
condition address is set into the MN­
Registers xxBC. The information located at
this position is read out but does not
enter the R-Register because the next word
storage statement is STORE and the R­
Register is the destination register in
this word add statement. The branch
statement is 1,0 giving a next ROS address
of 0376.

ADDRESS 0376: The statement 1->1 will
reset the WRAP latch if on. The contents
of the R-Register (4F) is set into local
storage at location Be to be used later if
necessary. The S-Register bit 7 is set to

Principles of Operation

a 1 condition to indicate the first operand
address has been indexed. The branch
statement is 0,1 giving a ROS address of
0115 (Figure 3-11 Part 1).

ADDRESS 0115: Increase the J-Register by 1
to 45. Set the MN-Register to A044 and
read out the fifth byte of the instruction
from main storage. Set the R-Register to
the output of main storage (40). Set the
S-Register bit 0 to a 1 condition. The
branch statement is S2,0 with S2 at a 0
condition giving the next ROS address of
0184.

ADDRESS 0184: Set the low-order byte
address of the second operand base register
into the T-Register (43). Write the fifth
byte into main storage at the same location
it was read from. Test the Z-bus four high
bits for all zeros. Since the Z-bus has 43
on it, S4 is left at a 0 condition. The
branch statement is 0,S7. S7, at a 1 con­
dition, now gives the next ROS address of
012D.

ADDRESS 0120: Set the low portion of the
R-Register (the four high bits of the sec­
ond operand displacement) into the U­
Register. Set the MN-Registers to A045 and
read out the sixth byte of the instruction
(40). Set the output into the R-Register.
Set the S-Register bit 0 to a 0 condition.
The branch statement is 0,0 giving a next
R05 address of 0108.

ADDRESS 0108: Set the -I-Register to the
contents of the D-Register (OA) and ensure
the 53 bit is at a 0 condition. Since the
last byte of the instruction has been read
out, the address in the IJ-Registers at
this time is not needed and the first
operand address can be transferred to the
IJ-Registers. The address of the next
sequential Op code has already been stored.
Write the sixth byte into main storage at
the same location (A045) it was read from.
The branch statement is S4,1 with S4 at a 0
condition because the second operand base
register number is not O. This gives the
next ROS address of 0135.

ADDRESS 0135: Set the contents of the
U-Register (A8) into the J-Register. The
branch statement is 1,0 giving a ROS
address of 012E.

ADDRESS 012E: Set the low eight bits (40)
of the displacement into the V-Register
from the R-Register. Set the MN-Registers

from the T-~egister (xx43) and read out
byte 3 of the second operand base register.
Set-the R-Register (BB) to the output of
the core storage. The branch statement is
0,S3 with S3 at a 0 condition giving a next
ROS address of 0138.

ADDRESS 0138: Decrement the T-Register by
1 to 42. Write byte 3 into the same loca­
tion that if was read from. The branch
statement is 1,0 giving a next RDS address
of 010A.

ADDRESS 010A: Add the contents of the
V-Register (40) to the contents of the
R-Register (BB) and set the result (FB)
into the V-Register. Set the MN-Register
from the T-Register (xx42) and read out
byte 2 (15) from local storage. Set the
output into the R-Register. The branch
statement is S6, 0 with S6 at a 1 condition
giving the next ROS address of 013E.

ADDRESS 013E: Decrement the T-Register by
1 to 41. Write the second byte into local
storage at the same location it was read
from. The branch statement is GO,O. The
G-Register contains the Op code (F2) so GO
is a 1 giving a next ROS address of 0146.

ADDRESS 0146: Add the contents of the
U-Register (00) to the contents of the
R-Register (15) and set the result (15)
into the U-Register. The MN-Register is
set from the T-Reqister to xx41. Byte 1
(00) is read out from general register 4
and set into the R-Register. The branch
statement is G2, G1. Botn at a 1 conditi9n
gives a next ROS address of 0167 (Figure
3-11 Part 2).

ADDRESS 0167: Add the contents of the
R-Register (00) to the forced 00 output of
the B-Register and test the result on the
Z-bus for an address too large for a 2030.
Write byte 1 into local storage at the same
location it was read from. The branch
statement is Sl~ S7. Both at a 1 condition
gives a next ROS address of 0373.

The conditions at this time are the next
sequential Op code address stored in local
storage. The IJ-Registers contain the
address of the high-order byte for the
first operand (OAA8). The UV-Registers
contain the address of the high-order byte
for the second operand (15FB). The S­
Register bits 1, 6, and 7 are set to a 1
condition. The L-Register contains the
field length count of the first and second
operand.

2030 FETOM (9/1/66) 3-25

~ "'Il
I
'" I.Q
0- C

t'1
CD

~
IS) I
..... ~
~ ~

" •
0-
0-

H

=' 0-
CD
><
=' I.Q -"tl
QI
t'1
rt

'"
0
HI

'"

AS.SS l'-OVC

I(

A
S

I
R 0.0
El-

Note

00 - 0384

ClOt
r-- SHIns

SET I
AEAD""AIT!

jr- DIRECT
LOAD PS",
DIAGMlSE

UlGICS 51 I
- ~

STOlt! ,..~.
ttST/MASh
MOV! CHAO,
TEST AND sn

LOAD "TP\.

I UO cPS

01 --- 03AI ! 1-::1--- OJ71 1 I+R 5 W~ITE

1
1 -1 1.0 O~ ~ Y+WRAP C5-- 10 --CE
~ 0.1 71 REDUC.E I FOR
C4-- 01 -CD TMIRC SYLL.A&L.E

Note 1
END OF F IPoST
IN~X. ~TART
&TQRE Ie.
lPOATf La Ie
&Y Z AND STOltE
IN LOCAL STa~.

READOUT

I
(00.01.10.11)
55 HI ORDER
CPS

....

1 10 - OJ] 1 1+0+1.1

1 0.0 0
L6- 00 -LF

.-1 0.S6 :r-- PRT I~T

l 1.CA01-.W
Le-

INV OP
11 ~H

" (l0)
DEC ADD, SUB.
CI'IP. Z ADD IJ

<lll

I It DECIMAL
MPY/DIII

Principles of Operation

ADDRESS 0373: Take the contents of the
L-Register (34), cross it (43), and set the
crossed amount into the D-Register. Check
the four high bits of the Z-bus for all
zeros. In the example S4 remains at a 0
condition. The branch statement is G2, G3.
Both at a 1 condition giveS a next ROS
address of 03FB.

ADDRESS 03FB: Add the contents of the
J-Register (A8) to the low four hits of the
D-Register (03) and set the result of the
add (AB) into the J-Register. The branch
statement is S2,1 with S2 at a 0 condition
giving a next ROS address of 0389.

ADDRESS· 0389: Add the contents of the
V-Register (EB) to the four low bits of the
L-Register (04) and set the result (FF)
into the V-Register. The branch statement
AC,l tests to see if a carry occurred in
the previous word. In the example. a carry
did not occur giving a next ROS address of
030C.

ADDRESS 030C: If a carry occurred in word
0389, add one to the U-Register. For the
example, the U-Register remains the same.
The branch statement is G4. G5 with both at
a 0 condition giving a next ROS address of
037C (Figure 3-12).

ADDRESS 037C: Decrement the V-Register by
1 to FE causing a carry to occur and
setting S3 to 1. Set the MN-Register to
15FF and read out the low-order byte of the
second operand (C3). Set the output of
storage into the R-Register. The branch
statement is 1,0 giving a next ROS address
of 035E.

ADDRESS 035E: Set the contents of the
L-Register (34) on the Z-bus and test both
the high and low four bit combinations for
all zeros to determine if either field has
ended. For the example here, neither have
ended. Write into main storage into the
same location the same information read out
on the last word (C3). The branch state­
ment is G6, G7. With G6 a 1 and with G7 a
o giving a next ROS address of 0422.

ADDRESS 0422: Take the contents of the
R-Register (C3), cross it (3C), and set the
crossed number into the R-Register. This
is done because the sign of the number in
the unpacked field is the low-order byte
zone digit and the sign is maintained.

Only the sign becomes the low four bits or
digit of the low-order byte in the packed
field. Set the S-Register bit 7 to a 0
condition. The branch statement is 0,0
giving a next ROS address of 0438.

ADDRESS 0438: Set the D-Register to 00.
Set the MN-Registers to OAAB and read out
the contents of main storage at that
address but do not set the information into
the R-Register. The branch statement is
54, S5 with both at a 0 condition giving a
next ROS address of 0428.

ADDRESS 0428: Decrement the J-Register by
1 to AA. Store the byte in the R-Register
(3C) into main storage location OAAB. The
branch statement is 0, S3 with S3 at a 1
condition from word 037C giving a ROS
address of 0431.

ADDRESS 0431: Decrement both field lengths
in the L-Register (34) by one and set the
results (23) into the L-Register. Set
MN-Registers to 15EE. Read out the next
byte of the second operand (F6) and set it
into the R-Register. Test the Z-bus, both
the high and low four bit combination, for
all zeros. In the example, the Z-bus has
23 on it at this time so 54 and S5 remain
at a 0 condition. The branch statement is
1,S3 with S3 at a 1 condition from word
0428 giving a next ROS address of 0433.

ADDRESS 0433: Set the contents of the
R-Register (F6) into the T-Register. Write
the contents of the R-Register into main
storage at the same location the informa­
tion was read from. The branch statement
is G6. G7 with G6 being a 1 and G7 a O.
This sets the next ROS address to 042E.

ADDRESS 042E: Decrement the V-Register by
1 to FD. The branch statement is 0, S5
with 85 at a 0 condition giving a next ROS
address of 0434.

ADDRESS 0434: Decrement the second operand
field length count by 1 to the number 2.
Set the MN-Register to 15FD. and read out
the next byte of the second operand (F2)
and set it into the R-Register. Test the
four low bits of the Z-bus for all zeros;
the Z-bus has the L-Register input (22) on
it. This leaves S5 at a 0 condition. The
branch statement is AC.O; there was a carry
in the last word so AC is a 1 condition
giving a next R05 address of 0486.

2030 FETOM (9/1/66) 3-27

W
I

N
(X)

1001
P I Clio UNPAOC.
MOVl W/OfFSU

lltle: - o-lJ' 1 0.: - 0438 ,I _________ S l~~ MS

e o.S7 1
1 0.0 54.55 "
G3- 00 -<iC C05- .. -<if

PAc.-

01 - o-ID 01 - 0439

1 TXHtDL·R 11 1 T D J
1 0.1 39 --1 hi •
U- 01 -ef U- *1 -U

f W Cl"FSET

1 V-:v - 04lE

I 1 0.55 3.
J5- Ot--.JE

Pac;K

1 T\.:~ - 04

J
35

1191 •
G6- *1 ...(i#

SMCf Er.lOeO

00 - 0'34 10 _ 04.6 11 - 0431

! b~ .. 5 1 1 ~~~ }-11 AX'++'Dl~ ,
~nS5 J-... --------r1 AC.O hi 3 hi II~

~1iE"T.o Iru'-c': .-- 11 -.JH J9- *1--.JJ
COUIWT ~ TEST
!lOA !ND

10 - 0421
~ M!~D
5 IJtIl4N Io\S

1 54,55 lS!
105- _-u

EBCDIC

11 - 041'7

1 v-o.vc
S IJtI'lN MS

1 54," lel
1'45- .. -"e

01 - 04] 10 - 0'3. 00 - 048e 01 0485
~ ~~1~ 1 ~J 1 1 n..+DMtA J 11-0.1- j i ~:s! 3 --1 0.0 18 --1 AC.l --------.... -1 hi •

STOAf "tV

1.1 oJ
G6- 11..q

10TH f~D

00-04IO-EJ .. OOOhO
A 0+0+1~

5 uw 1 "' INT I C 0.56 I
, ~'l .74
I~~lD Jl ~

00 - 0431 lu-o.u

1 0,1 31
u- 01 ~A

L6- 10 ~, L~ 00 ~G Le- *1 ~H N4- 11 ~

~~~~~ ~~~ .. --------------~-----------------~ ~DA~D 

11 - 0427 
It ooohO 1 
i S~ ".W '----------------------------------------------------------------------~------------------------

1.1 0 J um~ 

.:rr-!NDf Al 
-..#If 



Principles of Operation 

ADDRESS 0486: Set the four low bits of the 
T-Register (6) into the D-Register (06). 
The branch statement is 1,1 giving a next 
ROS address of 043B. 

ADDRESS 043B: Set the contents of the 
R-Register (F2) into the A-Register and the 
contents of the D-Register (06) into the 
B-Register. Cross the output of the A­
Register (2F) and route the four high 
crossed bits (20) to the ALU. Route the 
four low bits of the B-Register (06) to the 
ALU. Set the output of ALU (26) into the 
R-Register. The branch statement is 1,1 
giving a ROS address of 0487. 

ADDRESS 0487: Decrement the V-Register by 
1 to FC. Set the MN-Registers to OAAA and 
read out that main storage byte but do not 
set the byte into the R-Register. The 
branch statement is S4, S5 with both at a 0 
condition giving a ROS address of 0428. 

ADDRESS 0428: Decrement the J-Register by 
1 to A9. Store the byte in the R-Register 
(26) into main storage location OAAA. The 
branch statement is 0, S3 with S3 at a 1 
condition from word 0481 giving a ROS 
address of 0431. 

ADDRESS 0431: Decrement both field length 
counts in the L-Register (22) by one to 11 
and set into the L-Register. Set MN­
Register to 15FC and read out the next byte 
of the second operand (F8) and set it into 
the R-Register. Test the Z-bus, both high 
and low four bits, for all zeros. In the 
example, the Z-bus has 11 on it at this 
time so S4 and S5 remain at a 0 condition. 
The branch statement is l,S3 with S3 at a 1 
condition in word 0428 giving a ROS address 
of 0433. 

ADDRESS 0433: Set the contents of the 
R-Register (F8) into the T-Register. Write 
the contents of the R-Register into main 
storage at the same location it was read 
from. The branch statement is G6, G1 with 
G6 being a 1 and G7 being a O. This sets 
the next ROS address to 042E. 

ADDRESS 042E: Decrement the V-Register by 
1 to EB. The branch statement is 0, S5 
with S5 at a 0 condition giving a ROS 
address of 0434. 

ADDRESS 0434: Decrement the second operand 
field length count by 1 to o. This leaves 
the L-Register at 10. Set the MN-Register 
to 15EB and read out the next byte of the 
second operand (F1) and set it into the 

R-Register. Test the four low bits of the 
Z-bus for all zeros; the Z-bus has the 
L-Register input (10) on it. This sets S5 
to a 1 condition. The branch statement is 
AC,O; there was a carry in the last word so 
AC is a 1 condition giving a ROS address of 
0486. 

ADDRESS 0486: Set the four low bits of the 
T-Register (8) into the D-Register (08). 
The branch statement is 1,1 giving a ROS 
address of 043B. 

ADDRESS 043B: Set the contents of the 
R-Register (F7) into the A-Register and the 
contents of the D-Register (08) into the 
B-Register. Cross the output of the A­
Register (1F) and route the high four 
crossed bits (10) to ALU. Route the low 
four bits of the B-Register (08) to the 
ALU. Set the output of ALU (78) into the 
R-Register. The branch statement is 1,1 
giving a ROS address of 0487. 

ADDRESS 0481: Decrement the V-Register by 
1 to FA. Set the MN-Register to OAA9 and 
read out that main storage byte but do not 
set the byte into the R-Register. The 
branch statement is S4, SS with S4 at a 0 
condition and S5 at a 1 condition giving a 
ROS address of 0429. 

ADDRESS 0429: Decrement the first operand 
field length count in the L-Register by 1 
and set the result into the L-Register. 
The L-Register now equals 00. Store the 
contents of the R-Register (78) into main 
storage location OAA9. Test the high four 
bits of the Z-bus for all zeros; the Z-bus 
has the L-Register input on it (00) so S4 
is set to a 1 condition. The branch state­
ment is 1,1 giving a ROS address of 044B. 

ADDRESS 044B: Decrement the J-Register by 
1 to AS. The branch statement is 1,S7 with 
S1 at a 0 condition giving a ROS address of 
041A. 

ADDRESS 041A: Set the high four bits of 
the D-Register (0) into the R-Register 
(00). The branch statement is AC,l; there 
was a carry in the last word so AC is at a 
1 condition giving a ROS address of 0487. 

ADDRESS 0481: Decrement the V-Register by 
1 to E9. Set the MN-Registers to OAA8 and 
read out that main storage byte but do not 
set the byte into the R-Register. The 
branch statement is S4, S5 with both at a 1 
condition giving a ROS address of 042B. 

2030 FETOM (9/1/66) 3-29 



Principles of Operation 

ADDRESS 042B: Store the contents of the 
R-Register . (00) in main storage location 
OAA8. The branch statement is 1,1 giving a 
ROS address of 0103 (Figure 3-13). 

Both fields have ended and the second 
operand has been set into a packed fornat 
in the first operand location. The first 
operand locations have been set to 00 78 26 
3C. Remember, the next Op code address 
(A046) has been stored in local storage 
locations A9 and AA. In order to read out 
the next Op code, it is necessary to read 
out these two locations and set them into 
the 1- and J-Registers. This routine is 
called IC (Instruction Counter) Restore. 

ADDRESS 0103: Set the S-Register to 00. 
Set the MN-Register to xxAA and read out 
the byte from local storage (46). Set the 
byte into the R-Register. The branch 
statement is 1,1 giving a ROS address of 
01F3. 

ADDRESS 01F3: I Set the contents of the 
R-Register (46) into the J-Register. Write 
the contents of the R-Register into local 
storage at the same location.it was read 
from. The branch statement is 0,1 giving a 
ROS address of 0105. 

ADDRESS 0105: Set the L-Register to 00. 
Set the MN-Registers to xxA9 and read out 
the byte from local storage CAO). Set the 
byte into the R-Register. The branch 
statement is 0,1 giving a ROS address of 
0181. 

3-30 (9/1/66) 

ADDRESS 0181: Set the contents of the 
R-Hegister (AO) into the I-Register. Write 
into local storage the contents of the 
R-Register at the same location it was read 
from. The branch statement is 1,1 giving a 
ROS address of 0107. 

ADDRESS 0107: The add statement would set 
the S-Register bit 1 to a 0 condition if it 
had been at a 1 condition. Set MN­
Registers to xxBC and read out the byte 
from local storage C4F) and set it into the 
R-Register. The branch statement is Sl,l 
with Sl at a 0 condition this time giving a 
ROS address of 0169. 

ADDRESS 0169: Set the R-Register into the 
A-Register (4F). Route the four low bits 
through the ALU on to Z-bus (OF) and into 
the R-Register. Set the condition of the 
WRAP BUFFER latch into the WRAP latch. The 
branch statement is 0,S7 with S7 at a 0 
condition giving a ROS address of 010C. 

ADDRESS 010C: Cross the contents of the 
R-Register (OF) through the ALU and set the 
crossed byte (FO) into the G-Register. 
Write into local storage location BC the 
contents of the R-Register (OF)i this 
resets the PSW bit. The branch statement 
is 0, INTR without an interrupt pending at 
this time. The INTR condition is a 0 giv­
ing the next ROS address of 0100 where the 
next Op code is read out. 



N 
o 
w 
o 
"z:1 
~ 
~ 
o 
3: 

w 
I ,... 

w 

H 
() 

:Xl 
~ 
CJ) 

rt 
o 
1'1 
~ 

I 
(001 
EX!C ~ I eyC1.~ SfAAT 

I
COll 
C()oIPA TIB ILIT' 
IQ)E I/O 
INTEARUPT 

1 Ot~l - OlOB

I 
S Vo=<IT( _ 

! 100 16R 
Q4- 10 '-<l~ 

INVALID AOIlRfSS 
5£ T c;.c 'OIl 
COAR~CT 1/0 

01 - 0101_ 1010 
A ,to 

! INr.x6x1 
R h1 13 
N2'-- q ~B 

INTERRUPT "'A ITlNG 
P\JT T JMER COUNT IN 

01 - 0169 

• RLtR 
IU __ 

.. 0010 I 
l WRAPt' 

10 - 010Z 
I( 0010,1 1 
• Ot5 

1
$" L,S 

101 IIJ 
t2- 11 -<a 

MAD OUT LO IC 

n - 0103 

- 0.51 OCR 
E7- c. -(G 

RESeT Psw lIT 
RE5~OAE WRAP LATCH 
S" 'OR WAIT S U TE 

ftfSTO"1! lLe (11) I 

1 AX: - 010

j
C 

S ~ITE 

1 O.I'ITR 0 
£8- 0$ --Et04 

PESTOP~ ILC 
TEST I~ .. 
I .. TERR\.. .. T 

cou 
WAIT 

STOR PROTECT I 
II.!Y cPS AND 
S\J'ER CAL,L 

1011 I 
-~ 

jtq SR LIJtI(. 
SET PRG /'\ASI( 

J 
11 - OlE'!" 

1 ~.-, 1 S "~ITE 
~c; AltSNZtS2 

A C.G? os 
J1- oe -JG 

MASK CONI! fl£(i 
!A COND. COUNT 

00 10 

I INVALID OP 

---4 
(01.11 ) 
LOGICS RR I 

II. 0010.1 l 
A O+S - ____ 5 eAA LS 

11 - 01" 01 - 010' 01 - 0181 11 _ 0107 1 t( 0001.1 I 1 I( 0100,0 I 
R+J A 0 RtI A S."1lHtS 

5 WRITE J_s .~ LS 5_, WRITE _S .!C LS 5 ] . LAiD TESf 

I Ie RESTORE 11 ,1 ,,31 .:rc D.JT tA It! 

CUI 
ttlSTORE Ie 

1 0.1 0 ~l 0.1 Sl! 1101 07 1 Sl'l .,1 
u- 01 -Ee 1!4-- 01 -£[) £3- 11 -£E E6- l1-!F 

P\.ACE IN J READ OUT HI Ie P\.ACE IN I RESET SUT 51 
READ OUT PSW BIT 
~O n.e 51 ON 
~RE ONLY FOR 
STOPE psw. 

U IC R£STORE ~ 

I
COll 

LOAD COMP 

CO 

I 
LOAD + OR -

11 - 039" 
II. 0011 1 A ~L.tT 
S Wt""" L.S 
C 1tS6 1 
, loG7 "2 
J2- .. -.J! 

SET ~ 'OR ADO 
~ SUB I.OGICAL 

AA /f".DIv I 

(00.01) 
IIR CQ~D COU~T 



Principles of Operation 

SHIFTS 

• The description of the shift operation is explained using 
the CAS diagrams and the CLF charts • 

• The CLF charts are found in the Maintenance Diagram Manual, 
Form 225-3466. 

For this example, the instruction is 
88200105. The number to be shifted is 
0009E1A9. The objective of the instruction 
is to shift 5 bits to the right the number 
found in General Register 2. In the shift 
instructions, the first operand address 
indicates the General Register where the 
number to be shifted is located. The sec­
ond operand address is used to determine 
the number of digits to be shifted: only 
the low six bits of the address are used. 
The number in this example after being 
shifted will be 00004FOD. Use Figure 3-14 
to follow the operation step by step for 
register contents. 

First, the Op code has to be decoded. 
Using CAS diagrams, start on QA001 at word 
0100. For our example the S-Register and 
L-Register equal 00 at this time. In word 
0100, the Op code is read from main storage 
and set into the R-Register. The instruc­
tion counter, IJ is increased by one. 
Since the S-Register is 00, the branch 
statement S2,1 will select address 0109. 

ADDRESS 0109: The Op code is written into 
the same location in main storage from 
which it was read, and it is set from the 
R-Register to the G-Register. To set the 
Op code from R to G, the Op code is set on 
the Z-bus and the High 4 bits are tested to 
see if they are zeros. In this example, 
the Op code is 88 (10001000) so the high 4 
bits are not all zeros: therefore, S4 is 
set to O. The branch statement checks RO 
and, in this case it is a 1, so the next 
address selected is 02E2 on QA011. 

ADDRESS 02E2: In this word the second byte 
of-the instruction (20) is read from main 
storage to the R-Register. One is added to 
the low portion of the instructon counter 
and S6 is set to 1. The next word to be 
read out is 02E5 on QA021. 

ADDRESS 02E5: In this word the second byte 
is written into main storage at the loca­
tion it was read from. Remember, this 
example was entered with the L-Register 
equal to 00 so the statement LOR->I will 
set the second byte (20) into the L-

3-32 (9/1/66) 

Register. Also the low 4-bits of the Z-bus 
are tested for all zeros. The Z-bus has 
the second byte on it, so s5 is set to 1. 

The branch statement checks whether an 
adder carry occurred when the low portion 
of the instruction counter was increased by 
one in the previous word. In this example 
we will assume a carry out did occur so the 
next address read out will be 0117. 

ADDRESS 0117: In this word the high 
portion of the instruction,counter is 
increased by one. The next address is 
0115. 

ADDRESS 0115: In this word the low portion 
of the instruction counter is increased by 
one. The third byte (01) of the instruc­
tion is read out of main storage and set 
into the R-Register. The 0 bit of the 
S-Register is set to 1. The branch state­
ment checks the 2 bit of the S-Register 
which is zero at this time, so the next 
address is 0184. 

ADDRESS 0184: In this word the third byte 
is written into main storage at the loca­
tion it was read from. The high four bits 
of the third byte, the General Register 
number containing the base amount, is com­
bined with an emitted three and set into 
the T-Register. The high 4 bits of the 
Z-bus are tested for all zeros. In this 
example the high 4 bits are zero, so S4 is 
set to 1; this is an indicator that the 
Base General Register is 0, so ignore any 
base amount. In the branch statement, S7 
is 0 so the next address is 012e. 

ADDRESS 012C: In this word the low four 
bits of the third byte (1) is set into the 
U-Register (01). The fourth byte is read 
out from main storage and set into the 
R-Register. The 0 bit of the S-Register is 
set to O. In the branch statement, S4 is 
checked. In this example S4 equals a 1 at 
this time because General Register 0 was 
used for the base register. The next 
address is 0133. 



Principles of Operation 

Step Comments R-Register G-Register S-Re gi ste r L-Re gister D-Register T-Register U-Register V-Regis ter 

0000 0000 
"" 

1 Readout Op Code 1000 1010 -- - 00000000 --- --- ---- ---
2 Se t Op Code in G 1000 1010 1000 1000 00000000 0000 0000 --- --- --- - .--
3 Readout 2nd Inst . Byte 0010 0000 1000 1000 0001 0010 00000000 ..,.--- --- --- -- -
4 Recognize Adder Corry 00100000 1000 1000 0001 0110 0010 0000 ---

- ~----
--- ---

5 Add 1 to High Ins t . Coun ter 00100000 10001000 00010110 0010 0000 

----.E..... r--8E'odout 3rd Ins~~y te 0000 0001 1000 1000 1001 0110 00100000 --- --- --- ...,,---

7 De termi ne Bose is a 0000 0001 1000"1000 1001 1110 00100000 --r- 00100011 --- ---
8 Readout 4th Ins t. Byte 0000 010 1 1000 1000 0001 1110 0010 0000 --- 00100011 0000 0001 -- -
9 Check GO 0000 0101 10001000 0000 1110 00100000 --- 00100011 0000 0001 ---

10 0000 0101 1000 1000 00001110 00100000 - - - 00100011 00000001 0000 0101 

---W-- Bra nch on G 2 GI 0000 0000 1000 1000 0000 1110 00100000 - - - 00100011 0000 0001 0000 0101 
12 - Branch on G4 G 3 00000000 1000 1000 0000 1110 00100000 0000 0000 00100011 00000001 0000 0101 
13 Set Shift Amount (6 Bits ) 00000000 10001000 0000 1110 00100000 0000 0101 00100011 0000 0001 0000 0101 
14 Setup Address of 1st Byte 00000000 10001000 0001 1110 00100000 00000101 00100011 0000 0001 0010 0000 
15 Readout High Order Byte 0000 0000 1000 1000 0001 1110 00100000 0000 0101 00100011 0000 0001 00100000 
16 Se tup Work Are a Address 00000000 1000 1000 0001 lIla 0010 0000 0000 0101 1111 1100 0000 0001 00100000 
17 Check for Righ t or Le ft 0000 0000 10001000 0001 1110 00100000 0000 0101 1111 ) 100 0000 0001 00100000 
18 Se tup Left Shift Amoun t 0000 0000 1000 1000 0001 1110 00100000 00000101 1111 1100 1111 1011 00100000 
19 0000 0000 10001000 0001 1110 0000 0011 00000101 11111100 1111 1011 00100000 
20 Set Left Shift in G 0000 0000 1011 1000 0001 1110 00000011 00000101 1111 1100 11111011 00100000 
21 Bra nch G6 (Loqica I) 0000 0000 lOll 1000 0000 1010 0000 1010 0000 0101 1111 1100 1111 1012 00100000 
22 Branch Less tha n 8 (S4) 0000 0000 1011 1000 0000 1010 0000 1010 0000 0101 1111 1100 11111011 0010 0000 
23 No Adder Co rry 00000000 lOll 1000 0000 1010 0000 1010 00000101 11111100 1111 lOll 00100000 
24 Adder Corry , S5=0 00000000 lOll 1000 0000 1010 0000 0000 0000 0101 lllTl100 11111011 00100000 
25 0000 0000 1011 1000 0000 1011 0000 0000 00000101 I III 1100 1.111 1011 00100000 
26 Readou t Work Area FC 0000 0000 lOll 1000 0000 1011 0000 0000 0000 0101 1111 1100 1111 1011 00100000 
27 Store Byte in Work Area 00000000 10111000 0000 1011 0000 0000 0000 0101 1111 1101 1111 1011 0010 0000 
28 Readou t Byte a of Number 0000 0000 1011 1000 00001011 00000000 00000101 11111101 1111 lOll 00100001 
29 Not Los t Byte, Not Skewed 0000 0000 1011 1000 0000 lOll 0000 0000 00000101 1111 1101 1111 IOU 00100001 
30 Readout Work Area FD 0000 0000 lOll 1000 00001011 00000000 0000 0101 1111 1101 1111 lOll 00100001 
31 Store Byte in Work Area 00000000 101 J 1000 0000101 T 0000 '0000 0000 0101 1111 1110 '1111 lOll 00100001 
32 Readout Byte 1 of Nu mbe r 0000 1001 lOll 1000 0000 lOll 00000000 00000101 1111 IUO 1111 lOll 0010 0010 
33 Not Lost Byte, Not Skewed 00001001 1011 1000 0000 1011 0000 100 1 00000101 1111 1110 III 1 lOll 00100010 
34 Readout Work Area FE 0000 1001 lOll 1000 00001011 0000 1001 00000101 1111 1110 1111 1011 00100010 
35 Store Byte in Work Area 0000100'1 101 I 1000 0000 lOll 0000 1001 0000 0101 11111111 1111 1011 00100010 
36 Readout Byte 2 of ( ~umber 11 10 0001 lOll 1000 00001011 0000 1001 00000101 11111111 1111 1011 0010 0011 
37 Not Lost Byte , Not Skewed 11100001 1011 1000 0000 1011 1001 0001 0000 0101 1111 1111 IJ 11 lOll 00100011 
38 Readout Work Area FF 11100001 1011 1000 0000 lOll 1001 0001 0000 0101 1111 1111 111 1 lOll 001000) I 
39 Store Byte in Work Area 11100001 1011 1000 0000101 ) 10010001 00000101 0000 0000 1111 101T 00100011 
40 Readou t Byte 3 End Wk A 1010 100 1 lOll 1000 0000 lOll 10010001 0000 0101 0000 0000 1111 1011 0010 0100 
41 Not Skewed 1010 1001 1011 1000 0000 1011 1001 0001 0000 0101 00000000 1111 1011 00100100 
42 Restore Work Area Address 1020 1001 10111000 0000 1011 10020001 00000101 1111 1111 1111 1011 00100100 
43 Se t S3 to Val ue of 1s t Bit 10101001 1011 1000 0001 0011 0101 0010 0000 0101 11111111 1111 1011 00100100 
44 Setup for 2nd Bit Val ue 1010 1001 101) 1000 0001 0011 1010 0100 ooo() 0101 1111 1 111 1111 1011 .00100100 
45 Setup for 3rd Bit Va lue 1010 1001 1011 1000 0001 0011 0100 1000 00000101 1111 1111 Illl lOll 00)00100 
46 Restore Low Byte Address 1010 1001 lOll 1000 0001 0001 01001000 0000 0101 1111 1111 Jll1 lOll 0010 0011 
47 Readou t Low Work Area FF lIla 0001 1011 1000 0001 0001 0100 1000 00000101 1111 1110 1111 10~1 00100011 
48 Shift Left 1st Bit 1110 Q()Ql 1011' 1000 0001 0001 1100 0011 0000 0101 11111110 1111 1011 00100011 
49 Shift Left 2nd Bit 111,00001 1011 1000 0001 0001 1000 0110 0000 0101 1111 1110 1111 1011 00100011 
50 Shi ft Left 3rd Bit 0000 1101 1011 1000 0011 0001 1000 0110 00000101 1111 1110 1111 1011 00100011 
51 Store New Byte 3 In G .R. 2 0000 1101 1011 1000 0011 0011 1000 0110 0000 0101 1111 1110 1111 1011 00100010 
52 Readou t 2nd Byte, Work Area FE 0000 1001 1011 1000 0011 0011 1000 0110 0000 01Ql 1111 1101 lIll 1011 00100010 
53 Sh ift Left 1s t Bit 0000 1001 1011 1000 00100011 0001 0011 0000 0101 1111 1101 lUl101l 001000W 
54 Shi ft Left 2nd Bit 0000 1011 1011 1000 00100011 0010 alII 0000 0101 llJl1101 1111 lOll 00100010 
55 Shi ft Left 3rd Bi t 0100 1111 lOll 1000 0010 0011 00100111 0000 0101 1111 1101 1111 1011 00100010 
56 Store New Byte 2 on G .R. 2 010() 111 ) 101) 1000 0010 0001 00100111 0000 0101 1111 1101 1111 1011 0010 0001 
57 Readout 1st Byte Work Area FD 0000 0000 lOll 1000 0010 0000 00100111 0000 0101 llll 1100 1111 1011 00100001 
58 Shi ft Left 1st Bi t 0000 0000 1011 1000 00100000 0000 0000 0000 0101 1111 1100 1JH 1011 00100001 
59 Shift Left 2nd Bit 0000 0000 10111000 00100000' 0000 0000 0000 0101 11111100 1111 lOll 0010000t 
60 Shift Left 3rd Bi t 0000 0000 1011 1000 00100000 0000 0000 0000 0101 1111 1100 1111 1011 00100001 
6 1 Store New Byte 1 in G .R. 2 ()()(){) 0900 1011 1000 0010 0000 0000 0000 0000 0101 1111 1100 11111011 0010 0000 
62 Readout a Byte, Work Area F C 0000 0000 Wll 1000 0010 0000 0000 0000 0000 0101 1111 1011 1111 1011 00100000 
63 Shif t Left 1st Bit 0000 0000 0100 1000 0000 0000 0000 0000 0000 OWl 1111 1011 1111 1011 00100000 
64 Shif t Left 2nd Bit, End 0000 0000 1011 1000 00100000 0000 0000 0000 0101 111110n 1111 lOll ooro 0000 
65 Shift Left 3rd Bi t , Sing le 0000 0000 1011 1000 0010 0000 0000 0000 0000 0101 U11 1011 1111 1011 00100000 
66 Store New Byte 0 in G .R. 2 0000 0000 1000 0000 0010 0000 00000000 0000 OWl 1111 1011 Jut 1011 00100000 
67 Log ica l End 0000 OOOQ 1000 0000 0000 0000 0000 0000 0000 0101 1111 tOn llll 1011 00100000 

Figure 3-14. Shift Example 

2030 FETOM (9/1/66) 3-33 



Principles of Operation 

ADDRESS 0133: This word writes into stor­
age the fourth byte of the instruction at 
the location from which the word was read. 
Add one to the low portion of the instruc­
tion counter. The branch statement checks 
GO; the G-Register contains the Op code 88 
(10001000), so the 0 bit is a 1. The next 
address is 0136. 

ADDRESS 0136: In this word the fourth byte 
(05) is set into the V-Register. The 
branch statement checks 53. If there was 
an adder carry when the low portion of the 
instruction was increased during the last 
word, 53 will be a 1. In this example, a 
carry would not exist so the next address 
is 0160 on QA071. Register to 00 and 
ensure the carry latch and 53 are off. The 
branch statement checks the G-Register bits 
2 and 1 COp Code Bits 2 and 1). In this 
case both G2 and G1 are zeros, so the next 
address is 0164. 

ADDRESS 0164: This word uses only the 
branch statement. The add statement will 
set the D-Register to 00 since the previous 
word set the R-Register to 00, and reset 
the carry latch. The output of the adder 
is 00. Therefore, 52 is left at a 0 state. 
The branch statement checks the 4 and 3 
bits of the G-Register which are 1 and 0 
respectively. This branch will take the 
flow out of I-cycle and read out word 03lA 
on QA311. At this time the T-Register 
equals 03, the R-Register 00, the L­
Register 20, the U-Register 01, the V­
Register OS, and the G-Register 88. 

The 5-Register Bits 4, 5, and 6 are set 
to 1. 

By this time you have been through 
enough microprograms so that it is not 
necessary to take each word and explain the 
operation in detail. The execution of the 
example will be explained using the CLF 
diagram 13 on page 16 of the Maintenance 
Diagram Manual with cross reference to 
micro words and Figure 3-14 when needed. 

Once again what we want to do is shift 
the number 0009E1A9 right five positions 
and replace the high-order bits with zeros. 

On the flow chart, the first block 
statement is: setup the amount of the shift 
and address of the high-order byte to be 
shifted. So in the D-register the amount 
05 is set, making certain the two high 
order bits are zeros. Also, in the V­
Register, 20 is set as the address of the 
high-order byte of the number. 

The next statement in the flow chart is 
to read out the high-order byte to be 
shifted. This is followed by a decision to 

3-34 (9/1/66) 

see if the number is a single or double 
word. In the microprogram, this is tested 
by checking G5, which is a 0 in our exam­
ple. So from the decision block we take 
the NO line. 

A work area is needed to shift the num­
ber into, so an address is set up for the 
local storage working area. The address of 
FC is set into the T-Register. The next 
block in the flow chart checks for the 
direction of the shift and what the sign of 
the number is. The direction is checked by 
testing G-7, which is 0 in this example and 
indicates a right shift. The sign is 
checked by testing the high-order bit of 
the number; in this example it is a 0, so 
55 is set to a 1. Next the amount of the 
shift in the D-Register is complemented. 
The low-order 2 bits are then set into the 
G-Register bits 2 and 3. This sets up the 
amount of left-shift necessary after the 
shift-right is finished; a left-shift may 
be necessary as a right-shift may shift too 
far. In this case we shift 8-bits to the 
right as the data is moved to local stor­
age. Then the data is shifted 3-bits to 
the left as it is moved back into register 
2. 

The next flow chart block is a decision 
block for direction of shift. In this 
example the right leg is taken. Then the 
amount of the shift is determined to be 
less than or greater than 8. In this exam­
ple it is less than 8. The next CAS page 
is QA341. 

The next block in the flow chart is a 
decision block for "shift amount exceeds 
work area". In this example it does not; 
therefore, take the NO leg. Now it is 
determined if the shift is zero, less than 
5, or greater than 5. If the shift is 1 
through 4, the number shifted must be 
skewed. This means a byte is read out and 
four bits are shifted right 4 positions. 
The next byte is then read out, and the 
other four bits of the first byte are 
shifted with 4 bits of the second byte. In 
this example the shift is 5; thus, on the 
flow chart the NO leg is taken and condi­
tions are set to enter the work area 
direct. This will result in the number 
being shifted too far to the right and 
requires a left-shift when moving the num­
ber back to the General Register. 

Since the shift will shift 8 bits at a 
time and this is a logical shift, the high­
order byte is forced to 00. The next CAS 
page is QA351. 

The next three blocks on the flow chart 
form a loop to shift the number 8 bits to 
the right and store the shifted number 1 
byte at a time in the work area. when the 
end of the work area is found, the last 



Principles of operation 

byte of the number will be in the R­
Register. The address of the lowest byte 
in the work area is setup (FF). Using 
QA351 and QA361, the value (0 or 1) of the 
bits to be left-shifted is determined and 
S-Register bits are set accordingly. In 
this example S3 is set to 1, S6 is set to 
0, and S7 is set to a 1. The low-order 
byte address for the General Register is 
set up in the V-Register. The next CAS 
page is QA371 .. 

The next two blocks on the flow chart 
form a loop to shift the number stored in 
the work area the correct number of 
positions to the left. In this example, it 
shifts three positions. The bit value of 
the high-order bits that are shifted out 
are retained by setting S-Register bits and 
then set in the low-order bits of the next 

FLOATING POINT 

byte when it is shifted. After each byte 
is shifted, it is stored in the corrected 
position of the General Register. When the 
high-order byte of the General Register is 
found, the number has been completely 
Shifted. Note: If this is a double word, 
the high-order byte would cause the next 
General Register low-order byte address to 
be set up and the loop is continued. The 
next CAS page is QA361. Since this is a 
logical shift, the operation is completed. 
If it had been an algebraic shift, then the 
correct sign would be set for the high­
order bit. 

We have accomplished what we wanted; the 
number 0009E1A9 has shifted right 5 
positions. The end result is the number 
00004FOD. 

• In explaining the floating point instruction, the RR format 
of a normal add is used. 

• Refer to the Maintenance Diagram Manual, Form 225-3466, 
Figures CLF 28 and CLF 29 for the flow of the operation and 
the example being discussed. 

• Refer to the IBM Svstem/360 Principles of Operation, Form 
A22-6821, section on Floating Point Arithmetic for a des­
cription of the data format. 

• The operation explained here should be followed by using the 
flow chart, the example, and CAS diagrams. 

The instruction for the example is 3A02. 
This is a single precision normalized 
floating point add using floating point 
register 0 for the first operand and float­
ing point register 2 for the second oper­
and. The first operand is sometimes called 
the destination and the second operand is 
called the source. The results of the add 
replaces the contents of register o. Refer 
to CAS diagram QAOOO page 2, Local Storage 
Map, to see the locations of the floating 
point registers. 

During the I-cycle portion of the 
instruction, the Op code is set in the 
G-Register (3A) and the register numbers 
into the D-Register (02). The register 
numbers are checked to determine if they 
are even and less than 8. If they are not, 
a program interrupt occurs because of an 
invalid specification. The address of the 
high-order byte of the first operand is set 
up in the T-Register, and the address of 
the high-order byte of the second operand 
is set up in the V-Register. In the exam-

pIe, the T-Register is set to 08 and the 
V-Register is set to 28. 

Referring to the flow chart and the CAS 
diagrams, start the execution of the 
instruction. The second operand charac­
teristic is read out and shifted left one 
bit position. The S-3 bit is set to 1 if 
the sign is minus. Set up the address of 
the low-order fraction byte (2B) in the 
V-Register. In the example, S3 is a 0 
because the sign is plus. 

Read out the first operand charac­
teristic and shift the byte left one bit 
position. If the sign is minus, set SO to 
a 1. In the example SO stays a 0 because 
the sign is plus. Set up the T-Register to 
the low-order byte address of the fraction 
(OB). Subtract the second operand charac­
teristic from the first operand charac­
teristic to find the characteristic differ­
ence. The S2 bit is set to 1 if the char­
acteristics are not equal, and S3 is set to 
1 if the first operand characteristic is 

2030 FETOM (9/1/66) 3-35 



Principles of Operation 

larger than the second operand. In the 
example, both 52 and 53 are set to 1. 

The characteristic difference is checked 
to see if it is too large to be handled~ 
first for double precision and then for 
single precision. The example has a dif­
ference of four; over seven is too large 
for single precision. Also, the number of 
bytes to be shifted if the shift is odd or 
even, and Which operand is to be shifted is 
decided by combining the S-Register and the 
characteristic difference. The result is 
set in the S-Register for branching fUnc­
tions. For example, the S-Register is set 
to 00000101. From this we know the second 
operand is to be shifted (S1=1) and the 
shift is an even shift (S6=0). The S4 and 
S5 bits determine the number of bytes to be 
shifted. In the example, 54, 55 equal 01 
for one byte or 2 hexadecimal digits. 

Set up to read out the byte containing 
the guard digit. The guard digit is used 
as an extra digit for the fraction on 
intermediate results to increase the preci­
sion of the final result. Read out the 
byte and take the high digit as the guard 
digit. 5et the guard digit in the D­
Register and set the L-Register to the 
value of the number of bytes to be shifted. 
Store the guard digit in byte 10 of local 
storage, address 9A, in true or complement 
form. In the example a DO (11010000) is 
stored. 

Read out the next byte of the second 
operand (ES) and set into the D-Register. 
Read out the low-order byte of the first 
operand fraction (62). Add second operand 
byte to the first operand and set results 
(41) in first operand low-order byte 
poSition (OB address). 5et 53 to remember 
carry out. Verify whether the second oper­
and high-order fraction byte has been read: 
if not, read out the next byte from each 
operand. In the example, read out first 
operand (38), second operand (42), and add. 
5et the result (1B) in the first operand 
location; the add resets 53. This time, 
the second operand field has ended, so 
force a 00 byte to be added to the next 
first operand byte (OB). The result (OB) 
is set into the same location it was read 
from. Verify whether the first operand 
high-order byte has been read out. In the 
example it has been. 

The first operand, floating point reg­
ister 0, now looks like this: 1AOB1B41. 
The fractions have been added together, and 
now the Characteristic has to be corrected. 

Read out the first operand charac­
teristic byte (1A) and set into the D-

3-36 (9/1/66) 

Register. A test is made on 50 and 53; in 
the example they are both O. The test 
determines if a fraction overflow has 
occurred or if a recomplement of the frac­
tion is needed. For example, the fraction 
is OK. The address of the first operand 
characteristic byte is set into the v­
Register (08). The G6 bit is tested; G6 
would be a 0 if this was a compare 
operation. Then 52 and G5 are tested; 52 
if a 0, indicates a zero fraction (lost 
significance) and GS is a 0 for a normalize 
operation. In the example, 52 is a 1 and 
G5 is a 0, so the number should be normal­
ized if needed. The T-Register is set to 
the address of the high-order byte of the 
fraction (09). Read out the high-order 
byte of the fraction and set into the L­
Register. Check for high-order zero 
digits. In the example, the high-order 
digit is a 0 but the second digit is not; 
so do a shift of 1 hex digit to the left. 

First, subtract one from the charac­
teristic in the D-register and set the 
result in the characteristic position of 
the first operand. In the example, 1A 
minus 01 gives a result of 19. Check the 
result by testing for a 1BC, one bit carry, 
to see if a characteristic underflow has 
occurred. If a 1BC equals a 1, the charac­
teristic is OK: if a IBC equals a 0, then a 
characteristic underflow has occurred. In 
the example, the 1BC is a 1. Also, set 56 
to a 1 to control the shift of the digits­
skewed or direct. 

Read out the next byte of the fraction. 
Using the L- and R-Registers, shift the two 
bytes one digit to the left and store the 
shifted byte in the correct position of the 
fraction. The remaining digit is left in 
the L-Register and is used with the next 
digit. This continues until the end of the 
fraction is found. When the end of the 
fraction is found, the guard digit is read 
from local storage where it was stored and 
set into the next digit position of the 
fraction. If there were more than 2 high­
order zeros, the remaining positions of the 
fraction would be filled with zeros. The 
number in floating point register 0 now is 
19B1B41D, which is the final answer. 

When the end of the fraction field is 
found, the sign of the number is tested. 
In the example, the sign is plus, and the 
high bit of the characteristic is O. The 
condition register is read from local 
storage location BB and set to the correct 
condition. In the example it would be set 
to 0010, because the number is not zero and 
the sign is plus. 

The 5- and L-Registers are set to 00 and 
a branch to I-cycles is taken. 



Principles of Operation 

MACHINE CHECK HANDLING 

CPU ERRORS 

• Error conditions may be highly intermittent. 

• The CPU clock circuits are so designed that CPU errors do 
not necessarily stop the clock. 

• Each type of error sets a particular post ion of the rnachine­
check register. 

If the check-control switch is in the 
process position, an address is set in ROAR 
that is the start of a microprogram to 
handle machine checks. This microprogram 
stores the status of the machine-check 
register, sets registers to correct parity, 
and initiates a PSW store and load routine 
which causes a branch to a control program. 
The control program handles all machine 
checks. If a second error should occur 
before the control program can clear the 
first error with a load PSW command, the 
CPU clock stops. Should errors occur dur­
ing a selector-channel ROS request or in a 

MACHINE CHECK REGISTER 

multiplexor-share request, further testing 
must be done before the control program is 
executed. Four main fUnctions to consider 
are: 

1. The setting of the machine-check reg­
ister. 

2. The start of the MC microprogram. 

3. The objectives of the MC microprogram. 

4. Stop on error conditions. 

• The Me register consists of eight latches. Consider the 
setting of each latch (Figure 3-15). 

POSe 0 This position is set at T3 time if 
there is an A-register check and 
the allow A-register-check latch is 
ON. The allow A-register-check 
latch is set on at P1 time with 
certain decodings of the CA control 
field. This latch is set off at Tl 
time if the suppress A-register­
check latch is on. Remember, when 
there is an A-register check, a 
machine check microprogram may be 
entered. It is conceivable that 
the register that caused the error 
may be used in this microprogram. 
If further A-register checks were 
not blocked, a second error would 
occur which would stop the CPU 
clock. The suppress A-register­
check latch blocks further A­
register checks until the 0-
register is gated to the A bus. 
This does not occur in the 
microprogram until the registers 
used in the Me microprogram have 
been set to good parity. 

POSe 1 This position is set on at T3 time 
if there is a B-register check. 
Note that the failure may be due to 
the B-register, the B-register 
controls, or to the register gated 
to the B-register. If a B-register 
check occurs during a cycle between 
a read and a write, and if the data 
source is the R-register, the fail­
ure can be caused by a read/write 
storage failure. 

Pas. 2 An MN register check sets position 
2 at T3 time if the allow-write 
line is active~ This line is 
active early during the read cycle 
when MN has been set. 

Pas. 3 A control-register check sets 
position 3 at T2 time. 

POSe 4 MC-4 is set on at T2 time with a 
parity check in either the SALS or 
CN field of the ROS output. 

2030 FETOM (9/1/66) 3-31 



Principles of operation 

Machine Check 

Allow A-Reg Chk 
A ~ 

A-Reg PC 

Register 

T3 0 
L--- FL-

L.....-.-

B-Reg PC A ~ 
T3 

(Not) 2nd Error Stop 1 
FL-

-
MN PC A ~ 

Allow Write 
T3 2 

-FL-

-
Ctr/-Reg Chk 

A ~ 

T2 
Allow I 3 

Mach Rst Sw PCSALS--0 L---
-FL-

~ N 

-FL- -

T4 SALS PC 1 A ~ 

'---------J T2 4 
'---- -FL-

I...-

WX Chk 

T2 A ~ 

5 
CPU Wr in R Reg 

L---
~FL-

1401 Mode lOR 

I...-

R Reg PC 

T2 A ~ 

6 
Stor Prot PC H-

I...-
First 
Mach 

Suppr Mach Chk Trap ALU Chk A ~ Chk 
N T4 Any Mach Chk J A ~ 

L--- 7 Chk Sw Proc I 
-FL- I 1st 

-FL-

-
-

Figure 3-15. Machine Check Register 

3-38 (9/1/66) 



Principles of Operation 

POSe 5 Position 5 is set on to indicate a 
ROAR check. 

POSe 6 An R-register check sets position 
6. If the Storage Protect Feature 
is present. this position will also 
be set if bad parity is read out of 
the storage protect stack. 

POSe 7 Set by an ALU check at T4 time. 

Any Me register latch (0-7) that is on, 
sets the first-machine-check latch if the 
Console-check switch is set to PROCESS. 

The next objective is to enter the Me 
microprogram. Figure 3-16 shows the 
machine-check-pulse line. This line brings 
up controls to enter the MC microprogram. 
The line is active when: 

1. The priority latch is off. 

2. Switches are not being used to set W 
and x. 

3. The first-machine-check latch is on. 

4. The suppress-malfunction latch is off. 
This latch determines whether errors 
are to be recognized. If this latch is 
on, the line to enter the MC micropro­
gram (machine-check pulse) is not 
active. 

Note: The machine-check latches are reset 
at P4 time with a reset line. 

A 

Mach Chk 
Pulse 

Figure 3-16. Priority Pulse 

MACHINE CHECK MICROPROGRAM 

The starting address for this program is 
0004 (Figure 3-17). Position 5 of the 
H-Register is checked to see if it is set. 
If this position is set. it means that the 
error is to be charged to the selector 
channel. The next decision is made by 
testing H-6 to see if the error occurred 
during a multiplexor channel share-request. 
Position H1 is then tested. Since this is 
the first time through this flow chart, H1 
is not set. The next step in the program 
is to set position 1 of the H-register. 
Should another error occur before the con­
trol program resets H1 to a zero with a 
load-PSW command, a branch would again be 
taken to the start of this routine. The 
micro order that tests H1 sets up a branch 
to a STOP if H1 is set on. Assume there 
are no previous errors and continue with 
the flow chart. The information in the MC 
register is stored in location 0080 (HEX). 
The Old Psw IS STORED. Some hardware reg­
isters are set to good parity. The last 
register set to good parity is the 0-
Register. This allows further A-Register 
checking by turning off the suppress A­
Register-check latch. A new machine-check 
PSw is loaded to handle the different 
checks. During this control program, a ROS 
word in the load PSW operation will cause 
H1 to be reset. The instructions that 
follow depend on the control program. 

2030 FETOM (9/1/66) 3-39 



Principles of Operation 

Stop for 2nd 
Error at 
Microword 

0082 

Yes 

No 

No 

No 

Yes 

Set Hl to 
a ONE Enter 
Machine Check 
Error Routine 

1. Store MC-Register 
in Location 80 

2. Store Old PSW 

3. Set Reg isters to 
Good Parity 

4. Allow A-Reg 
Checks-

Load New MC 
PSW - Perform 
Control Program 
for Handling 
Machine Checks 

Reset H 1 when 
Control Program 
Issues" Load PSW" 

Continue Instructions 

Figure 3-11 .. Machine Check Microprogram 

3-40 (9/1/66) 

Start 
.0004 

Yes 

Multiplexor 
Error Routine 

From Selector or 
rr Multiplexor Error Routines 

Selector Channel 
Error Routine 

I, J, U, V, T, G, L, D 
Set to Good Parity 

With H 1 Reset 
Further Errors are 
Considered First Error 
No CPU Clock Stop 



Principles of Operation 

Errors could occur that would cause the 
CPU to execute a tight loop of ROS words 
without stopping. Consider what would 
happen if a second error occurred before H1 
is set on. A continuous branch would be 
forced to address 0004. the start of the 
machine-check micro-program. To overcome 
this condition, there is a hardware circuit 
which turns on the hard-stop latch (Figure 
3-18). The first error that brings up the 
machine-check line turns on the second­
error-stop latch. If this latch is still 
on when the next error occurs, a circuit is 
active to turn on the hardstop latch. The 
second-error-stop latch is turned off when 

FORCED MICROPROGRAM ENTRIES 

• Ten ROAR addresses may be forced. 

position 1 of the H-Register is set. This 
gives the control program an opportunity to 
handle the error condition. 

Mach Chk 
A 

PI 

Mach Chk Rst OR 
HZ - Dest Rst 

2nd Error 
Stop 

T4 

---""'OR 

First Mach 
Chk 

. FL-

Hard Stop 

FL 

Figure 3-18. Second Error Stop Latch 

• Priorities are executed in order of importance. 

• Waiting priorities are stacked. 

There are nine orders of priority (Figure 
3-19). Each order of priority will set a 
specific address in ROAR. This is done by 
setting a particular bit of the X-Register. 
The exception to this is a selector channel 
ROS request, which sets positions 4, 6, and 
7 of the X-Register. There is one fUnction 
that has priority over all others. This is 
machine reset. The machine-reset function 
sets the P bit of the X-Register. The ROAR 
address, therefore, is 0000 (HEX). This is 
the starting address of a microprogram 
routine to loop the microdiagnostic, zero 
the UCW's clear 1050 locations in local 
storage, set PSW bit to zero, etc. 

The other priorities are shown in order 
of importance. As an example: AND number 
four must be satisfied to enter the micro­
program that handles a memory wrap condi­
tion (X2 wrap). The X-Register is set, 
0010000. The inputs to this AND are: 

1. not priority latch. This line blocks 
the AND if there is another priority in 
process. 

2. not gate switches to wx. 

3. not PP 1, 2, 3. This input assures 
that no higher priority must be taken 
first. PP1 is an output from AND cir­
cuit number 1. PP2 is an output from 
AND number 2, etc. 

4. memory-wrap-request latch. This line 
is developed from a priority-stacking 
latch, which was set because of a 
memory-wrap condition. 

5. not H-Register 2. There are times when 
a memory wrap can occur but may be 
ignored. The microprogram can set 
position 2 of the H-Register. When 
this position is set, memory wraps are 
ignored. 

Two other lines are developed when there 
is a priority entry. They are: 

ALLOW LOW PRIORITY: 
ity PPl 2, 3, or 4. 
order priorities. 

Active on (not) prior­
Used to satisfy lower-

ANY PRIORITY PULSE: Active when any 
priority, PP1 through 8, is active. This 
line is used to set a latch which blOCKS 
further priorities, and is discussed later. 

2030 FETOM (9/1/66) 3-41 



Principles of Operation 

(Not) Supr Malf Chk Trap 
(Not) Priority Latch 
(Not) GT Switches to WX 
First Mach C .k Lc 

A 
1 X5 Mach Chk Pulse 

PPl 

~{N~o~t)~Pr~io~r_ity~~~t~c_h ____ ~~ 
(Not) GT Switches to WX 2 
(Not) PPl X6 IPL Pulse 
Load Req. Lch 

..:.;{N...;..;..ot.:..)..;.H~-.;...Re;..::g:...O~ _____ ~L--~ 

~(N~o~t~)=Pr=io~r~it~y_L~c_h __ ~~~ 
(Not) GT Switches to WX 3 
(Not) PPl PP2 
Force IJ Req Lch 
(Not) H Req 4 

A 
4 

X7 Force IJ Pulse 

X2 Wrap Pulse 

PP4 

(Not) GT Switches to WX r---;;:- Allow Low Priority 
(Not) PPl-2-3-4 
(Not) Force Dead Cy Lch 

Allow Low Priority 
(Not) Priority Lch 
Mem Protect Lch 

r--r 
5 X 1 Protect Pulse 

{Not} H-Reg 3 ~ 

Allow Low Priority 
Lch 

A 
6 XO Stop Pulse 

PP6 

Allow Low Priority 
(Not) Priorit Lc 

A 

(Not) PP5,6 
7 

SX Chain Pulse X4 
Sel Chain Req Lch 
(Not) H Reg 5 

(Not) GT SW to WX 

Force Dead Cycle 
(Not) Sys Rst Priority 

(Not) Allow 

OR 

PP7 
Sel Chan ROS 

equest 

A 
8 

X3 MPX Share Pulse 

A 

;,;;.Lo;..,;w.;...;,...Pr_io_r_it.!...y ___ ~OR Any Pri ori ty 
(Not) Sys Rst Priority 
PP5-6-7-8 

Pulse 

A X6 - X7 

Figure 3-19. Priority Microprogram Entries 

3-42 (9/1/66) 



Principles of Operation 

PRIORITY STACK LATCHES AND CONTROLS 

The AND's that develop the priority pulses 
each have an input that is satisfied by a 
stacking latch (Figure 3-20). These latch­
es are needed because several priorities 
can occur at one time, but only one can be 
handled. Notice that to set the stacking 
latch for a MPX-share request (PHS), posi­
tion 6 of the B-Register must not be set. 
Early in the MPX-share request micropro­
gram, this position of the H-Register is 
set. FUrtherMPX-share requests are then 
blocked from setting the stacking latch. 
When there is a selector-channel-ROS 
request, the microprogram that handles the 
request sets position 5 of the H-Register. 
This not only blocks further selector­
channel ROS-requests, but also MPX-channel­
share requests. 

PARITY CHECK TIMINGS 

While one priority is being handled, 
others must be temporarily blocked. 
Remember, if a priority pulse is developed, 
the line any-priority-pulse is active. 
This line turns on the any-priority latch 
at Tl time. With this latch on, a T3 pulse 
turns on the priority latch. The priority 
latch, when it is on, blocks the AND cir­
cuits that develop further priority pulses 
until the latch is reset. Some of the ways 
to reset the priority latch are: 

1. At P4 time, with the WX SA Be latch on. 
This latch is turned ON at T1 time if 
wx must be set manually. 

2. At T3 time, if the 
priority-reset-control latch is on. 
This latch is set on when the H­
register is specified as the 
destination of data (eg. A + B->H). 

• A parity check is made on the SAL's CN field, control reg­
isters, and ROAR. 

The SAL outputs (including the control 
register SAL's) are checked at T2 time if 
the allow-PC-SALS latch is on. Machine 
check register position 4 is set if there 
is an even number of SAL outputs or an even 
number of CN field bits. A control reg­
ister check, in turn, sets position 3 of 
the machine check, register. Any of these 
ROS parity checks block the set of the 

indicating ROAR if the Check-stop switch is 
set to the stop position. 

The combination of the parity bits for 
the W- and X- indicating ROAR and the PA 
bit must be odd (all three or anyone). If 
not, the wx check line is up, and position 
5 of the machine check register is set at 
T2 time. 

2030 FETOM (9/1/66) 3-43 



Principles of Operation 

To 
Micro Program 
AND 

First Mach Chk Req Entries 

- (Figure 3-19) 

PH 1 

Load Req .---
OR 

8F Detected 
~ 

PH 2 
L---

Force IJ Reg 

~ 
PH 3 

Memory Wrap Req 

~ 

PH 4 

Memory Protect Req 

~ 

PH 5 

Stop Req 

~ 

PH 6 

Sel ROS Req -"A_ 
(Not) H-Reg 5 ---~ 
(Not) Suppr PH 7 
A-Reg Chk '---

""'-~ 
(Not) H-Reg 6 -~ 
MPX Share Req ~ 

PH 8 -

Gate Switches to WX 

~ 
Gt Switches to WX Lch 

PH 0 

Gt SwtoWX ~ 
Mach R,t OilJ 

P4 

(Not) Allow Write r---;:;:­
f--­

T3 

(Not) Hard Stop Lch'~ 

I ~T~3 ___ ~ ~ 

I 
L...-- OR 

Mach Rst Lch 

Priority 
Latch To Priority 

Pulse 
Circuits I 

I 

I 
I 
I 
I 

-
--Fl--

-
-OR 

-
r-

-

Any Priority Pulse 

Tl 

Any 
Priority 
Latch 

- -PH--

-
Mach Rst OR ~ 
=..;;;.;.;...;.;;.;..-~ 

Gt Sw to Wx 
-

WX SABC 

Tl .---....;...;.--oool OR I--
Mach Rst t- - PH---

CD - 0101 (H) 

..:,T..;.4 __ ooolOR f---

Priority 
Reset 
Control 

T3 -
- A 1----...1 

Mach Rst - -PH--- -
Switch 

Priority Stack 
Latch 

Any Priority 
Latch 

Priority' 

Latch 

Priority Reset 

Control 

Main 

Micro 

Program 

First Trap 
ROS Cycle 
(Dead Cycle) 

T1 T2 T3 T 4 Tl T2 T3 T 4 T1 T2 

I I i I I I I I : 

: ~ : : : , : , I 
I I , ,I ,I I 
i : I , I : : ~ I 
I ,I I I I 
I I I I I rr' I I 
I I , I I I I 
I I I I, I' I 

: l : : : : I : I 

Figure 3-20. Priority Stack Registers and Controls 

3-44 (9/1/66) 



Features 

CHAPTER 4. FEATURES 

STORAGE PROTECTION 

• The storage protection feature protects main storage posi­
tions assigned to a program from being changed. 

• For storage protection purposes, main storage is divided 
into blocks of 2,048 bytes. 

• A 4-bit key (O-F) is assigned to each block by a privileged 
instruction. 

• There can be sixteen different keys assigned at one time. 

• More than one block of main storage can be ass igned the same 
key. Blocks with the same key do not need to be consecu­
tive. 

• The storage key is matched with the protection key in the 
PSW or CAW for an equal compare. 

• An additional 256 position 6-bit core array is added when 
storage protection is installed on the IBM 2030. 

• The storage keys and the UCW protection keys are stored in 
the added core array. 

Storage protection is a feature available 
for Systeml360 Model 30. The storage pro­
tection feature protects a block of main 
storage assigned to one program from being 
changed. 

There are two keys used with the storage 
protection feature: the storage key and the 
protection key. The storage key is the key 
assigned to each 2,048 byte block of stor­
age and is stored in a special core storage 
area. The protection key is the key in the 
program status word or command address word 
and is compared to the storage key to 
determine if the area is protected. Any 
time a byte in a block of main storage is 
read out, the protection key in the PSW 
(program status Word), bits 8-11, is com­
pared to the storage key assigned that 
block of main storage. When the read is 
during an I/O operation, the storage key is 
compared to the protection key of the CAW 
(Channel Address Word) bits 0-3. The keys 
match (are equal) when both the storage key 
and protection key are the same, or if the 
protection key in the PSW or CAW has a 
4-bit code of o. Only if the information 
in the block is to be changed do we use the 
result of the compare. If a mismatch 
(unequal compare) occurs at this time, the 
informa tion read out of storage is regener­
ated at write time and an inte.rrupt occurs 
so corrective action can be taken. 

The storage key is not part of addressa­
ble main storage. A 256 position, 6-bit 
core array and controls are added to the 
2030 when storage protection is installed. 
The core array is call ed the storage pro­
tection stack. Only five bits are used in 
the 2030: 4-bit key plus a parity bit. 
Parity is odd. 

Thirty-two positions of the stack are 
reserved for storing the storage key asso­
ciated with each 2048 byte block of main 
storage. The rest of the positions (224) 
store the protection key used with each 
possible UCW. This key is obtained from 
the CAW during the I/O start routine. 

When main storage is addressed, the five 
high-order bits of the M-bus are used to 
set the five low-order positions of the SA 
protection stock. (Figure 4-1). 

When auxiliary storage is addressed 
during a multiplexor operation, the five 
high-order bits of the N-bus are used to 
set the five low-order positions of the 
SA-register. The three high-order posi­
tions of the SA-register are set from the 
XXH, XH, and XL latches in the cpu. This 
allows the byte in the stack (associated 
with the particular MPX storage block we 
are using) to be addressed. 

2030 FE TOM (9/1/66) 4-1 



Features 

N-Bus 
:::I: :::I: -J 

X X X 
X 

ex) ~ N -0 
~ (V) ~ 

0 0 0 0 1 1 1 

o 

0 0 0 0 

ex) "'<t 
N -0 ex> -0 f',. (V) 2:: 0-

N ~ a 
(V) ex> "'<t 

M-Bus 

ex) "'<t 

1 X 

7 

1 X 

ex> "'<t 
"'<t N a 2 N 

N 

X 

X 

N 

LC) 

~ 

X - This would select the core 
position at O-F (0). 

o 
Or 

7 

XI-This would select the 
core position at E1 (X). 

-0 
LC) 
N 

Figure 4-1. SA Register Addressing 

STORAGE KEY 

Address 
Decode 

X 

SA 
Register 

0 
1 
2 

~ 
Address 

3 Decode 

4 
5 
6 

Y 
7 

I-

01 - - - - - - - - - - EF 
o 
1 X 
I 
I 
I 
I 224 32 Pos-
I Positions itions 

I 
I 
I 
E 
F 0 

• A storage key is a 4-bit number assigned to a 2048 block of 
storage. 

• There are 16 different keys, O-F. 

To implement the storage protection fea­
ture, main storage is divided into blocks 
of 2048 bytes. A processor with a main 
storage of 8192 bytes has 4 blocks and a 
processor with 65536 bytes has 32 blocks. 
Each storage block of 2048 bytes has a key 
a~sociated with it. This key is four bits 
long and may contain any number from 0 
through F. These numbers are referred to 
as storage keys. They can be assigned in 
any order and any of the possible 16 keys 
can be used regardless of storage size 
(Figure 4-2). Blocks of storage with the 
same key do not need to be consecutive 
blocks. 

The storage keys are stored in the stor­
age protection stack by the SET STORAGE KEY 
instruction (see Set Storage Key). There 
are 32 positions in the stack to store the 

4-2 (9/1/66) 

storage keys: address EO to FF of the SA 
register. Main storage block 0 to 2047 key 
is at location EO, block 2048 to 4095 stor­
age key is at E1, etc. 

6144-8191 

4096-6143 

2048 Byte Blocks Storage Keys 

2048-4095 

0-2047 

Figure 4- 2. storage Keys 



Features 

PROTECTION KEY 

• The protection key is a 4-bit number found in a PSW or a 
CAW. 

• The protection key is compared to the storage key. 

• The result of the compare is used only for the storage modi­
fication cycle. 

The protection key is in bit positions 8-11 
of the PSW and bit positions 0-3 of the 
CAW. The PSW or CAW protection key is 
compared to the storage key each time main 
storage is accessed. The result of the 
match is used only when the information in 
storage is to be modified. A read-write 
cycle, even if the keys are mismatched. is 
performed without an interrupt because 
storage is not modified. 

For an IIO selector channel operation, 
the protection key in bits 0-3 of the CAW 
is placed in a register (GK or HK). When 
data transfer occurs for the channel, the 
storage key is matched to the protection 
key. A mismatch prevents storage from 
being changed, and sets a bit in the csw 
(Channel status Word) to indicate a protec­
tion exception. 

PROTECTION EXCEPTION 

For an 1/0 multiplexor channel opera­
tion, the protection key in bits 0-3 of the 
CAW is placed in a poSition of the storage 
protect stack. When data transfer occurs 
on the multiplexor channel, the protection 
key is read out of the stack and compared 
with the storage key. If a mismatch 
occurs, a bit in the CSW is set to indicate 
a protection exception, and storage remains 
the same. Sometimes the bit that is set in 
the CSW is temporarily stored in the UCW. 

In effect the protection key, stored in 
the protect-stack, extends the uew by 4 
bits. This allows a record of the protec­
tion key for each 1/0 unit on the multi­
plexor channel to be maintained. 

If the storage protection feature is not 
installed, the protection key must be zero. 

• When storage protection is violated, the .protection excep­
tion is indicated in the PSW or csw. 

Whenever a program interrupt occurs, the 
interruption code (004) is placed in the 
old PSW. During an IIO operation, a bit is 
set in the CSW if the protection violation 
occurs to remember what the channel status 
is. 

SETTING UP STORAGE PROTECTION 

• The supervisor program assigns the storage keys to each 
block of storage. 

• After the problem programs are loaded and the protection 
keys set, the supervisor program transfers control to a 
problem program. 

2030 FETOM (9/1/66) 4-~ 



Features 

The SET STORAGE KEY is a privileged 
instruction. It may be issued only when 
bit 15 (problem state bit) of the PSW is 
zero. In a typical supervisor controlled 
operation, the supervisor causes a problem 
program to read into main storage. The 
supervisor sets the storage keys for the 
area of storage used by the problem pro­
gram. The PSW used by the problem program 
is assembled by the supervisor program. 
This assembled PSW has a protection key 
that matches the storage key associated 
with the problem program. Once the func­
tion of loading a problem program into main 
storage and assigning the keys for storage 
protection is done, the supervisor passes 
control to the problem program. This is 
done with the LOAD PSW instruction which 
specifies the assembled PSW (Figure 4-2). 
The LOAD PSW instruction causes the protec­
tion key to be stored at K25 (B9) of the 
local store and in the four high-order 
positions of the Q-register. 

cannot modify information in the area used 
by the supervisor program. This is unlike­
ly because the supervisor program assigns 
the storage and protection keys. 

Storage 

Common Note: This key is changed to r match the program 
using this area. 

Work Area 

Problem 

Program B 

Problem 

Program A 

Supervisor 

Program 

? 

Protection 
Keys 

~.~------------~~ 
Storage Keys 

~.~------------~~ 

~.~-------------~ 
Figure 4-4. Storage and Protection Keys 

The protection key in the PSW used by 
the supervisor program is generally zero. 
This allows the supervisor program to modi­
fy data anywhere in main storage. The main 
storage area occupied by the supervisor 
program has a storage key of F (Figure 
4-3). This means that unless a problem 
program has a key in its PSW of 0 or F, it 

The same storage key number can be set 
for more than one block of 2048 bytes. 
However, eaCh program in main storage 
should have a different storage key 
assigned to protect one program from anoth­
er. For instance, the supervisor program 
may take one block of 2048 bytes, which is 

Assume: 1. That the problem program takes 5,000 bytes and will begin at location 2048. 
2. That the supervisor is in locations 000 - 2047 and has a storage key of F and 

a protection key of O. 

Set Storage Key 
of 2048-4095 to 1 

Set Storage Key 
of 4095-6143 to 1 

Set Storage Key 
of p 143-8191 to 1 

Assemble a PSW In 
Storage to be Used 
By Prob. Prog. 

LOAD PSW Using 
the Above 
Assembled PSW 

Problem Program 
- -.... is Read Into Loc. 

2048-7047 

{ 

6144 - 8191 

;~~!:: t--__ 4_0_96_-_6_1_4_3 __ -+----.J 

2043 - 4095 

upervisor Program 
0000 - 2047 

A storage key of 1 was chosen for this problem program. 
Actually any key from 0 - E could have been .used. 
F is already being used by the supervisor program. 

--+ 

ASSEMBLED PSW 
Would Probably 
Be Like This 

Control Passes to 
the Problem Prog. 

1. System mask of all l's to allow interrupts. 
2. Protection key of 1 to match the storage 

key associated with th is program. 
3. AMWP field = 0 1 0 1 

Not ASCV \ '" 
Allow Machine Running Problem 
Interrupt State State 

4. Instruction address of 2048. 

Figure 4-3. Using Storage Protection 

4-4 (9/1/66) 



Features 

assigned a storage key of F. This storage 
key would most likely be assigned by the 
supervisor program just after it is read 
into the system. The problem program is 
then read into the processor (as a result 
of a section of the supervisor program). 
This problem program takes up 3 blocks of 
2048 bytes. Each of the three blocks is 
assigned the same storage key (1, for 
example) by the supervisor program. The 
PSW for the problem program is given a 
protection key that matches its storage 
key. This allows the problem program to 
alter itself if necessary, but prevents it 
from altering another program. 

It is possible to have two or more prob­
lem programs in main storage at once. Of 

SET STORAGE KEY 

course, just as in the supervisor con­
trolled concept, only one program is being 
executed at anyone time. From Figure 4-4, 
we can see that each problem program has a 
different storage key. The protection key 
used by each program is also different; 
each matches the respective storage key. 

Notice in Figure 4-4, the protection key 
of the supervisor program does not match 
its storage key. Since the protection key 
is zero, it does not have to match. A 
protection key of zero can unlock any area 
of main storage and alter its contents if 
necessary. 

• SET STORAGE KEY is a privileged instruction. 

• The instruction is of the RR format. 

• Used to set the storage key into the storage protection 
stack. 

The key of the storage block addressed by 
the register designated by R2 is set 
according to the key in the register desig­
nated by R1. 

The storage block of 2048 bytes is 
addressed by bits 8-20 of the register 
designated by the R2 field. Bits 0-7 and 

INSERT STORAGE KEY 

21-27 are ignored. Bits 28-31 must be 
zero. Otherwise, a specification exception 
causes a program interrupt. 

The 4-bit storage key is obtained from 
bits 24-27 of the register designated by 
the R1field. Bits 0-23 and 28-31 are 
ignored. 

• INSERT STORAGE KEY is a privileged instruction. 

• The instruction is of the RR format. 

• Used to check what key is assigned to a given blOCk. 

The key of the storage block addressed by 
the register designated by R2 is inserted 
in the register designated by R1. 

A storage block is addressed by bits 
8-20 of the register designated by the R2 
field. Bits 0-7 and 21-27 are ignored. 

FUNCTIONAL UNITS 

PHYSICAL DESCRIPTION 

Bits 28-31 must be zero. otherwise, a 
specification exception causes a program 
interruption. The 4-bit storage key is 
inserted in bits 24-27 of the register 
specified by the R1 field. Bits 0-23 of 
this register remain unchanged, and bits 
28-31 are set to zero. 

• The storage protection stack consists of a 256 character 
core array; each character has 6 bits. 

• The 2030 uses only 5 of the 6 bits. 

2030 FETOM (9/1/66) 4-5 



Features 

storage protection in the 2030 has a capac­
ity of 256 characters of six bits each. 
Only five bits are used. The core array, 
32 steering diodes, and the temperature 
sensing thermistor are packaged on a 2-high 
SLT card, four sockets long (Figure 4-5). 
All five bits are stored in one physical 

r II II 
~ ....... 

0 g-+-o 0000000 DO 

OOG 
c::I 
c::I 
c::I 

OOG 
o og a c::I 

c::I 

Ooa c::J 

ooa c::I 
II:D 
c::I 

0 °0 0000000 DO 00 

plane. The X and Y drive lines are shown 
in Figure 4-6, sense line windings in Fig­
ure 4-7, and inhibit windings in Figure 
4-8. Storage protection array and circuits 
are located on gate 01B at board E3 or OlA 
at board E3 in the 2030. 

II . 
DODO 00 0 

c::::I 

000 0 -c::::I 

0000 
c= 00 ~ 0 - 00 
c::I 

0 
0 

- 00 00 c= 
c:::I 

0 00 
17 

Steering 
Array Diodes 

Figure 4-5. Storage Protection Array and Diode Card 

~~~~~~~ J ~~ ~ ~~~~ JJ ~~~~~~~ ~~~~~o~ 

= = = c:::::::J = =

11
= = = = = = = = 16

=
23 = = = = = = = = 28

-=

35
= = = = = = = = 40

=
= = 47

= = c::J = 50

~~~~~~~ ~. ~~~~~~~l ~~~~~~~ ~~~~~~~ 
23 27 31 46 50 54 69 73 96 

Figure 4-6. Storage Protection X- and Y- Driver Lines 

4-6 (9/1/66) 



Features 

= = = = = = = = = = = = = = = = = = = = = = ~ 
= = = = = = = = = = = = = = = = = = = = = = c::::::;:) = = = = 

)( )( 

x )( X X 

23 27 31 46 50 54 69 73 76 

Figure 4-7. storage Protection Sense Windings 

= = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = §5 
= = = = 

~~~~~~~D~~~~~~~~~~~~~~n~~ ~~~~~~~~~ll~~~~~Ullll~U~ ~ll~~llOllllUOOOOllllllOllllUO OllO 

r- r- r-

J J I

I 1 J

- '---

~~~~~oo~~~~~~~~~~~~~~n~on . n~~o~n~~nn~nTInn~~nnn~ nnn~n~~n~non~nonnn~110 n~o 
23 27 --31 46 50 54 69 73 76 

Figure 4-8. Storage Protection Inhibit Windings 

=1 
= = =4 = = = = = c:::::::J 
c:::::::Jll = = = = =16 = = = = = 
S23 
= = = = =28 
= = = = = = =35 
= = = = =40 
= = = = = = =47 = = =50 

=1 
= = =4 = = = = = = 
=11 = = = = 
~16 

= c::::::l 
= = = =23 
= c::::J 
c::::J = 
=28 
= = = = = = 
=35 = = = = =40 = = = = = = =47 
= = 
=50 

2030 FETOM (9/1/66) 4-7 



Features 

TIMING 

• Timing for storage protection stack is provided by a delay 
clock. 

Timing for storage protection stack and 
controls is provided by a delay line clock 
(Figure 4-9). The stack storage select 
pulse turns on a latch. The same pulse, 
after going through the tapped delay line, 
turns the latch off. output of the latch 
is ANDed with read/write contr~l to gener­
ate either read-gate or write-gate and 

.S.u s 

inhibit timing. A delayed stacx-storage­
select. is ANDed with the read gate to 
generate a strobe pulse. The output of the 
latch is delayed by three inverters to 
supply proper write timing. The timing 
sequence for reading out from the storage 
protection array and for writing into the 
array is shown in Figure 4-.10. 

ISO ns + Stack Data Strobe 

Stack Storage Select API DLY 

-
SOOns - - AOI -Strobe 

FL ~ AOI ------- -
I 

,....-

+ Read Gate 

AI 

N 

ReadjWrite Control 

(+Read) 
(-Write) 

~ AI N N N +Write Gate 

-- -Inhi~it Timing 
AI 

-
Figure 4-9. Storage Protect Clock 

4-8 (9/1/66) 



Features 

STACK ADDRESS REGISTER 

• The SA (Stack Address) register is an a-position register. 

• The 3 high-order positions are set to l's for main storage 
operation and to the XL, XH, and XXH latches for auxiliary 
or local store. 

• The 5 low-order positions are set to the 5 high-order bits 
of the M-bus for main storage operation and the N-bus for 
auxiliary or local store. 

The sA-register consists of eight polarity­
hold latches (Figure 4-11). The three 
high-order positions (0, 1, and 2) are set 
in two ways. If the operation is main 
storage, the three positions are forced to 
1 by ANDing main storage with +3 volts. 

Read 

The three positions are set by ANDing 
auxiliary storage and the output of the 
XXH, XH, and XL latches when the UCW is 
addressed. 

The five low-order positions of the SA 
register are set either from the M-bus or 
the N-bus, For an operation using main 
storage, the five high-order positions of 
the M-bus are routed to set positions 4-7 
of the SA register. During an MPX channel 
operation, the five high-order positions of 
the N-bus are routed to set positions 4-7 
of the SA register. 

The SA register is set at Tl time of the 
CPU clock (Figure 4-10). 

KW041 CPU Read 

Read-Write Control 

Stack Storage Select 

KXQ41 Read Gate 

Stack Data Strobe 

Strobe 

CPU Write 

Inhibit 'Timing 

Write Gate 

* XR-YR Control 

* XW-YW Control 

Sense Gate 

Gate Stack Data 
to Q Reg KWOll 

Set Q Reg La KW031 

Ma inS torage CP 

MPX CP 

Stack Address Set 

* 

T1 T2 

II 

il I 

I 
--, 
---, 

I 

rr--1 

r-, 

-

Store 

T3 T4 TI T2 T3 T4 

I I 

I 

r-, 

I I 

I I 

I I 

I 

I I 

I 

I 

Note: These waveforms are complex and the signals shown are meant 
only to show the approximate durations. Voltage levels are not as 
shown. 

Figure 4-10. Storage Protect Stack Timing 

2030 FETor,,; (9/1/66) 4-9 



Features 

ADDRESS DECODE AND DIODE MATRIX 

• The true and complement outputs of the SA register latches 
are ANDed in the proper combinations to form X and Y select 
lines. 

• The X and Y select lines are ANDed with the read and write 
control lines to address one position (5 bits) of the pro­
tect stack. 

The eight output lines of the SA register 
are routed to eight inverters (Figure 
4-11). The outputs of the inverters are 
ANDed with the outputs of the SA register 
to generate select lines to the core array. 
Positions 0-3 of the SH-register and 
inverted lines 0-3 are used to select the X 
lines. Positions 4-7 and the inverted 
lines 4-7 are used to select the Y lines. 
This gives us a 16x16 matrix and allows 
addressing of 256 positions. 

The X and Y select lines AND with the 
read and write control lines so only one 

SENSE AMPLIFIER 

position of the protect stack is addressed 
at one time. Also the direction of current 
flow is determined by read or write through 
a driver-gate control circuit. 

Figure 4-12 shows the diode matrix for 
selections of the X-lines. A similar cir­
cuit is used for the Y-lines. Any combina­
tion of the 0, 1, 2, or 3 positions of the 
SA register selects one of the X-drive 
lines. 

• There are 5 sense amplifiers associated with the protect 
stack. 

The sense input amplifier consists of a 
differential amplifier, which gives good 
common-mode noise rejection while amplify­
ing the bipolar sen~e line signal. Only 
negative-going signals from the first stage 

INHIBIT DRIVER 

are fed through. During read time, a 
strobe pulse conditions the amplifier and 
if there is a negative signal, indicating a 
bit, it is sent on as an output. 

• There are 5 inhibit drivers associated with the protect 
stack. 

The inhibit driver is activated at write 
time. When a ZERO is to be placed in the 
core, a negative-going pulse is applied to 
the input of the inhibit driver. This 
causes inhibit current to flow in the inhi­
bit winding, and prevents the core from 

4-10 (9/1/66) 

changing states. The inhibit normally 
comes up before write current and drops at 
the same time, or a little later. The 
amplitude of the inhibit current is about 
the same as half-select write current. 



~ 
o 
w 
o 

.p , 
~ 
~ 

t'I] .... 
I.Q 

~ 
(f) 

.p , 
~ 
~ 
• 

"tI 
11 
0 
rt 
(D 
0 
rt 

en 
r1" 
Qi 
0 
~ 

O:J 
~ 
0 
0 
~ 

0 .... 
Qi 

I.Q 
11 
Qi 
a 

+3V 

Main Storage 

Aux Storage 

0 4 

I 
M-Bus 

XXH 

XH 

XL 
SA 

5 

5 

7 0 4 7 

I I 
N-Bus 

I 

Reed Gate 
A 

Write Gate 
Timing (4) 

Reference Voltage 

"1J 
ro 
Qi 0 
r1" 

1 C c '1 Q) 2 
I'D t 

3 Ul 
Q) 

1 4 
co 5 

6 
7 

0 
1 
2 
3 
4 
5 
6 
7 

Write 
Drive 
Reed 
Gate 

Inhibit 
Drivers 

Read (16) UCW (224) (5) 
Drive D 
Write E CPU (32) 
Gate F 

Sense Level 

Load Lines 8X, 8Y 

(16) XW 

A XR 

YR 
(8) 

YW 

Strobe 
Inhibit 



DR 
~ J 
A~ 

~~;;""'---f N _____ -J 

D~ 
...-... 

GT r: -: ,--:A,RRfY-:-, -: ;J 
""",'7 I 
~~ ~~~ '\ '\ '\ 1 .. .. .. .. .. .. .. .. I 
J J , , 2 

DR 
, , " I 
~~ '\ '\ 3 

... 
r--o A ~~ ___ --' 

----4N 
1 D ~ 

r..--
GT 

.. .. '\ '\ I 
L J , , 4 
, , I , 

.~ -.l. '\ .. 51 .. .. .... 1 
1. -'- , , 6 
, , " 71 
'\ '\ '\ '\ 

" , "1 
'\\. .... 9 

DR 
~ T A ~~ ___ --' 

-----<I N 
o D ~ -- GT 

'\ '\ '\ '\ 1 
J J , , 10 

" , "1 
~ ~ '\ '\ 11 .. .. '\ '\ I 
, , , ,'12 

fl I " 1 
~....,}. ...... 13 
I" '\ '\ '\ '\ I 
I , , 1...L.L , , , 14 
I' , , , , , " I 
I '\ .. ~ -" -.l. '\ '\ '\ 15 ............. '\ '\ L ____ ...J 

DR 
~ 

1 A ~ ____ ---" 

-----4N o D ___ 

-- GT -

I 

L ..... 

-~ 

GT -
~---~-- A 3 

N t----­
~D 

"'---" ~t------4 
-----t~ 

DR 

r"Ioo 

--D 

GT 
r-­

--------~~ A 3 
N t------

~ D 2 -DR 

GT 

-~t------t DR 
=:: 

L.o' 

GT -_____ ~ A 3 

Nt---
_ D 2 -DR 



Features 

The lines that feed the inhibit drivers 
are controlled h¥ the data to be written 
and the inhibit gate (Figure 4-13). 

+ Inhibit Timing 

Stack 1 -Bit 

-a-Reg 4-Bit 

Stack 2-Bit 

-Q-Reg 5-Bit 

-Q-Reg 6-Bit 

Stack 4-Bit 

-Q-Reg 7-Bit 

-Q-Reg Parity Bit A 

Figure 4-13. Inhibit Control 

SPECIAL VOLTAGES 

• There are two special voltages: reference VOltage to the 
driver-gate lines and sense level voltage to the sense 
amplifiers. 

The reference voltage (Vref) provides a 
temperature compensated output voltage to 
the driver-gate control card, which in turn 
regulates the amplitude of the driver gate 
output current. 

The sense level circuit provides a vol­
tage to the second stage of the sense 
amplifier. This voltage is adjusted to 
provide the best discrimination between a 
maximum ZERO and a minimum ONE. 

THEORY OF OPERATION 

DATA FLOW 

• The SA register address is decoded to select the desired 
position. 

• The position is read from core and set in Q-Lo. 

2030 FETOM (9/1/66) 4-13 



Features 

• The output of Q-Lo is routed to the inhibit drivers, and 
during write ,time the key is written in the core position. 

The address set in the SA register is rout­
ed and decoded so one position of the pro­
tect stack is read out. The output of the 
stack is sent to the sense amplifiers and 
then set in Q-Lo. During the write cycle, 

the output of Q-Lo and parity bit is condi­
tioned by inhibit timing and the key in 
Q-Lo is written back in the protect stack 
(Figure 4-14). 

STORAGE PROTECTION TIMING 

• The timing of the storage protection feature depends on the 
CPU operation. 

Figure 4-15 is a timing chart for storage 
protection. The dotted lines indicate the 
status of the line if a protection check is 
recognized. Notice that even if a protec­
tion check occurs it is not allowed unless 
main storage is to be changed. 

SA 
Register 

I 
n 
v 
e 
r 
t 
e 
r 
s 

0 
1 
2 
3 ~ 

4 
5 
6 
7 

o 
1 
2 
3 
4 
5 
6 
7 

Y R/W Controls 

Address 

~ ..... 
X R/W Controls x 

-
Strobe 

Figure 4-14. Data Flow 

4-14 (9/1/66) 

1 
I Address Dec:ode I 

I 

Y 

Protec:t 
Stac:k 

~ Sense Amplifiers I 
Set Q hi 

Inhibit 
Drivers 
r---

ZSU .. s __ ... -I 

Set Q Lo 

Inhibit Timing 

QHi 

Qlo 

- QP 

GK Register 

HK Register 
Com pore 
Q-lo 
toQHi, 
GKor HK 

Parity 
Chec:k 
Q-lo 



Features 

CPU Timing TI T2 T3 T4 Tl T2 T3 T4 T1 T2 T3 T4 Tl T2 T3 T4 Tl T2 T3 T4 T1 T2 T3 T4 T1 T2 T3 T4 T1 T2 T3 T4 T1 T2 

ROS SALs 
!--~h II 1.1 II I I I 

Read/Write Control 

Stack Storage Select h I I I I I I I I r I I I I I r 
Read Gate r-n r- r!--, r-, 
Strobe r-, rl rn r-, 
Stack Data Strobe I ..... r-, II II rn 'I ,~ If--! 

r-- I-- I- ~ 
Stack Address Set 

Main Storage CP 
I--I-n II II 

MPX CP I II II 

Aux Storage I 

Sense Gate I~ rh r-, rh 
Got e Stack Data to Q 

CPU Write II I 

XR-YR Control r -~ r I--h r-n rl--, 
XW-YW Control r - r-~ r -, r-

r - r -, r - r -Write Gate 

r I--~ r ~h r ~h r I--Inhibit Timing 

,....... 
Iii rn In Set Q-Lo 

Z-R Destination ___ I -

Allow Protect I I 

:L Keys Match u- -- - --- -f-- _L W- i--1--- -- - -1--_L J- 1--1----- -- - - -f-- -- - .... 1 

-r h- I-- f----- - ---r h- I-- -- - -- -- - -r ,- -~-- - i--- - - -- --
Protect location CPUMPX I 

Storage Data Ready 
~ !--~ 1--1 I--n 

Memory Protect ~- -- ~--- ~- - --------_. --
Request Latch 

Memory Pratect i-------~-. ~- i---_. ------
Request Stack latch 

Allow Write lotch 

... --- _. 
~-. ~-~-

_. 
~-

Protect Pu Ise I I I I 

Priority latch 
,..---l-
I 

I-Read Store Read Write Read Compute Write ftead Write 

Note: Dead Cycle if Note: Dead Cycle if 
Protection Trap Protection Trap is 
is Taken Taken 

Note: This Timing Chart is for 
Instructional Purposes Only. 

Figure 4-15. Storage Protection Timing 

2030 FETOH (9/1/66) 4-15 



Features 

STORAGE KEY 

• The storage key is set into the protect stack by the privi­
leged instruction SET STORAGE KEY. 

The storage key assigned to each 2,048 byte 
block of main storage is usually set in the 
protect stack during the first part of the 
supervisor program. 

The desired storage key is in bits 24-21 
of the general register specified by the R1 
field of the instruction (Figure 4-16). 
The block of storage (to which the key is 
assigned) is determined by the address in 
the general register specified by the R2 
field. 

The key is read from R1 and set in the 
D-register. Main storage is addressed by 
the address set into the UV registers from 
R2. The Q-register-is set from the D-

Not Used 

o 2324 27 31 

OP Code R1 

3 

Set Storage Key OP r I 
Key;, ;n ,hb Reg/ 

o 78 

Not Used 

R2 

5 

register so the storage key is in Q-Lo. 
The information read from memory is written 
back and at the same time the storage key 
in Q-Lo is written in the protect stack at 
the correct location corresponding to the 
main-storage block. 

If it is necessary to find out what 
number has been assigned to a block of 
storage, the privileged instruction, INSERT 
STORAGE KEY, is used (Figure 4-17). This 
instruction ta kes the address in R2 and 
sets the address in UV, main memory is read 
out and the storage key is set in Q- Lo. 
The Q- register is then crossed high and set 
in the D-register. The third byte of the 
register in R1 is addressed and the D-

Block Address in This Register 

2021 

Which Block Not Used 

0000 0000 0000 0 Address 0000-2047 
0000 0000 0000 1 Address 2048-4095 
0000 0000 0001 0 Address 4096-6143 
0000 0000 0001 1 = Address 6143-8191 
0000 0000 00 1 1 1 = Address 14335-16383 

0000 0000 11 11 1 = Address 63488-65535 
'--y-J 
In 2030 these are always zero 

Figure 4-16. SET STORAGE KEY Instruction Word Format 

4-16 (9/1/66 ) 



Features 

register set into the R-register. The next 
ROS cycle stores R-register in the third 
byte of Rl. A record has now been made of 
the storage key assigned to that block of 
storage. 

o 2324 2728 31 

Unchanged o 

Insert Storage Key~ Force to Zero 

Op Code RI 

.Block Address 

R2 

09 

I",e.' Slo"'ge Key oPJ 

Storage Block 

2048-4095 
0000-2047 

1 
F 

o 

4 

Unchanged 

Same Format as Figure 3-3 

Register 4 Register 3 

870043211-Before--00000EOO 
87004310..-After---...00000EOO 

Figure 4-17. INSERT STORAGE KEY Instruction Word Format 

PROTECT ION KEY 

• The protection key for the CPU is found in bits 8-11 of the 
PSW. 

• The protection key for the PSW set h¥ the last LOAD PSW 
instruction is found in Q-Hi and at local store location K25 
(address B9). 

• The protection key for a multiplexo~ channel is read from 
the CAW and set in the protect stack as an extension of the 
UCW for that subchannel. 

31 

storage key assigned to main storage 
locations accessed during that program. 

The LOAD-PSW routine stores the protection 
key in bits 8-11 of the PSW in local store 
at location K25 (address 8-9). This serves 
as a permanent record of the PSW protection 
key. It is then set in Q-Hi from the 
Z-bus, and is used for matching against the 

When a START I/O instruction for the 
selector channel is performed, the protec­
tion key is read from bits 0-3 of the CAW. 

2030 FETOM (9/1/66) 4-17 



Features 

The protection key is then set into the GK 
or HK register, depending on the channel 
selected. The output of GK or HK is 
matched against the storage key read from 
the protect stack when main storage is 
accessed. A mismatch is recognized only 
when the operation is an input to main 
storage. 

When the START I/O instruction for the 
multiplexor channel is performed, the pro­
tection key is read from bits 0-3 of·the 
CAW. The protection key is then temporari­
ly stored in the O-register. As soon as 
the subchannel address (UCW- address) has 
been established, the protection key is set 
into Q-Lo, and then written in the protect 
stack. The same pOSition of the protect 
stack is read out each time the same UCW is 
read out. In effect, the 4-bit protection 
key is an extension of the UCW in MPX aux­
iliary store. Now, each time that I/O 
device is selected on the MPX channel, the 
protection key is read out. 

PROTECTION EXCEPTION 

Since the protection key for the CPU is 
in Q-Hi, it is necessary to replace it with 
the protection key in MPX local store 
whenever the I/O unit is selected. The UCW 
protection key is read from the MPX store 
and set into Q-Lo. It is then transferred 
to the I-register for temporary storage. 
This is done because Q-Lo can be changed on 
the next cycle under certain conditions and 
the protection key lost. . From the 1-
register, the protection key is transferred 
to Q-Hi. This destroys the CPU protection 
key and requires at the end of the 
multiplexor channel operation that the CPO 
protection key in local store K2S (B9) be 
read out and set in Q-Hi for correct opera­
tion. During the multiplexor channel oper­
ation when main storage is accessed, the 
storage key is read from the protect stack 
and set in Q-Lo. Only if main storage is 
to be changed is a mismatch of Q-Hi and 
Q-Lo recognized. 

• A protection e~eption occurs for a CPU, or multiplex chan­
nel operation when a mismatch between Q-Hi and Q-Lo occurs 
or a parity error on Q-Lo is found, and: 

1. The protection key is other than O. 

2. Main storage is to be changed during write time. 

• A protection exception occurs for a selector channel opera­
tion when a mismatch between GK or HK and Q-Lo occurs or a 
parity error on Q-LO is found and: 

1. The protection key is other than o. 

2. The operation is an input cycle. 

For a CPU or multiplexor operation, a pro­
tection exception is allowed if the opera­
tion is a store or the R-reglster is the 
destination of the Z-bus. A parity error 
on Q-Lo or a mismatch on Q-Lo and Q-Hi is 
recognized if main storage is addressed. 
If .local store is accessed, any protection 
error is prevented from being recognized. 
If the protection exception is allowed, an 
interrupt occurs and the protection excep-

4-18 (9/1/66) 

tion code (0004) is placed in the old PSW 
for CPU operation or a bit set in the CSW 
and/or the UCW for I/O operation (FigUre 
4-18). 

During a selector channel operation if a 
protection exception is allowed and the 
operation is an input cycle, the protection 
check latch is turned on. An interrupt 
occUrs and bit 43 of the CSw is set to 1. 



Features 

Yes 

No 

Operotion Continues 

Stop Machine Check Trap 

Figure 4-18. Protection Exception 

-- ..... 
I 

I 
I 
I 

---I ,-------------
I I Protection is Concelled 
I I when this Condition 
II : Exists when Moin 

I Storage has been Ad­
L - - - -.., dressed. The Micra 

Set WX Register to 
Branch Micro­
Program to Protection 
Routine 

No 

I Program is Updating 
Infarmati on in the 

I First 256 Positions 

L ~ ~~:S~o:a~e.:. __ _ 

Progrom Interrupt 
Program Interrupt 
Restore Protect Key 

2030 FETOM (9/1/66) 4-19 



Features 

MAIN STORAGE OPERATION 

• The 5 bits read from the stack (storage key and parity) are 
set into Q-Lo. 

• A parity check is made on Q-Lo. 

• A parity error can cause a protection check and/or a machine 
check unless the protection key in Q-Hi is o. 

• A comparison between Q-Hi (protection key) and Q-Lo (storage 
key) is made. 

• An unequal comparison is ignored if: 

1. Q-Hi is set to 0, or 

2. storage is to stay the same 

The protection key has been stored in loca­
tion K25 (B9) of local store and in Q-Hi 
(Figure 4-19). When the ROS micro program 
requests a read cycle in main storage. the 
storage key assigned to that main storage 

block is read out of the protect stack. 
The key is set into Q-Lo and the stack­
parity bit into the parity bit position of 
the Q-register. 

PSW 

Q 

Register 

o 
.... --------1 QHi 1t-----.... 

3 
4 

QLo ~t---....., 
7 

Check 
for 
0000 

Compare =#: 
QHi to I---~ 

.... _____ ~QLo 

SA Register 

o 
1 
2 
3t--___ .... _~ 
4 
5 
6 
7 

Q Lo Even 
Parity 1---------, 
Check 

Protect· 
Stock UCW 

CPU 

Figure 4-19. CPU Operation (Logical Diagram) 

4-20 (9/1/66) 

Main Store 

Data Ready 

Allow Protect 

Gate Q Register to A-Bus 

A Protection Check 

CPU or MPX 



Features 

A parity check is made on Q-Lo and the 
parity bit. If the parity is even, a store 
data will occur if Q-Hi is not 0 and allow 
protect is up. If even parity exists when 
the Q-register is used as an A-register 
source, and a storage data check is forced 
to prevent the incorrect transfer of keys. 

If a storage data check and protection 
check occur at the same time, the machine 
check trap takes priority over the storage 
protection trap. 

A comparison is made between Q-Hi and 
Q-Lo. An unequal comparison causes a 
protection check; unless the protection key 

SELECTOR CHANNEL OPERATION 

in Q-Hi is 0 or the information read out of 
main storage is to be written back. 

If a mismatch or parity error occurs and 
it is allowed, the information read out of 
main storage is set into the R-register and 
written back into main storage during the 
write cycle. An interrupt is taken, and 
the protection exception code (0004) is 
placed in the old PSW to identify the pro­
gram interrupt. 

The storage key is regenerated in the 
protect stack from Q-Lo and parity bit 
during the write cycle. 

• The protection key is read from the 0-3 bits of the CAW and 
set into GK or HK. 

• When main storage is addressed for a selector-share read 
cycle, the storage key is read from the protect stack and 
set into Q-Lo plus parity bit. 

• A parity check is made on Q-Lo. Even parity can cause a 
selector channel protection check and a channel control 
check unless the protection key is GK or HK is o. 

• A comparison is made between GK or HK (protection key) and 
Q-Lo (storage key). If unequal, a protection error is rec­
ognized. 

• An unequal comparison is ignored if: 

1. GK or HK is set to 0, or 

2. storage is to stay the same. 

when the START I/O instruction is recog­
nized, the protection key (0-3 bits) of the 
CAW is set into the GR or HR register 
depending which channel is being used 
(Figure 4-20). Assume selector channel 1 
is being used. The protection key is then 
set into the GK register from GR, and 
retained there until the next time the ROS 
microprogram has the statement GR- >GK. 

On the cycle that main storage is 
addressed for a selector share read cycle, 
the protect stack is read out and set in 
Q-Lo. A parity check is made on Q-Lo and 
the parity bit. If parity is even, a sel­
ector channel protection check and a chan­
nel control check occurs unless the protec­
tion key in the GK's is 0000. 

If a protection check occurs and is 
allowed, the recognition of the selector 

channel protection check is further condi­
tioned that the operation is an input 
cycle. When all conditions are satisfied 
to cause a protection check, the informa­
tion read from storage is placed in the 
GR-register (channel data register) and is 
regenerated in main storage during write 
time. 

When a protection check occurs, the 
protection check latch and possibly the 
channel control check latch in the selector 
channel are set. The operation on the 
channel is terminated, and an interrupt is 
indicated. When the CSW is stored, a pro­
tection check is indicated by bit 43 set to 
1 and a channe 1 control check, if it 
exists, by bit 45 set to a 1. These latch­
es are reset when the CSW is stored. 

2030 FETOM (9/1/66) 4-21 



~ ~ 
I .... CAW 

"-> ~ 
"-> ~ 

1'1 
co 
~ 

\Q I 

" "-> 
~ 0 

" • 
C1\ SXl 
C1\ 
'-J en 

CO 
~ 
<D 
0 
rt 
0 
1'1 

() 
::r 
QI 

5 SX2 

co ..., 

~ 

~ .... 
0 
QI ..., 
0 .... 
S» 
~ 
1'1 
QI 
a -

SA 
Register. 

0 y 
1 
2 0 

3 
e 

4 a 
5 d 
6 e 
7 

GK 

p 
0 
1 
2 
3 

HK 

Protect 
Stack 

p 
o 
1 
2 
3 

SXX Share 

UCW 

CPU 

Q 

Register 

o 
1 QHi 2~ ____________ ~ 

3 

4 
5 

QLa 6~--------~~------~-1 7 
p 

Sense 
AMP 

(5) 

Q-La 
Parity 
Check 

Even 

Check 
for 
0000 

:1:0 

Or 

Data Ready 

To Channel Control 
Check Latch 

~ 

m 
rt 

~ 
~ 
en 



Features 

Multiplexor-Channel Operation 

• The MPX-channel can have more than one I/O device running at 
one time. Thus, it is possible to have more than one pro­
tection key to remember. 

• The I/O protection key is read out and set in Q-Lo when the 
I/O unit is initially selected, and then transferred to the 
pro tect stack. 

• The protection key for each I/O device on the MPX channel is 
retained in the protect stack as an extension of the ucw. 

• Each multiplexor share operation causes the protection key 
to be read from the UCW portion of the protect stack and set 
in Q-Lo and then transferred to Q-Hi. 

• The storage key is read out when main storage is addressed 
for a read cycle, and set in Q-Lo. 

• A parity check is made on Q-Lo. If even, machine check will 
occur if Q-Hi is not 0 and allow protect is up. A machine 
check will also occur if a Q-Register is gated to the A­
Register and Q-Lo is even parity. 

• A comparison is made between Q-Hi and Q-Lo. If unequal, a 
protection error is recognized. 

• The protection check is ignored if: 

1. Q-Hi is set to 0, or 

2. storage is to stay the same. 

Because the MPX channel can have more than 
one I/O device running simultaneously, it 
might be possible to have more than one 
protection key. The protection key for 
each I/O unit has been placed in the stack 
at a location that is addressed by the I/O 
unit UCW address. 

Whenever an I/O operation is initiated 
on the MPX channel which requires reading 
the CAW, the associated protection key is 
temporarily stored in the U-register. The 
key is then set into Q-Lo, and then in the 
protect stack (Figure 4-21). 

The MPX channel operates in two modes: 
~ and interleave. The procedure used 
to read the protection key from the protect 
stack and set it in Q-Hi is similar in each 
case, but is found in different areas of 
the microprogram. The I/O device is 
selected and the UA, (Unit Address) for the 
device provides the address for the SA 
register. The protection key is set in 
Q-Lo, and then in the I-register for tem­
porary storage. This is done because Q-Lo 
is changed each read cycle, and in some 
cases the correct protection key could be 
lost. The key is then set into Q-Hi from 
the I-register. Now, when main storage is 

addressed for a read cycle, the storage key 
is read from the protect stack and set in 
Q-Lo. 

A parity check is made on Q-Lo and the 
parity bit. If parity is even, a protec­
tion check and/or a machine check can 
occur, unless the protection key in Q-Hi is 
o. 

A comparison is made between Q-Hi and 
Q-Lo. An unequal comparison causes a pro­
tection check; unless the protection key in 
Q-Hi is 0 or the information read out of 
main storage is to be written back. 

If a protection check occurs and it is 
allOW'ed, the information read out of main 
storage is set into the R-register and 
written back into main storage during the 
write cycle. An interrupt is taken and the 
protection error sets bit 43 in the CSW. 

When the MPX operation ends, the protec­
tion key for the CPU is read from local 
store K25 (B9) and set in Q-Hi. This hap­
pens at the same time that the rest of the 
registers are being restored to the infor­
mation held prior to the MPX share opera­
tion. 

2030 FETOM (9/1/66) 4-23 



Features 

Z-Bus 

low Parity 

SA 
Register 

0 
I 
2 
3 
4 
5 
6 
7 

o 

1-
Register 

Z-Bus QHi ~ 
3~--~-------------+--------~~~ 
4 

Qlo ~ ~----.... ------t---------I 
7 

X 

y 

Protect Sense 

Stack 
UCW Amp 

(5) 

CPU 

Figure 4- 21. Multiplexor Channel (Logical Diagram) 

4-24 (9/1/66) 

A Protection Check 

CPU or MPX 

A 

Allow Protect 

A 

Gate Q-Register to A-Bus 

A N 



Features 

INTERVAL TIMER 

• The interval timer feature consists of three bytes in main 
storage locations 50, 51, and 52. 

• The value in the timer is decreased for intervals of time. 

• An external interrupt is signaled when the timer goes from a 
positive to a negative value. 

Let's consider an application of the inter­
val timer feature. Assume that a customer 
must run two jobs during the day. Job #1 
takes seven hours. The information to run 
Job #2 is not available until 2 P.M. By 
using the interval timer feature, the cus­
tomer, in effect, can instruct the 
Systeml360 to stop working on Job #1 and 
start on Job #2 at 2 P.M. If the customer 
knows that Job #2 is usually completed in 
15 minutes, he could set the timer for 17 
minutes. This would allow a 2 minute safe­
ty margin. At the end of 17 minutes the 
work on Job #2 is halted (whether completed 
or not) and processing of Job #1 is 
resumed. 

To use this fea ture, a certain value is 
set in main storage locations 50, 51, and 
52. This starts a counter that keeps track 
of time. The value that is set in main 
storage represents total elapsed time. 
When the counter value is subtracted from 
the timer value often enough, the timer 

60 CYCLE OPERATION 

value goes from a poSitive to a negative 
value. At this time, an external interrupt 
is taken to whatever has been previously 
set up by the customer. In our example, it 
would be the start of a routine to handle 
Job #2. 

Let us examine the computation of timer 
values. The high-order bit of location 50 
is reserved for sign control. This leaves 
23 bit positions free for data. A value of 
over 16,700,000 can be set with 23 bit 
positions. 

A microprogram routine subtracts 300 
from the timer during each second of 
elapsed time. Thus, the full cycle time of 
the timer is about 15.5 hours. Because 300 
is subtracted from the timer for an elapsed 
time of one second, then the timer must be 
set to the value 1,080,000 for each hour 
(300/sec x 60 sec x 60 min) of elapsed time 
that is desired. 

• The value that is subtracted from the timer is determined by 
the setting of the 4 position binary connected C counter. 

• The C counter is driven at a 60 cycle rate. 

• The C counter is FULL every. 25 seconds • 

• A latch ON in the C counter causes a timer update at the end 
of E-phase. 

The C counter keeps track of actual time. 
A 60 cycle pulse provides the drive. 
Though this 4-position counter is FULL with 
only 15 impulses (.25 sec), any position of 
this counter that is set at the end of 
E-phase causes a timer update. 

The update routine takes the value in 
the C-counter, multiplies it by 5 and sub­
tracts the product from the timer value. 
If there is a sign change as a result of 
the subtraction, an external interrupt is 
taken. If no sign change occurs, the 

update routine exits to I-phase for the 
next instruction. 

For .25 seconds, the value 75 must be 
subtracted from the timer. The C counter 
has four positions. Therefore, the highest 
value it can contain is 15 (1111, all posi­
tions set). All positions of the C counter 
are set in .25 seconds. Therefore, the 
full value in the counter (15) multiplied 
by 5 gives the value (75) that must be 
subtracted from the timer for this (.25 
sec) elapsed time. 

2030 FETOM (9/1/66) 4-25 



Features 

Latches 

Control 

Control Latch 

T4 

Control FF 

Drive 

Not Control Latch 

Not Timer 
Update 

Interval Timer 
Sw Off 

1 

GtCRegto A 
A BIIs 

Control FF Latch 

OR Control Latch (Not) Ctr Full 

-FL- T3 

A 

Figure 4-22. Interval Timer Controls 

A 

The controls for the C counter are shown 
in Figure 4-22. The governing latch is the 
control latch. This latch must be off to 
allow the C-counter to run. If the 
disable-timer switch is off, the control FF 
latch is set at 4 TIME. This latch con­
trols the lines to reset the C-counter 
latches. The control FF latch turns the 
control latch off at T3 time. The control 
latch going off resets the Control FF 
latch. 

With the control latch off and the C­
counter empty, the 60 cycle time pulse sets 
the drive latch at T3 time. The drive 
latch provides one pulse at a time to the 
C-counter. TWo lines are developed from 
the C-counter: 

1. Counter Full--Blocks further drive 
pulses to the C-counter by not allowing 
the drive latch to be set. 

2. Timer Update--If any position of the 
C-counter is set, this is active and a 
timer update is signaled. 

During the update routine, the setting in 
the C-counter is set into the D-register 
(C->D) for multiplication by 5. This 
causes the control latch to be set ON 
again. The C-counter is reset so that it 
may again start counting the timed pulses. 
A flow chart of the timer update routine is 
shown in Figure 4- 23. 

4-26 (9/1/66) 

A 

-FF-

Drive 

-FF-

Next Instruction 

Figure 4-23. 

C Counter 

Reset 
(Binary Connected) 

Drive 

-FF-
4 

-FF-

5 

-FF-
6 

-FF-
7 

1. Multiply Value in 
C Counter X5 

2. Subt from Timer 

Yes 

(If SO = 1, It Indicates 
2030 Was in Wait State 
When Update Was Done. 
In This Case, Machine 
Returns to Wait State). 

Timer Update 

External 

External Interrupt 
Routine 

External Interrupt 
Routine (If Ext Int is 
Masked On) 

Timer Update Microprogram 



Features 

50 CYCLE OPERATION 

• The C-counter is driven at a 50 cycle rate. 

• The C-counter is full every .3 seconds. 

• Counter value multiplied by 6 is subtracted from the timer 
during timer update. 

If the 2030 is operating on 50 cycle alter­
nating current, a slight change in the 
timer-update-controls is necessary. 
Instead of multiplying the counter value by 
5 to get the correct number to subtract 
from the timer, the 
50-cycle-machine-timer-update-routine 
mul tiplies the counter val ue by 6. This is 
necessary because on a 50 cycle machine, 

the counter is full every. 3 seconds 
instead of every .25 seconds. 

By using a multiplier of 6 for 50 cycle 
machines, and a multiplier of 5 for 60 
cycle machines, the same value (300) is 
subtracted from the timer on all machines. 
This makes timer programming compatible for 
all machines. 

2030 FETOM (9/1/66) 4-27 



Features 

1401/1440/1460 COMPATIBILITY 

• The compatibility feature and associated subfeatures enable 
a rapid and simplified transfer from 1400 applications to 
the IBM System/360 Model 30. 

• 1400 programming systems operate without change using this 
feature with appropriate I/O devices. 

• I/O Subfeatures are microprogram routines that operate par­
ticular I/O devices. 

The 1401/1440/1460 Compatibility Features 
consist of the 1401/1440/1460 Basic Compat­
ibility Feature and the appropriate subfea­
tures required to provide compatibility 
with an existing 1401. 1440. or 1460 system 
configuration. Compatibility features 
permit 1401/1440 and 1460 object programs. 
using comparable I/O devices included for 
the feature. to be executed on a 
system/360. Model 30. without modification 
or additional storage requirements. 

The 1400 object program is stored in 
upper 2030 storage. Address conversion and 
character conversion occurs as needed. The 
original 1400 program sequence and charac­
ter configuration is not disturbed. 1400 
Mode microprograms perform the same func­
tions in 1400 Compatibility Mode as hard­
ware performed in 1400 systems. 

A System/360. Model 30 with at least 
equivalent core storage and comparable I/O 
devices. can assume the functions of any 
1401. 1440. or 1460 system having the fol­
lowing IBM'I/O units: 

4-28 

1402 Card Read-Punch 

1442 Card Read-Punch 

1403 Printer 

1404 Printer (Continuous Forms 
Operations) 

1443 Printer 

1407 Console Inquiry Station 

(9/1/66) 

1447 Console Inquiry (Models 2 or 3) 

1311 Disk storage Drive 

729 or 7330 Magnetic Tape units 

7335 Magnetic Tape unit 

The compatibility subfeatures that are 
available for emulating specific 1400 con­
figurations are as follows: 

Column Binary 

1402/1403 Attachment 

1442/1443 Attachment 

Console Inquiry Station 

Disk storage Drives 

Magnetic Tapes 

The programmed mode switch subfeature 
(PMS) is also available. No other compat­
ibility subfeature is either required or 
pre-empted by this subfeature. PMS pro­
vides the ability to switch the 2030 proc­
essor from compatibility mode to 2030 mode, 
and vice versa under 2030 program control. 
This permits the use of System/360 capabil­
ities and devices that are not otherwise 
available in compatibility-mode operations. 
The PMS feature must be factory installed 
and is only available on a 2030 having 
16.384 or more positions of core storage 
(Models D. E. or F). 



Features 

IMPLEMENTATION 

• A separate and distinct (4K) 1400 Read Only Storage (ROS) 
control is incorporated to control data flow in a manner 
that emulates the 1400 systems. 

• The standard System/360 ROS is not used when in compat­
ibility mode. The W3 bit on in the WX Reg causes the added 
4K ROS to be addressed. 

• IJ. LT and UV perform the functions of I-star, A-Star, and 
B-Star. respectively. 

• Auxiliary storage is loaded with conversion tables, con­
stants. and other control factors required by ROS to atsorb 
the differences in code structure and storage addreSSing 
between the 1400 Systems and the System/360. 

The 1401/1440/1460 compatibility feature 
consists physically of a second 4K ROS unit 
and 5 SLT Cards (Figure 4-24) that are 
added to the 2030 processing unit. This 
additional ROS contains the general micro­
programming necessary to process 1400 sys­
tem instructions and the specific subfea­
tures for controlling the various I/O devi­
ces. The 2030 is put into compatibility 
mode by turning on the W3 bit of the W­
register. This bit causes the added 4K ROS 
to be addressed and controls all mode 
dependent functions. The standard 
Systeml360 ROS is not used when in compat­
ibility mode. 

W3 can be turned on (placing the 2030 in 
1400 compatibility mode) in three ways: 

1. Console switches. Console switch F set 
to an odd hex digit turns on W3. 

ROS Field 

CH 

CL 

CM 

Decode 
Normal 
Function 

0011 VOO 
1000 SI 

0110 IBC 
1100 Gl 

0101 T 

1400 Compatibility 
Function 

GMWM 
R2 

RI 
R3 

LT 2. Micro program control UV->WX. The 
status of U3 determines W3 when the 
micro program statement UV->WX is used. 

3. Micro program control CA->W. The sta­
tus of AA determines W3 when the micro­
program statement CA->W is used. 

Note: The above control field functions changes are 
accompl ished by five additional SL T cards 

~ny system reset turns off W3 and causes 
the 2030 to leave compatibility mode. 
Recycle reset. the microprogram control 
K->W. and priority trapping do not affect 
the setting of W3 when the compatibility 
feature is present on the machine. 

as follows: 

Frame - Gate Board Socket 
OIA Al F5 
OIA Al B7 
OIA B2 C2 
OIA B2 B3 
OIA A2 J2 

Figure 4-24. ROS Control Field Changes; 
Additional SLT Cards 

Auxiliary storage, which normally pro­
vides residence for general purpose, 
floating-point, condition registers, and 
multiplexor channel Unit Control Words 
(UCW's), is also loaded with conversion 

When operating in compatibility mode, LJ 
performs the functions of the I-Star, LT 
performs the functions of the A-star and UV 
performs the functions of the B-Star. Cir­
cuitry is provided so that the Land T 
registers (though normally separate) may be 
gated as a pair into the MN register when 
the T register is named as the source 
(i.e.: T->N MS causes the address con­
tained in LT to gate to MN). 

tables, constants, and other control fac­
tors required by ROS control during compat­
ibility mode operation. In addition to 
constants and conversion tables, considera-

2030 FETOM (9/1/66) 4-29 



Features 

ble information such as storage size, tape 
densities, unit addresses and other charac­
teristics unique to a particular 
1400/System/360 emulation are entered into 
auxiliary storage. 

Auxiliary storage also "provides variable 
data that is used by microprogramming. 
Some examples follow: 

status of 1400 instruction counter, 
A-Address, B-address and A register. 

COMPATIBILITY INITIALIZATION 

The 1400 condition bits 
(high-low-equal, tape error, overflow, 
end of fil e, etc.) 

Sense-switch and check-stop switch 
settings. 

Programmed mode switch control 
information. 

Refer to Auxiliary Storage for information 
on contents and function of specific areas 
of auxiliary storage. 

• Compatibility initialization is accomplished by Programs and 
information supplied by the compatibility Initialization 
Deck (CIO). 

• The CIO must be modified to fit the configuration with which 
it will be used. 

• A Diagnose (83) instruction enables the compatibility Fea­
ture Initialization Mode (99) instruction. 

• Initialization duplicates the 1400 load routine. 

• Initialization loads 512 bytes of Auxiliary storage with 
conversion tables, constants, etc. 

• Initialization turns on W3 of the WX register to cause 1400 
mode ROS to be addressed. 

A compatibility initialization program 
executed in the 2030 ahead of the 1400 
object program supplies information neces­
sary to allow the 2030 to run in Compat­
ibility mode. A Compatibility Initializa­
tion Deck (CID) provided by IBM and sup­
plied with data applicable to a particular 
system configurations performs the func­
tions of initialization. The deck must be 
modified before it can be used. The CIO 
contains its own loading routine and con­
sists of 40 cards (41 cards for 65K 
systems). The first three cards are a 
hexadecimal loader. The next 32 cards are 
the hexadecimal constants used to load 1400 
auxiliary storage LS and MPX for 
compatibility-mode operation. The last 
section of the eln contains routines to 
clear all word marks in the 1400 core­
storage area, to set the 256 high-order 
byte locations of 65K systems to 8F, to 
load auxiliary storage for 1400 mode 
operation, and to set the compatibility 
mode for 1400-series program loading. 

The initialization routine is started by 
loading the compatibility Initialization 
Deck into the 2030 using the normal load 
operation. (Refer to Console ops.) The 

4-30 (9/1/66 ) 

program contained in the hexadecimal loader 
cards assembles the auxiliary storage 
informa ti on f rom the 32 data ca rds into 512 
consecutive bytes of information in 2030 
storage. (Later in the program, these 512 
bytes will be loaded into auxiliary stor­
age. ) 

The CIn initializes one of the following 
instruction sequences in the location spec­
ified in auxiliary storage: 

1. 1001E Load object program 
from 2540 

2. ~~Gl001RB001E Load object program 
from 1442 

3. ~~U1001~ Load object program 
from tape. 

Only one of these instructions is loaded, 
depending on which program load device is 
specified. 

CIO card 36 (0500, cols. 1-4) is used 
to clear all 1400 mode word marks. The 
following card in 65K systems, loads the 



Features 

character 8F into the 256 high-order bytes 
of 2030 storage. 

The CID next executes a diagnose 
instruction (83) that enables execution of 
a 99 instruction (Compatib.ility Feature 
Initialize Mode). A 99 instruction is 
treated as invalid when not preceded by an 
83 instruction. The CFIM (99) instruction 
loads 1400 auxiliary storage LS and MPX 
with the 512 bytes of information obtained 
from cards 4 through 35 of the CID. The B1 
+ D1 field of the CFIM instruction supplies 
the starting main storage address of the 
512 bytes of information. 

With auxiliary storage loaded, the W2 
field of the CFIM is tested. The W2 field 
defines the method to be used to load the 
1400 program as follows: 

W2 Initialization 

o No initialization 
1 1402 card load initialization 
2 Tape load initialization 
9 1442 Card load initialization 

The initializing routine of the CFIM 
instruction duplicates the load routine in 
the 1400. For example, consider the 1402 
load key operation. In 1400 compatibility 

initialization. the 2030 is initialized by 
clearing positions 001-080 (1400 
equivalent), and a word mark is inserted in 
position 001. 

The CFIM instruction generates an inval­
id 1400 character (8F) and inserts this 
character into 1400 address 000 minus 1. 
The actual location of the invalid charac­
ter is determined by the storage sizes 
supplied by the CID. 

The last step in initialization turns on 
W3 of the WX register. This puts the 2030 
processor in 1400 compatibility mode. W3 
on causes the compatibility mode ROS to be 
addressed. At this point, the Compat­
ibility Initialization Deck with its Com­
patibility Feature Initialization MOde 
instruction has loaded auxiliary storage 
and defined the method of loading to be 
used to load the 1400 object program. The 
appropriate 1400 instruction is executed to 
read the first card or tape record of the 
1400 object program. The address of the 
appropriate 1400 load instruction is stored 
in LJ backup in auxil iary storage by the 
CFIM instruction as 2 of the 512 bytes. 
The CFIM instruction retrieves the IJ bac­
kup and uses the location specified by the 
contents to begin processing in 1400 com­
patibility mode. 

FUNCTIONAL DIFFERENCES BETWEEN SYSTEM/360 MODEL 30 1400 
COMPATIBILITY FEATURE AND THE 1401, 1440, OR 1460. 

• The system/360 in 1400 compatibility mode, treats some con­
ditions differently than the 1400 system does. 

• Differences involve the CPU and 1/0 devices. 

• Knowledge of the differences that exist is essential to 
diagnostics. 

• Console operations vary considerably and will be discussed 
in a separate section. 

CPU Differences 

Memory Wrap. In 1400 Compatibility mode, 
memory wrap indications do not occur until 
the address is used to address memory or 
store in memory by a store Address-register 
instruction. 

In 1400 System Operation, a process 
check occurs immediately when an address is 
incremented or decremented beyond the memo­
ry size. 

d-Modifer. The d-modifier character 
(A-register) is set differently in 1400 

compatibility mode than in the 1400 systems 
when it follows the recomplement operation 
of an add or subtract instruction. Because 
of this difference, a chained instruction 
that uses the d-modlfier following these 
instructions will not operate as in 1400 
systems. 

A-address Register following I/O Ops. In 
1400 compatibility mode, the A-Address 
Register contains a variable after an I/O 
instruction of the general form MIL Ixx BBB 
d. Because of this, a Store A Address 
Register instruction following these 1/0 
instructions does not store the same infor­
mation as in the 1400 systems. 

2030 FETOM (9/1/66) 4-31 



Features 

1050 Differences 

Equivalent Function$. The following list 
gives the 1407/1447 operations or indica­
tions and the equivalent 1050 operations or 
indications: 

1407/1447 

Request key 

1050 Equivalents 

Request key 

Enter light Proceed light 

Respond key Operate alternate code key 
and 5-key 

Type-out key Not available 

Clear-key light During a read-into-storage 
operation, this function 
is performed by operating 
the alternate-code key and 
the 0 key. During a 
write-out-of-storage 
operation, this function 
is not avai lable. 

Cancel key Cancel key 

Release key EOB key 

Errors are not indicated by an under­
score. The error is indicated to the pro­
gram. 

1401 Staqe I Differences 

MemorY Wrap Consideration. The 1400 com­
patib1lity feature does not accomodate 1401 
Stage I programs that are written to use 
the ability to wrap memory or that use an 
address that is over the memory size of the 
machine. For example, if the 1401 is des­
cribed as a 4K machine, or less, zone bits 
in the units position will cause an address 
wrap check. 

1402 Differences 

Punch Feed Read. When operating Punch Feed 
Read, in 1400 compatibility mode, a blank 
card must be inserted before the deck to be 
read. (!C) operation in 1400 Compatibility 
mode with the 2540, any column binary char­
acters that are not one of the normal 64 
BCD characters entering the normal read-in 
area (001-080) are replaced by blanks. 
Recall that in 1400 operation, a column 
binary character enters the normal read-in 
area in card image, whether or not it is 
recognizeable as a BCD character. Binary, 
data does not enter the normal read-in 
area. 

4-32 (9/1/66) 

Last Card Indication. In 1400 compat­
ibility mode operation: the last card indi­
cation is reset by the start reset func­
tion, or by the first read instruction 
following the indication. In the 1400 
system, the last card indication is turned 
off by either a Test and Branch (~ xxx A) 
instruction, on a run in, or by the switch 
itself or by the start reset key. 

1403 Differences 

Branch on Channel 9 or 12. On unbuffered 
1400-series printers, a branch on channel 9 
or 12 interlocks the printer. The last 
line of printing occurs one line above the 
channel-9 or -12 punch in the carriage 
tape. On buffered 1400-series printers, a 
branch on channel 9 or 12 immediately 
before printing causes the last line to 
print one line above the channel-9 or -12 
punch in the carriage tape. The same is 
true if the overflow branch occurs while 
the printer is busy (currently engaged in 
printing or forms movement.) 

If the overflow (branch on channel-9 
or -12) occurs immediately after printing, 
the last printed line of that form is 2!! 
the line corresponding to the channel 9 or 
12 carriage tape punch. 

These considerations are also true for 
1400 compatibility operation and should 
include the space immediate command. (This 
command is not physically interlocked as in 
the 1401 system). However, more than one 
channel-9 or -12 punch may be necessary if 
the program performs housekeeping routines 
at the end of the printed page (on and/or 
below the carriage-tape overflow punch) and 
still requires an active output from the 
effect of reading the overflow punch to 
cause, for example, skipping to the next 
form. The channel-9 and -12 indicators are 
reset by the next actual printer command 
rather than by any channel punch as in 1401 
and 1460 systems. 

When skipping is not required on or 
after the overflow punch, one channel-9 or 
-12 punch is sufficient. Multiple print 
and/or carriage commands without interven­
ing channel-test branch instructions may 
also require multiple channel-9 and/or -12 
punches. 

On the 1442/1443 sub-feature, channel-9 
and -12 are reset by a skip to channel-1 or 
by a programmed branch on channel-9 or -12. 

1442 Differences 

Last Card Indication. The last card indi­
cation is reset by the start reset function 



Features 

or by the first read instruction following 
the indication. 

Read Error with I/O Check-stop Switch On. 
When the I/O Check-stop switch is on. a 
read error halt occurs at the end of the 
card instead of at the column in error. 

File Differences 

Module Number. The module number is delet­
ed when recording addresses on file. 

Switches. The Diagnostic, Write-Address, 
and Disk-Write switches are not provided on 
the 2311 Disk storage Drive. 

Write Disk Track Record Operations. A 1400 
write-disk-track-record operation without 
address should not be attempted on a disk 
pack formatted in sector mode. 

Tape Differences 

Diagnostic Read. The Diagnostic Read 

CHARACTER CONFIGURAXION 

instruction will detect a tape mark only if 
it is a single character record. 

Odd Redundancy Tape Mark. A tape mark read 
in odd redundancy will not set the tape 
error indicator. 

EOF Indication. An end-of-file indication 
from a given tape unit is issued for every 
Write operation following the initial 
detection of the reflective strip, until a 
rewind or backspace is performed by that 
same unit. 

EOF followed by Manual Unload. If an EOF 
is sensed (tape read or write) and the tape 
unit is manually unloaded before a 
branch-if-end-of-file or rewind-unload 
command is given, the EOF status bit in 
local storage must be manually reset from 
the 2030 console. Under normal conditions, 
this situation would never occur, and the 
user need not be concerned about the status 
of the EOF bit. 

• The BCD characters of the 1400 system being emulated are 
represented in the 2030 in System/360 EBCDIC. 

• Absence of a 1-bit in EBCDIC representation indicates that a 
word mark is associated with the character. 

• Character conversion from EBCDIC to BCD and vice-Versa can 
be accomplished through a table lookup. 

The BCD characters of the 1400 system being 
emulated in compatibility mode are 
represented in the 2030 in EBCDIC. This 
utilizes all eight data bits plus a parity 
bit. See Figure 4-25. Note from the chart 
that all valid BCD characters represented 
in EBCDIC contain a bit in byte position 1. 
Word mark notation is achieved by manipula­
ting bit poSition 1 while still maintaining 

EBCDIC compatibility externally. The 
absence of a 1-bit in the EBCDIC represen­
tation indicates that a word mark is asso­
ciated with the character. Thus the char­
acter WAW without a word mark is represent­
ed as 11000001 in EBCDIC while the charac­
ter A with a word mark is 10000001 in 
EBCDIC. 

2030 FETOM (9/1/66) 4-33 



Features 

WITH WORDMARK NO WORDMARK WITH WORDMARK NO WORDMARK 

4567 0123~ 

1 0000 0001 0010 0011 0100 0101 0110 0111 1000 1001 

0000 Blank & - Blank & - ? 

0001 / / A 

0010 B 

0011 C 

0100 D 

0101 E 

0110 F 

0111 G 

1000 H 

1001 I 

1010 V V 

1011 S I # S I # 

1100 11 * % @ tI * % @ 

1101 C ::J V : C ::J v : 

1110 < ; \ > < i 
; \ > 

1111 $ b- +++ ...r- =1= ~ +++ -r-

Figure 4-25. 1400 Defined Characters 

Occasionally a translation of character 
codes from EBCDIC to BCD and back again is 
necessary to process certain 1400 system 
instructions, such as bit test, move zone, 
or move numeric. Conversion is accom­
plished by a table lookup procedure that 
uses tables stored in auxiliary storage. 
These tables are read into storage as part 
of the initializing routine. To illustrate 
the use of the t"able in auxiliary storage, 
we will convert a character from EBCDIC to 
BCD. The character "C" in EBCDIC is C3 
(1100 0011). By going to aux storage MPX 
location, C3, we find the BCD configuration 
33 or 00110011, which is the BCD configu­
ration for a "CR. 

BA 8421 

0011 0011 

In utilizing the conversion tables, if a 
word mark is present with the character, 
the microprogram eliminates it before the 
table lookup is executed. It might be 
helpful to examine the relationship between 

4-34 (9/1/66 ) 

! 

J 

K 

L 

M 

N 

0 

P 

Q 

R 

1010 1011 1100 1101 1110 1111 

=1= 0 ? ! =1= 0 

1 A J 1 

S 2 B K S 2 

T 3 C L T 3 

U 4 D M U 4 

V 5 E N V 5 

W 6 F 0 W 6 

X 7 G P X 7 

y 8 H Q y 8 

~ 9 I 
I 

R ~ 9 

A and B zone bits in BCD representation and 
EBCDIC bit structure. Bits 2 and 3 in 
EBCDIC represent the B and A bits in BCD 
configuration. The relationship is a nega­
tive one, however, in that 2 = B, and 3 = 
A. The four possible patterns of A and B 
zone bits are BA, BA, ~, and BA; in 
EBCDIC, these respective values in bits 2 
and 3 are as follows: 11, 10, 01, and 00. 
(Figure 4-26). 

Zone Bits 2 and 3 

Zone Configuration BA BA BA BA 

BCD 00 01 10 11 

EBCDIC 11 10 01 00 

Figure 4-26. Zone Bits; BCD vs. EBCDIC 

If an invalid EBCDIC character addresses 
the EBCDIC to BCD conve"rsion table, a hexa­
decimal 40 is read out and detected as an 
error by the microprogram. 



Features 

1400 SYSTEM ADDRESSING 

• The 1400 compatibility mode main storage area is nornally 
located contiguously in the upper part of 2030 main storage. 

• 2030 Moqel F30 loads the last 256 bytes (65,2S0 - 65,535) 
with the character SF. 

• Address bytes in local storage contain a bias constant. 

• Tens and hundreds address bytes have upper and lower 4 bits 
of the byte crossed in local storage. 

For 1400 compatibility mode operation# all 
programs are normally loaded into upper 
storage in the 2030 Processing Unit. If a 
1401 program written for 4K of storage is 
to be run on a 2030 with 16,384 positions 
of storage, the program (and work areas, 
etc.) is stored in IBM 2030 storage loca­
tions 12,384 to 16,383. This allows the 
2030 to detect 1401 storage wrap errors 
through existing circuits. It also allows 
a 2030 supervisory program to remain in 
lower storage, and facilitates programmed 
mode switching. 

When a 2030 Model F30 (65,536 positions. 
of storage) is being used in 1400 compat­
ibility mode, the last 256 bytes of main 
storage are loaded with the character SF. 
This facilitates wrap-around detection. 
Thus if a program written for a 4K 1400 is 
run on a 2030 with 65,536 positions of 
storage, the compatibility storage occupies 
IBM 2030 locations 61,280-65,279. The last 
256 bytes (65,280 - 65,535) are loaded with 
the character 8F. For wrap-around detec­
tion, SF in the one position would be suf­
ficient. The additional 255 bytes are 
loaded with 8F to take care of any inadver­
tent addreSSing of this area. 

The 2030 uses a conversion table in 
auxiliary storage to convert 1401 BCD 
addresses to 2030 binary addresses. This 
table also includes a storage bias constant 
(or offset) factor to cause IBM 1401 
addresses to address upper 2030 storage. 
The storage bias constant is a number equal 
to the 2030 storage size minus the 1400 
system storage size (minus 256, if there 
are 65,536 positions of storage). Refer to 
Figure 4-27. 

For example, in running a 1401 program 
written for 4K of storage on a 2030 with 
16,3S4 positions of storage, the storage 
bias constant would be: 

16,384 (2030 storage size) 
-4,000 (1401 storage size) 
12,384 or 3060 in hexadecimal. 

For running a 1401 program, written for 4K 
of storage on a 2030 with 65,536 positions 

of storage, the storage bias constant would 
be: 

65,536 
-4,000 

-256 
61,280 or EF60 in hexadecimal 

The storage bias (or offset) represents 
the 16 bit (4 hexadecimal characters) 2030 
address that is equivalent to the normal 
location of position 0 of the 1400 core 
storage area. This address is referenced 
in the local storage map by Y and Z. 

~ Z 

1400 8,192 16,384 32,768 65,536 Y 

16K 01 41 CO 80 

12K 11 51 DO 20 

8K 00 20 60 DF CO 

4K 10 30 70 EF 60 

2K 18 38 78 F7 30 

1.4K 1A 3A 7A F9 88 

Byte 9A 
1400 Aux 1F 3F 7F FE 
Storage LS 

Figure 4-27. Storage Size Byte and Storage 
Offset Constants 

Y = the low-order eight bits (2 hexadecimal 
characters) 

z = the high-order eight bits (2 hexadeci­
mal characters) 

In the tWQ examples 3060 and EF60, Y 
refers to 60 in both cases. Z refers to 30 
and EF respectively. These values can be 
read directly from Figure 4-27 for all 
normal combinations of 1400/360 compat­
ibility. 

2030 FETOM (9/1/66) 4-35 



Features 

The user may alter the location of the 
1400 core-storage area, or the EBCDIC-to­
BCD conversion table may be changed to 
cause printing of characters other than 
those normally specified by the CID. In 
the former case (relocation), the memory 
bias (offset) must be such that the ending 
1400 core-storage position is a multiple of 
256 bytes from the logical end of 2030 core 
storage. This restriction assures the 
correct operation of the 140D-mode clear 
storage and scan operations. If the ending 
address of 1400-mode core storage is 
changed to some multiple of 256 bytes from 
the ending 2030 core storage position (or 
more than 256 bytes in the case of 65K 
systems), some address-validity checking is 
lost. In addition, byte 9A of 1400 local 
storage A must be changed to reflect this 
lower memory bias. Byte 9 A is the high-

ADDRESS CONVERSION 

• 1400 addresses are stored in EBCDIC form 

order 8 bits of a 16-bit address that 
specifies the last 1400 address in 2030 
core storage. For example, this 16-bit 
address is normally 7FFF (32,767) for a 
32,768-byte 2030. 

You will note in the Auxiliary Storage 
Map (Figure 4-28) that some factors in the 
tens and hundreds-low rows have the charac­
ter X after the value in parenthesis. This 
indicates that the quantity in parenthesis 
is crossed in local storage. This crossing 
facilitates the invalid address checking 
performed by the microprogram. For working 
out sample conversions from this chart, 
ignore the crossing and read the direct 
value of the factor in parenthesis. We 
will discuss the significance of crossing 
in the Address Error Detection section. 

• Address Conversion is accomplished by microprogramming util­
izing tables in auxiliary storage. 

• A 2 byte binary address is developed from 3 characters in 
EBCDIC code. 

• Units and hundreds zone bits determine thousands; (tens zone 
bits provide indexing) 

For an example of address conversion, 
assume a 2030 with 16,384 positions of 
storage is emulating a 1401 program written 
for a 12K 1401. From Figure 5-27 we deter­
mine that the normal bias is 1120 (Y = 20, 
Z = 11). We will discuss A-star address 
development during I-Phase for the instruc­
tion j?Y14E. 

Our objective in compatibility address 
conversion is to convert the 1400 3 EBCDIC 
character address that is in storage to a 
two byte binary address that includes the 
memory bias offset factor. Microprogram­
ming and conversion tables facilitate the 
conversion. 

When converting a decimal address to a 
binary value, the hundreds digit may affect 
the value of both the high-order byte and 
the low order byte of the binary address 

4-36 (9/1/66) 

(e.g., 200 = C8 but 300 = 12C). For this 
reason, in converting the hundreds digit we 
address auxiliary storage twice -- once for 
hundreds low and once for hundreds high. 

To convert the 1400 address to a binary 
address the microprogram uses digits in the 
1400 address to read out tables in auxil­
iary storage (Figure 4-28). The digits 
(bits 4-7) in the 1400 address become bits 
4-7 of an address generated to read out 
auxiliary storage tables. Bits 0-3 of the 
st~age table address are forced by the 
microprogram as follows: 

Bits 0-3 
0010 
0010 
0001 
0000 

Position 
Hundreds low 
Hundreds high 
Tens 
Units 



Features 

Units OX 

Tens 1X 

HUnd)2X 
low 

Bin-Dec. 3X 

r BCD 5X 
V'l 
-' to 

~ EBCDIC 6X 

~ 7X 

>-
0 8X -'x 
~ 9X 
0 

~ AX 

BX 

r Op DX 
Code 
Table EX 

FX 

OX 

1X 

Hundred} 
High 2X 

3X 

f EBCDIC 5X 
X to 
~ BCD 6X 

~ 
7X 

~ 
>- 8X 
0 

'x 9X 
~ 
8 AX 
;! 

BX 

r EBCDIC DX 
to 

BCD EX 

FX 

0 1 2 3 4 5 6 7 

00 01 02 03 04 05 06 07 

00 (OA)X (14)X (1E)X (28)X (32)X (3C)X (46)X 

(Y)X (Y+64)X (Y+CS)x (Y+2C)X (Y+90)X (Y+F4)X (Y+5S)X (Y+8C)x 

00 61 23 84 46 08 69 31 

40 F1 F2 F3 F4 F5 F6 F7 

7A 61 E2 E3 E4 E5 E6 E7 

60 D1 D2 D3 D4 D5 D6 D7 

50 C1 C2 C3 C4 C5 C6 C7 

Tope 

Cord Cord Tape Tape 9 TRK 
TAPE 

load I load J load I load J FLAGS 

? A B C D E F 
1C 18 OB 1F 12 16 2A 34 

! K l M N 
34 

P 
ID 34 29 90 80 06 1E 

/ S U V W 
34 05 19 34 20 3A 3B 34 

1 2 3 4 5 6 7 
34 21 22 23 24 25 26 27 

00 05 01 06 02 07 03 Of' 

Z+C Z+OO+C Z+OO+C Z+OI +C Z+01+C Z+01+C Z+02+C Z+02+C 

00 40 40 4B 4C 40 40 40 

30 40 40 5B 5C 40 40 40 

20 11 40 6B 6C 40 40 40 

40 40 
4E(A) 

7B 7C 40 40 40 50(H) 
File File File File 
Sense 0 Sense 1 Sense 2 Sense 3 
F1LE U~IT FILE uNIT F1LE UNIT 

~~gR3 
UNIT 

UNITO C~L UNIT I I UNIT 2 2 3 
ADDR ADDR cn ADDR cn cn 
Cyl No Cyl No Cyl Nc Cyl No Cyl No Cyl No Cyl No Cyl No 

00 32 OA 3C 14 46 1E 50 

File 

3A 31 32 33 34 35 36 37 

2A 21 22 23 24 25 26 27 

1A 40 12 13 14 15 16 17 

OA 11 02 03 04 05 06 07 

Note: X = the quantity in parentheses IS crossed on local storage 
Z = memory bias high 
Y = memory bias low 

8 9 A B C D 

08 09 FO F3 F4 F5 

(50)X (5A)X 10 10 10 10 

(Y+20)X I (Y+S4)X 10 10 10 10 

82 44 06 67 29 90 

F8 F9 FO 7B 7C 7D 

E8 E9 EO 6B 6C 6D 

D8 D9 DO 5B 5C 5D 

C8 C9 CO 4B 4C 4D 

Refer to lS 

Control Byte 

Utilization Table 

H J:I 
B 1 34 34 02 15 34 

Q 
34 34 34 34 34 F1 

Y Z 
34 64 

% 
34 13 17 1B 

8 9 # @ 
06 06 34 14 1A 34 

04 09 

Z+03+C Z+03+C 

40 40 40 3B 3C 3D 

50(A) 
40 40 2B 2C 2D 4E(H) 

60 61 40 1B 1C 10 

40 40 10 08 DC OD 

Refer to MPX 

Control Byte 

Utilization To b I e 

38 39 40 50!Al 4E H 
40 48 

28 29 40 60 40 40 

18 19 40 4EfA l 50 H 40 49 

08 09 40 FO 40 40 

Figure 4- 28. Auxiliary storage Map for 1400 Compatibility 

E F 

F6 F7 

10 10 

10 10 

52 14 

7E 7F 

6E 6F 

5E 5F 

4E 4F 

34 34 

34 34 

34 34 

34 34 

3E 3F 

2E 2F 

1E 1F 

DE OF 

45 5C 

46 50 

4F 56 

44 5F 

lS Control Byte Utilization 

88 I Back - Up 
89 J Back - Up 
8A U Back - Up 
8B V Back - Up 
8C l Back - Up 
8D T Back - Up 
8E G Back - Up 
8F S Back - Up 
98 Sense Switch Byte 
99 Hi-lo-Eq Byte 
9A Memory Size Byte 
9B File Branch Byte 
9C 1401 Control 
9D PMS Control 
9E D Back - Up 
9F Allow I/O Traps 
A8 Working Storage 
A9 Working Storage 
AA Working Storage 
AB Working Storage 
AC Constant IF 

~~}, # 

AF Sterling Feature 

B8 
B9 last Tape Unit Addressed 
BA Constant OF 

:~ I} Working Storage 

BE Constant 2E 
BF Working Storage 

rror e 

89 } :~ Used by 1402-03, 
8C 1442-43 

8D 
8E Overlap STAR High 
8F Overlap STAR low 
98 File Unit 4 Addr 
99 Unit 4 Cylinder 
9A I/O Error 
9B Tape Track in Error 
9C 
9D A Hundreds Back - Up 
9E B Hundreds Back - Up 
9F 1050 Status 
A8 Cylinder Const 28 
A9 Cylinder Const 5A 
AA Previous File Op 
AB 
AC 

~~ } Disk Values 
AF 
B8 
B9 File/Tape Op 
BA Working Storage 
BB Present Command Byte 
BC Working Storage 
BD File Unit Address 
BE last File Command FCU 
BF Scan Condition 

2030 FETOM (9/1/66) 4-37 



Features 

Thus to convert the hundreds position 
(example: Y:= 1110 1000) of a 1400 address 
to a binary value. we would address auxil­
iary storage"with 0010 1000. Observe that 
bits 0-3 were forced to 0010 and the digit 
8 of the hundreds Y was inserted into bits 
4-7. 

In converting the three character 1400 
address to a two byte binary address, the 
microprogram accumulates the binary values 
of the three characters in the 1400 address 
plus the factor for memory bias. consider 
our sample address Y14. This represents an 
actual address of 1814 in the original 1401 
program (y := CA8; "Aft zone in hundreds 
equals 1 thousand). 

Let's first examine this address deci­
mally, and convert it using decimal values 
to illustrate how our result is obtained. 
The desired address actually consists of 
the 1400 address 1814 plus the memory bias 
of 4384 for a total of 6198. The result of 
6198 converted to hexadecimal is 1836 
(binary 00011000 00110110). There are 
considerably more steps involved in the 
actual conversion, however. The I-Cycle 
Address Setup Flowchart in the Maintenance 
Diagram Manual, Form Y24-3466, illustrates 
the actual microprogram manipulation during 
the address conversion. 

Let us follow this same example through 
conversion showing logically what happens 
without regard to exact sequence of micro­
programming steps and hardware register 
involved. We'll Use the term "accumulator" 
to refer to the place of address develop­
ment. 

1. Read out hundreds character 
Y = CA8 = 11101000. Zone bits 
10 = A := 1 thousand = 3E8 entered in 
the accumulator. 

2. Digit portion (bits 4-7) of hundreds 
character (1000) becomes bits 4-7 of 
the address for addressing local stor­
age. The microprogram emits a 2 (0010) 
in bits 0-3. The resultant address (28 
in hex) is used to address local stor­
age. 

3. As previously discussed, we must 
address auxiliary storage twice to 
convert the hundreds digit to binary. 
Hundreds low is addressed in Auxiliary 
storage LS, location 28 (Figure 5-28). 
From this location, we read out the 
factor Y+20. The X indicates that the 
amount is crossed. This is for error 
detection and will be discussed later. 
In our example, Y = 20. therefore the 
actual (uncrossed) value in local stor-

4-38 (9/1/66) 

age byte 28 is 40. (There was no carry 
in the Y+20 addition). This is added 
to the low byte in the accumulator -­
At this point logically, accumulator 
value is 3E8 (thousands) + 40 (hundreds 
low + bias) := 428. 

4. The high bias conversion factor is 
taken from aux stor MPX byte 28. Note 
that this factor is Z + 03 + c. For 
the example, Z = 11, and there was no 
carry in low hundreds conversion there­
fore, the factor 14 is read from the 
table and added to the accumulator high 
byte 0428 + 1400 = 1828. We have now 
accumulated thousands and hundreds and 
have tens and units yet to add. 

5. The tens byte is read out. The tens 
character 1 = 11110001. There are no 
zones. If tens byte were zoned, index­
ing would be required. Refer to 
Address Indexing in the Maintenance 
Diagram Manual. The table address for 
tens convers~on is 0001 0001 because the 
digit portion of the tens character 
becomes bits 4-7 and the microprogram 
emits 1 in bits 0-3. Aux Stor LS, byte 
11 contains the factor OA. (Ignore for 
now the fact that the value is crossed). 
OA is added to the accumulator. 
1828 + OA = 1832. 

6. The units byte is read out. The units 
character 4 := 11110100. (There are no 
zones; if zones were present, we would 
add the appropriate number of thousands 
4. 8. or 12 to the accumulator.) The 
table address for units conversion is 
00000100 = 04. Aux storage LS byte 04 
contains the factor 04. 04 is added to 
the accumulator. The accurnu lator nCM 
contains 1832 + 04 = 1836 -- the 
desired hexadecimal equivalent address 
in the 2030 for the address Y14 for the 
conditions in the example. If the 
instruction had a B-address, the B-star 
would be developed in the same manner. 
Figure 4-29 summarizes the example. 

Factor Action Accumulator Auxiliary Storage 

Thousands 1 000) ~ 3E8) 03E8 Direct Entry 

Hundreds Low Bias Y + 20 ~ 20 + 20 03E8 + 40 0428 LS 28 

Hundreds High Bias Z + 03 + C 1 1 + 03 0428 + 1400 1828 MPX 28 

Tens Bias 1828 + OA 1832 LS 10 

Units Bias 1832+04 1836 LS 04 

Figure 4-29. Address Conversion Summary 



Features 

ADDRESS ERROH DETECTION 

• Invalid 1400 characters (SF) are placed in the upper 256 
bytes of the 65,536 position 2030 to aid in detecting high 
storage wrap errors. 

• SF is placed in 1400 address 000 minus one for low storage 
wrap error detection. 

• 2030 circuits detect storage wrap errors. 

• CrOSSing the tens and hundreds values in the compatibility 
conversion table facilitates error detection by utilizing 
the status of the R3 bit. 

In all non-65K systems, the upper position 
of 1400 system compatibility storage is 
normally coincident with the upper position 
of 2030 storage. This enables high storage 
wrap error detection by the same circuitry 
as in 2030 mode operation. 

In 65K systems, high memory wrap must be 
detected in a different way because all 
possible bit configurations in the M­
register are legitimate. As an aid in 
detecting memory wrap in 1400 compatibility 
mode, the invalid character 8F is placed in 
the upper 256 bytes of memory. In effect, 
an invalid character is used to detect a 
memory wrap condition. 

To detect an error when the equivalent 
1400 address 000 is modified by minus one 
(low storage wrap error) an invalid 
character (SF) is placed in 2030 memory one 
core location below the address assigned to 
1400 compatibility storage location 000. 
If this location is addressed, the invalid 
character causes a 1400 mode process check. 

The invalid character SF is placed in 
storage as required, by the compatibility 
Initialization Instruction. 

During the conversion of 1400 system 
addresses to 2030 addresses, an error 

OF CODE CONVERSION AND RECOGNITION 

detection procedure detects invalid charac­
ters. This procedure is based on the sta­
tus of the R3 bit. R3 ON indicates an 
invalid address character. 

During address conversion, the hundreds 
and tens digits that are used to address 
the conversion table assume tens, and units 
digits respectively are zero. Thus, a 
binary value ending in zero is extracted 
and set into the R-register. For example 
the tens 2 equivalent located at 12 in 
Aux-storage A is binary 14 (decimal 
20 = hex 14). However, if 14 were set into 
the R-register, the bit status would be 
00010100 and R3 being on would indicate an 
invalid character. For this reason, the 
value 14 is crossed by a microprogram step 
and set into the R-register as 41 
(01000001). Because the converted values 
are round numbers, the normal low-order 
digit never turns on the low R-register one 
bit (R-7). Therefore when crossed, it 
never turns on the high R-register one bit 
(R-3). 

The units values are not crossed in 
local storage. 1\ microprogramming test 
determines validity. 

• 1400 system Op codes are converted to bit significant char­
acters to facilitate recognition by the microprogram. 

• An op code conversion table is stored in local storage. 

• 1400 system op cooe character bits a & 1 are fo.rced on 
before using the character to address the conversion table. 

• The converted op code is stored in the G-register during 
I-cycles. 

2030 FETOM (9/1/66) 4-39 



Features 

The EBCDIC bit configurations of 1400 sys­
tem op codes do not readily indicate to 
2030 microprogramming what type of op code 
is being handled. A conversion table 
stored in local storage groups similar op 
codes together and converts the bits to a 
configuration that is bit sensitive for 
easy identification by the microprogram. 

When the microprogram reads a 1400 sys­
tem op code from storage in EBCDIC form, it 
forces on the 0 and 1 bits of the op code. 
Refer to Figure 5-25, and observe that if 
the 0 and 1 bits of all 1400 system charac­
ters are forced on, there are still enough 
unique bit combinations for all characters 
except Blank, -, and i. These three are 
not valid 1400 system op codes and they are 
detected as such by a special microprogram 
text. 

The modified op code, formed when the 0 
and 1 bits are forced on, is used to 
address local storage and bring out the 
converted op code that was stored by the 
initialization routine. The converted op 

CONSOLE OPERATIONS 

code bears no logical resemblance to the 
original. The new op code character has a 
bit configuration that is more readily 
tested to determine the type of operation 
desired (I/O CPU, Miscellaneous). 

Let us examine the use of the op code 
conversion table. Assume the op code read 
out of the 1400 system program is the Edit 
operation. The hexadecimal bit configu­
ration of E with a WM in EBCDIC is 85 
(10000101). A microprogram step forces on 
bits 0 and 1. This changes the configu­
ration to C5 (1100 0101). 

C5 is used to address the op code table 
in local storage (Fig. 4-28). From Aux 
Stor LS, position C5, 16 (00010110) is read 
out and stored in the G-register. 16 is 
bit sensitive to the microprogram as an 
Edit op code. 

Any invalid EBCDIC op code configuration 
that addresses the op code table brings out 
a byte containing 34. This is recognized 
by the microprogram as an error. 

• The 2030 console bears little resemblance to a 
1401/1440/1460 console. 

• Programmed and error stop codes facilitate troubleshooting. 

• General console operation, display, etc. is presented in 
SRL manuals. 

• switch F performs additional functions for compatibility 
mode operation. 

The IBM System/360 Model 30 console differs 
considerably from the 1400 system being 
emulated. Familiarity with the console is 
essential and can be advantageous for ana­
lyzing malfunctions that may occur While 
operating in 1400 mode. Refer to the SRL 
publication; IBM System/360 Model 30 
1401/1440/1460 Compatibility Feature, Form 
A24-3255, for a more complete presentation 
of ·console operations. 

4-40 (9/1/66 ) 

The console makes use of error indica­
tion codes to tell the operator the reason 
for a programmed or error stop. These 
indications are presented to assist the 
customer engineer in trouble analysis. In 
reality, there are many more aids to trou­
ble shooting 1400 programs that are emulat­
ed on the System/360 Model 30 than for the 
1400 program on a 1400 system. 



Features 

Console Error Indications and Restart Procedures 

• A coded display in the MSDR indicates the reason for all 
programmed and error stops. 

• Coded error indications and console displays aid in isolat­
ing machine or programming malfunctions. 

On all stops at ROS address 10FF, except 
for set-IC and sense switch operations, a 
coded digit is displayed in the main stor­
age data register (MSDR) to indicate the 
reason for t he stop. 

The 1400 decimal instruction address is 
displayed in the BA Register lights and the 
1400 decimal A-address is displayed in the 
MN register lights. The 1400 decimal B­
address can also be displayed manually in 
the UV registers by the normal 2030 
procedure as, for example, in the case of a 
programmed or error stop on the instruction 
A 500 600 at address 400. The coded byte 
in the R-register (MSDR lights) indicates 
the reason for the stop. 500 is displayed 
in the main storage address register. The 
I-address (400) is displayed in the B- and 
A-register, and the B-address (600) can be 
displayed in the UV registers. (Refer to 
Console Procedures in SRL, Form A24-3255.) 

The stop codes are presented in numer­
ical order as a reference aid. Most stops 
involve a situation such as program error 
or wrong operating procedure. In these 
cases. the corrective action is usually 
self explanatory. The notable exception to 
this are these errors involving the reader 
punch. For these stops (where possible) 
error recovery procedures are given. 

Stop Code 
in MSDR 

00 

01 

02 

03 

04 

05 

Reason for Stop/Recovery 
Procedures 

Norma I Stop. Appears when the 
stop is caused by pressing the 
Stop key, ending an instruction­
execute in instruction step 
mode, or by getting a match in 
SAR delayed-stop mode. 

Attempted to use invalid 1400 
B-address. 

Attempted to use invalid 1400 
A-address. 

Attempted to use invalid 1400 B 
and A address. 

Attempted to use invalid 1400 
operation code. 

Invalid I/O operation attempted; 
either unit selected or unit 
number is invalid. 

06 storage wrap occurred when 
address was used that was out­
side of system capacity. 

07 Storage protection occurred in 
1400 mode 

08 

09 

OA 

OB 

OC 

OE 

10 

11 

20 

21 

22 

30 

31 

3F 

Attempted to switch to 2030 mode 
without the PMS feature. 

Invalid source or destination 
address on one of the special 
PMS tape operations. 

Attempted to convert to binary 
an address that was less than 
the bias (offset) address on a 
clear storage or store STAR 
operation. 

Storage wrap-around 1400 address 
0000. 

Attempted to start a 1400 1-
cycle at main storage address 
0000. 

Attempted to index without 
advanced programming comment in 
CID. 

Read-back check-stop (Disk-File 
operat ion l. 

Some other device attempted to 
take a multiplexor-channel data 
cycle while in the data-transfer 
portion of a 1050 operation. 

No channel or device ends 
received (Disk File Operation). 

Word mark missing from 1400 
operation code during I-Op. 

Wrong address sent back from 
channel (Tape Operation, Selec­
tor or Multiplexor channel). 

Wrong address sent back from 
channel (Fi Ie Operation). 

Word mark in A-address of an I/O 
instruction. 

2540 or 2501 reader error. A 
read check or validity check has 
occurred, however the error 

2030 FETOM (9/1/66) 4-41 



Features 

3F 

4-42 

lights at the 2540 will have 
been reset before the stop. 

Restart procedure: 

1. The last card in stacker Rl 
is the error card. Remove 
it and correct any errors in 
this card. 

2. Open the joggler gate and 
remove the card from the 
hopper. 

3. With the joggler gate open, 
press the Reader-start key 
to clear the feed. 

4. Place the corrected card in 
front of the three cards 
that were run out. Place 
these four cards in the 
hopper (or ahead of the 
cards in the file feed 
magazine) • 

5. Close the joggler gate. 

6. Press the Reader-start key. 

7. Press the start key on the 
CPU console. 

2540 Punch error. PFR opera­
tions. The Punch-check light 
and/or the Validity-check light 
or n2 lights may be on. The 
following restart procedure 
should be followed. 

1. Remove the cards from the 
punch hopper. 

2. Press the Punch-start key to 
clear the feed. 

3. Remove the last three cards 
from stacker Pl. 

4. The first of these cards 
must be reconstructed to 
remove the punching for 
re-run and Checking. 

5. The second of these cards is 
the error card. This card 
may require correction. 

6. Place reconstructed card #1, 
corrected card #2 and card 
#3 in front of the deck. A 
readily identifiable blank 
card should be placed in 
front of the three cards. 

7. Reconstruct internal data in 
the system as necessary to 
restart the program at the 

(9/1/66) 

40 

41 

42 

4F 

instruction that caused card 
#1 to be read at the PFR 
station. 

8. Set the Process switch to 
the single cycle position. 
set address 10FF is switches 
F, G, H, and J. Press the 
System Reset, Roar Reset, 
and Start keys in that 
order. set the Process 
switch back to the process 
position. 

9. Press the Start key at the 
punch. 

10. Do ftset IC ft function to 
instruction referred to in 
item 7. 

11. Press Start key at CPU con­
sole to resume processing. 

12. Remove previously inserted 
readily identifiable card 
from the stacker. (This 
card may be punched or 
blank) • 

Disk-File Stop. Unit-Check 
status response to seek channel. 

An SF character was detected at 
an address other than the offset 
address while in 1400 mode. 

Tape stop. Selector or Multi­
plexor channel. Invalid channel 
status on data transfer. 

2540 Reader Intervention 
Required, Reader Feed Stop light 
on •• The reader-stop condition 
indicates that all cards beyond 
the pre-stacker station ha ve 
been correctly read. Any card 
at the pre-stacker station or 
behind it in the read feed must 
be re-entered. Use the follow­
ing restart procedure: 

1. Remove the cards from stack­
er R1. 

2. Open the hopper joggler gate 
and remove the cards from 
the hopper. 

3. Remove any jammed cards from 
the read feed. 

4. With the joggler gate open, 
press the Reader-start key 
to clear the feed. Any 
damaged cards must be recon­
structed. 



Features 

50 

51 

52 

55 

5F 

5. Remove the cards that ran 
into stacker Rl by the 
clearing operation. Place 
these and any reconstructed 
cards in the correct 
sequence, ahead of the cards 
removed from the hopper, and 
replace this deck in the 
hopper, or ahead of the 
cards in the file feed. 

6. Close the joggler gate. 

7. Press the Reader-start key. 

8. Press the start key on the 
CPU console. 

*Note: This condition could be 
caused by the reader running out 
of cards, or by the stacker 
being full, or by an error. 

Disk-File stop. Operational 
Interlock. 

An I/O operation was attempted 
on a device for which the com­
patibility subfeature is not 
installed. 

Tape Stop, selector or Multi­
plexor channel. Device-end 
signal before encountering a 
GMWM on a tape-write operation. 

A 1400 start-reset function was 
performed using the Console­
interrupt key. 

2540 Punch Intervention 
Required, Punch Error light on. 
This indicates a card jam or a 
misfeed in the card transport 
area of the punch, hopper empty, 
stacker fUll, etc. Correct as 
follows (as applicable): 

1. Remove the cards from stack­
er Pl. 

2. Remove the cards from the 
hopper. 

3. Remove any jammed cards from 
the punch feed; run out any 
undamaged cards. 

4. Discard the last card 
punched; the data for this 
card will be repunched on 
the resta rt. 

5. Replace the blank cards in 
the hopper and press the 
PUnch-start key. The card 
that was being punched when 

5F 

5F 

the error occurred will be 
repunched. 

6. Press the Start key on the 
CPU console. 

2540 Punch Intervention 
Required, PUnch-check light on. 
Use the following restart proce­
dure. 

1. Examine the last card in 
stacker Pl. This is the 
card that caused the stop. 
Correct as necessary. 

2. Place corrected card in the 
correct stacker. 

3. Press the start key at the 
CPU console to continue the 
program. 

2540 Punch Error, PUnch-feed­
stgp Error light and Punch­
check-error light on. This 
indicates a jam at the punch 
check station. Use the 
following recovery: 

1. Remove the cards from the 
hopper. 

2. Remove any jammed cards from 
the punch feed and run out 
any undamaged cards. Remake 
any damaged cards. The 
first two of the four cards 
that were run out have been 
punched but not checked. 
They can be checked manually 
and placed in the correct 
stacker. 

3. Replace the blank cards in 
the hopper and press the 
Punch-s tart key. 

4. Press the Start key on the 
CPU console. Alternate 
recovery procedure: 

1. Remove the cards from 
the hopper. 

2. Remove any jammed cards 
from the punch feed and 
run out any undamaged 
cards. The two punched 
cards that were in the 
feed transport at the 
time the jam occurred 

2030 FETOM (9/1/66) 4-43 



Features 

4-44 

have not been checked. 
Discard these two cards. 

3. Reconstruct internal 
data in the system, as 
necessary, to restart at 
the instruction that 
punched the card that 
was jammed in the punch 
check station. 

4. Replace the blank cards 
in the hopper and press 
the Punch-start key. 

5. Set the instruction 
counter to the instruc­
tion referred to in item 
3. 

6. Press the Start key on 
t he CPU consol e. 

2540 Punch Error (PFR operation) 
Punch-feed-stop light on only. 
This indicates a card jam or 
misfeed. The cards that have 
fed past the punch check station 
have been read and punched cor­
rectly. Correct the error con­
dition as follows: 

1. Remove the cards from stack­
er Pl. 

2. Remove the cards from the 
hopper. 

3. Remove any jammed cards from 
the feed and run out any 
undamaged cards. 

4. Remake any damaged cards, or 
cards that have been punched 
and not punch checked. 

5. Place the reconstructed 
cards and the unread cards 
from stacker Pl ahead of the 
cards removed from the hop­
per. Place a readily iden­
tifiable blank card in front 
of this deck and place the 
deck in the hopper. 

6. Reconstruct internal data in 
the system as necessary to 
restart the program at the 
instruction that caused the 
first reconstructed card to 
be read at the PFR station. 

7. Set the Process switch to 
the single cycle position. 
Set address 10FF in switches 
F, G, H, and J. Press the 
System-reset, Roar reset, 
and Start keys in that 

(9/1/66 ) 

5F 

sequence. Set the Process 
switch back to the process 
position. 

8. Press the Start key at the 
punch. 

9. Set instruction counter (IC) 
to the instruction referred 
to in item #6. 

10. Press the Start key at the 
CPU console to resume proc­
essing-

11. Remove previously inserted 
readily identifiable card 
from the stacker. 

Punch Error (PFR operation) 
Punch-check light on, PUnch­
feed~stop light mayor may not 
be on. The following recovery 
procedures should be followed: 

1. Remove the cards from the 
hopper. (If the Punch-feed­
stop light is on, clear the 
jam) • 

2. Press the Punch-start key to 
clear the feed. 

3. Remove the last four cards 
from stacker Pl. The last 
two cards are correct; pre­
punching in the first two 
cards must be reconstructed. 

4. Place a readily identifiable 
blank card in front of the 
two reconstructed cards, the 
two correct cards and the 
cards removed from the 
hopper (in that sequence). 
Place the deck in the hop­
per. 

5. Reconstruct internal data in 
the system as necessary to 
restart the program at the 
instruction that caused the 
first reconstructed card to 
be read at the PFR station. 

6. Set the process switch to 
the single cycle position. 
Set address 10FF in switches 
F, G, H, and J. Press the 
CPU System-rest, Roar-reset, 
and Start key in that order. 
Set the Process switch back 
to the process position. 

7. Press the Start key at the 
punch. 

8. Set instruction counter (Ie) 



Features 

61 

62 

6F 

71 

7F 

80 

81 

82 

8F 

90 

92 

AO 

to the instruction referred 
to in step 5. 

9. Press Start key at CPU con­
sole to resume processing. 

10. Remove previously inserted 
readily identifiable card 
from stacker. (card may be 
punched) • 

Sterling feature process check -
Marker misalignment. 

Tape stop. Selector channel -
Status-in and service-in on a 
tape write. 

Printer stop. Intervention 
required. Correct the condi­
tion, then try the instruction 
that caused the stop by pressing 
the 2030 Start key. 

Sterling Feature process check -
Invalid character. 

Reader Punch stop - (1402/1403 
subfeature). Stacker select 
instruction given after maximum 
time-out. (6ms after a card 
read). Correct the condition, 
then restart. 

Reader Punch stop - (1442/1443 
subfeature) Wrong address sent 
back from the channel. 
1402/1403 sub feature: No 
address-compare, or punch­
transfer error. 

sterling Feature. Marked in add 
or subtract pence or shilling 
position. 

Tape stop - Selector channel. 
Status-in and service-in on a 
read-move operation. 

Tape stop - Selector or 
Multiplexor channel. Tape unit 
intervention required. 

Reader Punch stop - 1402/1403 
subfeature; Operational-in dis­
connect on 2540 or 2501 reader. 
144211443 subfeature; Invalid 
d-modifier. 

Tape stop - selector or Multi­
plexor channel. rape error on a 
1400 initial program load. 

Reader Punch stop - 1402/1403 

A2 

BO 

B2 

C2 

CF 

D2 

DF 

E2 

*FO 

*F1 

*F2 

*F3 

subfeature; Operational-in dis­
connect on 1403 printer 
1442/1443 subfeature; No GMWM in 
storage. 

Tape stop - selector channel. 
Invalid channel status was 
received on a branch-if-error 
operation 

Reader punch stop - 1402/1403 
subfeature; Operational-in dis­
connect on 2540 or 2520 punch. 
1442/1443 subfeature; 1442 error 
on read or punch operation. 

Tape Stop - selector channel. 
Status-in and service-in on a 
1400 read-load operation. 

Tape stop - Multiplexor channel. 
Operational-in disconnect on a 
read operation. 

1050 stop - 1050 intervention 
required. Correct the condition 
and retry the instruction that 
caused the stop. 

Tape stop - Mul tiplexor channel. 
Premature end to a sense opera­
tion. 

1050 stop - Alter or display 
stop. Restart by pressing the 
2030 start key. 

Tape stop - Multiplexor channel. 
Operational-in 
disconnect-on-mode-set 
operation. 

A 1400 halt instruction, with no 
invalid addresses. 

A 1400 halt instruction with 
invalid B-address. 

A 1400 halt instruction with 
invalid A-address. 

A 1400 halt instruction with 
invalid B and A address. 

FF A 1400 halt and branch instruc­
tion has been executed. 

*Note. Thes e stops in dica te execution of 
all 1401 Halt instructions (.) except the 
four character Halt and Branch (-AM). The 
status of the existing address in the STAR 
is provided, but does not indicate an error 
stop. (Ex: M~U1BBBW. would callse an F2 
Halt.) - -

2030 FETOM (9/1/66) 4-45 



Features 

AUXILIARY STORAGE 

The auxiliary storage of the 2030 normally 
provides residence for general-purpose 
registers, floating-point registers condi­
tion registers, and multiplexor channel 
Unit Control Words (UCW's). For operation 
in 1400 compatibility mode, auxiliary stor­
age must be loaded with certain fixed 
information required by ROS to compensate 
for the difference in op code structure, 
and storage addressing between the 1400 
system and systeml360. Variable informa­
tion such as tape densities, unit addresses 
storage size etc. must also be entered 
before the 2030 can execute 1400 instruc­
tions. Other areas of auxiliary storage 
are initialized (to either 0 or some 
required value). These areas provide sta­
tus indication and control information for 
ROS, also I-STAR, B-STAR, and A-STAR back­
up, etc. 

Because auxiliary storage performs such 
a vital role in 1400 compatibility mode 
operation, the function of each of the 512 
bytes is quite significant. Customer 
modifications, such as alteration of op 
code tables, non-standard special-character 
print arrangements, relocation of the 1400 
mode core storage area etc., demand an even 
greater involvement with details in auxil­
iary storage. 

Placement of the 1400 compatibility 
requirements (1400 auxiliary storage A and 
B) are as shown in Figure 4-30. 

In 16K and larger systems the 1400 mode 
auxiliary storage is assigned to the two 
highest numbered MPX Auxiliary Storage 
Areas. 1400 auxiliary storage LS is 
assigned to the highest MPX number (MPX-2 
or MPX-6), 1400 Auxiliary storage MPX is 
aSSigned to the next highest number (MPX-l 
or MPX-5.) In 8K systems, there are only 2 
areas: MPX and Local Storage. Assignment 
of 1400 auxiliary storage is reversed, the 
MPX unit is used for auxiliary storage LS, 
and Local Storage is used for auxiliary 
st~rage MPX. 

When the Programmed Mode switching fea­
ture is used, Local Storage, MPX-O (and 
MPX-l through -4 in 32K and 64K) can be 
used in 2030 mode. 

If the microprogram mnemonic M/LS is 
used in the storage Statement in 1400 com­
patibility mode with the Programmed Mode 
Switching feature installed, 2030 LS is 
addressed. If M/LS is used without PHS, 
the storage statement is interpreted 
according to the RR option. For example, 
if the operation is in RR format, 2030 is 

4-46 (9/1/66 ) 

addressed. If in any other format, Main 
Storage is addressed. 

We will examine the 512 bytes of auxil­
iary storage (Figure 4-31) row by row, and 
byte by byte or bit by bit when necessary 
to explain the fUnction. ~uxiliary storage 
consists of 256 bytes in 1400 aux stor LS 
and 256 bytes in 1400 aux stor MPX. The 
relationship of auxiliary storage to the 
CID card that initializes it is also shown. 
32 cards of the CID deck load auxiliary 
storage. 

Auxiliary storage LS 

Row OX (CID card 0300). Units Conversion 
Constants. This row provides the units 
conversion factors for converting 1400 
system addresses in BCD to 2030 addresses 
in EBCDIC. OA through OF contain invalid 
digit values that turn on the R3 bit when 
they are read out. (Refer to Addresses 
Error Detection). 

Row lX (CID card 0310). Tens conversion 
constants. This row provides tens conver­
sion for converting BCD to EBCDIC. The 
values are crossed in storage to facilitate 
error detection. lA through iF contain 
invalid digit values. 

'............ Local 
co .... , Storage 
~ Comp ...... 

<I: Mode MPX/'" 
UCW ' .... 

8K 

Figure 4-30. 

MPX - 0 

, 
', .... MPX - 1 

)( Camp '" 
~ Mode MPX/ ' .... 

UCW .... , 

<I: ........ "" MPX - 2 

~ Comp " 
Mode LS ', .... 

Local Storage 
M/LS 

16K 

MPX - 0 

MPX - 1 

MPX - 2 

MPX - 3 

MPX - 4 

, , MPX - 5 , 
.... .... Camp .... .... 

Mode MPX/', 
UCW " , , MPX - 6 

" , 
Comp , 

""' ............. , Mode LS 

Loco I S tora ge 
M/LS 

32 - 65K 

Placement of 1400 Compat­
ibility Mode Aux Storage 



Features 

Units OX 

Tens lX 

Hunds}2X 
Low 

Bin-Dec 3X 

r BCD 5X 
VI 
...J to 
~ EBCDIC 6X 
a 

~ 7X 

>-

~ 8X 
'x 
J. 9X 
0 
0 
;:! AX 

BX 

r Op OX 
Code 
Table EX 

FX 

OX 

lX 

HUndred} 
High 2X 

3X 

r EBCDIC 5X 
X to 
~ BCD 6X 
8, 

j 7X 

>- 8X 
a 

'x 9X J. 
8 AX 
;:! 

BX 

r EBCDIC OX 
to 

BCD EX 

FX 

0 1 2 3 4 5 6 7 

00 01 02 03 04 05 06 07 

00 (OA)X (14)X (lE)X (28)X (32)X (3C)X (46)X 

(y)X (Y+6~)X (Y+C8)X (Y+2C)X (Y+90)X (Y+F~)X (Y+58)X (Y+8C)x 

00 61 23 84 46 08 69 31 

40 Fl F2 F3 F4 F5 F6 F7 

7A 61 E2 E3 E4 E5 E6 E7 

60 01 02 03 04 05 06 07 

50 Cl C2 C3 C4 C5 C6 C7 

Tape 

Tape Tape 9 TRK Cord Card TAPE 
Load I Load J Load I Load J flAGS 

? A B C D E F 
lC 18 OB IF 12 16 2A 34 

! K L M N 
34 

P 
10 34 29 90 80 06 lE 

/ S U V W 
34 05 19 34 20 3A 3B 34 

1 2 3 4 5 6 7 
34 21 22 23 24 25 26 27 

00 05 01 06 02 07 03 08 

File 
Note 1 Mod 00 02 04 06 08 

Z+C Z+OO+C Z+OO+C Z+Ol +C Z+01+C Z+Ol+C Z+02+C Z+02+C 

00 40 40 4B 4C 40 40 40 

30 40 40 5B 5C 40 40 40 

20 11 40 6B 6C 40 40 40 

4E(A) 
40 40 50(H) 7B 7C 40 40 40 

File File File File 
Sense 0 Sense 1 Sense 2 Sense 3 
FILE 

~r 
FILE U~IT FILE UNIT 

~~gR3 
UNIT 

UNITO UNIT 1 UNIT 2 2 3 
ADDR ADDR CYL ADDR CYL CYL 
Cyl No Cyl No Cyl Nc Cyl No Cyl No Cyl No Cyl No Cyl No 

00 32 OA 3C 14 46 lE 50 

File 

3A 31 32 33 34 35 36 37 

2A 21 22 23 24 25 26 27 

lA 40 12 13 14 15 16 17 

OA 11 02 03 04 05 06 07 

Note: X = the quantity in parentheses is crossed in local storage 
Z = memory bias high 
Y = memory bias low 

8 

08 

(50)X 

(Y+20)X 

82 

F8 

E8 

08 

C8 

H 
Bl 
Q 
Fl 

Y 
13 
8 
06 

04 

Z+03+C 

40 

50(A) 
4E(H) 

60 

40 

38 

28 

18 

08 

9 A B C 0 

09 FO F3 F4 F5 

(5A)X 10 10 10 10 

(Y+8~)x 10 10 10 10 

44 06 67 29 90 

F9 FO 7B 7C 70 

E9 EO 6B 6C 60 

09 DO 5B 5C 50 

C9 CO 4B 4C 40 

Refer to LS 

Control Byte 

Utilization Table 

. ):( 

34 34 02 15 34 

34 34 34 34 34 

Z 
34 64 

% 
34 17 lB 

9 N @ 
06 34 14 lA 34 

09 

Z+03+C 

40 40 3B 3C 3D 

40 40 2B 2C 20 

61 40 lB lC 10 

40 10 08 OC OD 

Refer to MPX 

Control Byte 

Utilization Tab I e 

39 40 5°tl 4E H 
40 48 

29 40 60 40 40 

19 40 4E~Al 50 H 40 49 

09 40 FO 40 40 

Note 1: Bit 0 - Compare Disable 
Bit 1 - Mod Protect 

Figure 4-31. Auxiliary storage Map for 1400 Compatibility 

E F 

F6 F7 

10 10 

10 10 

52 14 

7E 7F 

6E 6F 

5E 5F 

4E 4F 

34 34 

34 34 

34 34 

34 34 

3E 3F 

2E 2F 

lE IF 

OE OF 

45 5C 

46 50 

4F 56 

44 5F 

LS Control Byte Utilization 

88 I Back - Up 
89 J Back - Up 
SA U Back - Up 
8B V Bock - Up 
8C L Bock - Up 
80 T Back - LIp 
8E G Bock - Up 
8F S Bock - Up 
98 Sense Switch Byte 
99 Hi-Lo-Eq Byte 
9A Memory Size Byte 
9B File Branch Byte 
9C 1401 Control 
90 PMS Control 
9E 0 Back - Up 
9F Allow I/O Trops 
A8 Working Storage 
A9 Working Storage 
AA Working Storabe 
AB Working Storage 
AC Constant IF 

AD} AE 
AF Sterling Feature 

B8 
B9 Last Tape Unit Addressed 
BA Constant OF 
BB P.E.TapeCtri 

BC } BD Working Storage 

BE Constant 2E 
BF Working Storage 

rror e 

89 } ~~ Used by 1402-03, 
8C 1442-43 

80 
8E Overlap STAR High 
8F Overlap STAR Low 
98 File Unit 4 Addr 
99 Unit 4 Cylinder 
9A I/O Error 
9B Tape Track in Error 
9C E of Tape Ctrl 
90 A Hundreds Back - Up 
9E B Hundreds Back - Up 
9F 1050 Status 
A8 Cylinder Const 28 
A9 Cylinder Const 5A 
AA Previous File Op 
AB 
AC 

~~ } Disk Values 
AF 
B8 
B9 File/Tape Op 
BA Working Storage 
BB Present Command Byte 
BC Working Storage 
BD File Unit Address 
BE Last File Command FCU 
BF Scan Condition 

2030 FETOM (9/1/66) 4-47 



Features 

Row 2X (CID card 0320). Hundreds low con­
version. The values in positions 20-29 are 
constant for a particular operation and are 
determined by the size of the 1400 being 
emulated. This is because the Y-bias value 
is a factor (Figure 4-31). This value 
forms part of the low order byte when 1400 
addresses are converted to 2030 addresses. 
The value is crossed in storage. The 
crossed value for card 0320 bytes 20-29 for 
all 1400 core sizes is available from Fig­
ure 4-32. Positions 2A-2F contain invalid 
digit values for address error detection. 

1400 Auxiliary Storage LS Locations 
(ore 
Size 2 0 2 1 2 2 2 3 2 4 2 5 2 6 2 7 2 8 2 9 

16K o 8 4 E 8 4 (A o 1 4 7 8 0 ( 3 OA 4 0 
12K o 2 4 8 8 E ( 4 o B 4 1 8 7 ( 0 o 4 4A 
8K o ( 4 2 8 8 ( E o 5 4 B 8 1 ( 7 o E 4 4 

4K o 6 4 ( 8 2 ( 8 o F 4 5 8 B ( 1 o 8 4 E 
2K o 3 4 9 8 F ( 5 o ( 4 2 8 8 ( E o 5 4 B 

1.4K 8 8 ( E o 5 4 B 8 1 ( 7 o E 4 4 8 A ( 0 

-0 "..... co 0-.::: ~ ~ ::! -or--.. ~~ ~ ~ ("') .q- -0 ~, coo-. 
~ ~ ~ ~ ~ ~ ~C'l 

(10 (ard 0320 (olumn Locations 

Figure 4-32. Hundreds Low Conversion; 
Auxiliary storage LS Row 2X 
Values 

Row 3X (CID Card 0330). Binary to Decimal 
Conversion Table. This row contains con­
stants for converting binary to decimal 
equivalent. This table is used, for exam­
ple, for Clear, store A-star and Store 
B-star and for console display. 

Rows 4X-7X (CID cards 0340-0370). BCD to 
EBCDIC conversion table. These four rows 
provide the constants for translating the 
64 possible BCD configurations to the 
appropriate EBCDIC bytes. 

Rows 8X and 9X, Bytes 0-7 (CID cards 0380, 
0390). Magnetic Tape and Card Load con­
trols. 

80 

81 

4-48 

o Initialized off. When on, do 
first tape-load instruction as a 
1400 initial tape load. 

1-3 Initialized off. Indicates last 
1400 tape unit addressed. 

4-7 Tape-Control unit address: 
8 to F on multiplexor channel 
o to F on selector channel 

0-1 Tape density for 1400 mode tape 
drive 1: 
00 = 200 bpi on 7-track drive 
01 = 556 bpi on 7-track drive 

(9/1/66) 

2 

3. 

10 = 800 bpi on 7-track drive 
11 = 800 bpi on 9-track 

Initialized off. If on; a back­
space was the last operation 
performed on 1400-mode tape 
drive 1. 

Initialized off. If on, an 
end-of-file condition is outs­
tanding on 1400-mode tape drive 
1. 

4-7 Systeml360 unit address assigned 
to be 1400-mode tape drive 1. 

82-86 Same as byte 81, for 1400-mode 
tape drives 2 through 6. 

87 Initialized to 08. Last status 
byte received from tape-control 
unit. 

88-8F Refer to Miscellaneous Control 
Bytes. 

90-91 

92-93 

94-96 

97 0 

1 

2 

3 

4 

5 

6 

7 

The sixteen bit binary address 
of the first 1400-rnode instruc­
tion to be executed when the 
1400 mode initial card program 
load (1400 IPL) is used: ROAR 
reset to ROS-address 1402 or 
1442 procedure. 

The sixteen-bit binary address 
of the first 1400-mode instruc­
tion to be executed when the 
1400-mode tape IPL is 
used: ROAR reset to ROS-address 
1729 procedure. 

Not used. 

If on, System/360 tape drive 0 
is a 9-track unit. 

If on, Systeml360 tape drive 1 
is a 9-track unit. 

If on, tape drive 2 is a 9-track 
unit. 

If on, tape drive 3 is a 9-track 
unit. 

If on, tape drive 4 is a 9-track 
unit. 

If on, tape drive 5 is a 9-track 
unit. 

If on, tape drive 6 is a 9-track 
unit. 

If on, tape drive 7 is a 9-track 
unit. 



Features 

MISCELLANEOUS CONTROL BYTES 
Row Sx 8S-SD, Row 9x 9S-9F, Row Ax AS-AF 
and Row Bx BS-BF (CID Cards 03S0, 0390, 
03AO, and 03BO) are 32 control bytes. 

S8 

89 

SA 

SB 

SC 

8D 

S£ 

SF 

9S 

99 

9A 

o 

1 

2 

3 

4 

5 

I-register 
back-up 

J-register 
back-up 

U-register 
back-up 

V-register 
back-up 

L-register 
back-up 

T-register 
back-up 

I 

I-STAR in binary. 
Initialized to 
location of first 
1400-mode 
instruction. 

I B-STAR in binary. 
Initialized 
to 00 00. 

) A-STAR in binary. 
~ Initialized 
, to 00 00. 
I 

G-register back-up 

S-register back-up 

Sense Switch Byte 
to 00 

Initialized 

Sense switch A (last card) 

Sense switch B 

Sense switch C 

Sense switch D 

Sense switch £ 

Sense switch F 

6 Sense switch G 

7 Not used 

o 

1 

2 

3 

4 

5 

6 

7 

Hi-Lo-Eq Byte 
00 

Initialized to 

High-compare result (u) 

Unequal-compare result (/) 

Low-compare result (T) 

Equal-compare result (5) 

Not used 

OVerflow indicator (Z) 

Inquiry-request indicator (Q) 

Not used 

2030 storage size byte 

9B 

9C 

90 

1F 

3F 

7F 

FE 

S,192 

16,384 

32,768 

65,536 

Disk Status indicators (Branch 
Byte) Initialized to 00 

o Unequal-address compare (X) 

1 Access busy (') 

2 Wrong-length record (W) 

3 Any-disk condition (Y) 

4 Disk error (V) 

5 Not Ready (N) 

6 Read-back-check interlock 

7 No X followed by Seek 

o 

1 

2 

3 

4 

5 

Status of Features 

I/O check-stop switch 

Advanced programming feature 

Expanded print edit feature 

Mode-switch on invalid operation 
codes (Initialized to 0 unless 
using Programmed Mode Switch) 

Not used (Initialized to 1) 

Mode-switch on halt (Intialized 
to 0 unless using PMS) 

6 Tape units on selector channel 2 

7 

o 

1 

2 

3 

4 

5 

6 

7 

Mode-switch on error stops 
(Initialized to 0 unless using 
PM3) 

Mode-Switch Status 

Mode-switch on invalid I/O ops 

Mode-Switch on console ops 

Mode-Switch on printer ops 

Mode-switch on reader/punch ops 

Not used 

Mode-switch on tape ops 

Mode-switch on disk ops 

Not used 

2030 FETOM (6/67) 4-49 



Features 

9E 

9F 

o 

1 

2 

3 

4 

5 

A8 

! A9 

AA 

AB 

AC 

( 
~ 

AD 

AE 

AF 

B8 

B9 

SA 

BB 

BC 

BD 

BE 

BF 

D-register back-up (1400-series 
A-register) Initialized to 00 

Allow 1/0 Traps 

Not used 

Not used 

Not used 

Alternate 9-track-tape mode 

Initialized to Zero 

Allow 1/0 Traps (PMS is used) 

Working Storage. 

Initialized to 00. 

Working Storage 

constant (IF) 

Used for sterling feature. 

Initialized to 00. 

NPL address of the last tape 
unit addressed 

constant (OF) 

Working storage. 

Initialized to 00. 

Constant (2E) 

Working storage Initialized to 
00 

Row Ax 0-3 Alternate track (cylinder to 
head) location. Address trans­
fer when seeking alternate track 

4-1 (CID card 03AO) Working Storage 

Row Bx 0-1(CID card 03BO) Working Storage 

Rows Cx, Ox, Ex, and Fx (CID cards 03CO, 
0300, 03EO, and 03FO). 1400 operation code 
decode table. These four rows (64 bytes) 
provide the translation of 1400 operation 
cOdes to a bit significant form that is 
usable by the 2030. In the chart (Figure 
5-31) the 1400 series op code is shown in 
parenthesis. The hex values shown outside 
parenthesis are in storage. The code 34 is 

4-50 (911/66) 

used to indicate an invalid 1400 series op 
code. The code 06 is used to indica te a No 
Op. 

Notice that several 1400-series special 
features such as Branch if Bit Equal (W op 
code), Divide (lop code), etc., are stand­
ard with the 1400 compatibility feature. 
These 1400-series operations can be made 
invalid hv inserting the invalid code (34) 
in the corresponding table location if 
desired. This permits the system to detect 
1400-mode programming errors, such as a 
divide operation where none was intended. 

Auxiliary Storage MPX 

Rows Ox, lx, 8x, 9x, Ax, and ax (CID cards 
0400, 0410, 0480, 0490, 04AO, and 04BO). 
Disk File Functions. These six partial 
rows while not contiguously located, can be 
classified as disk file functions. 

Row Ox Bytes 00-09 (CID card 0400). File 
Units Digits Cylinder and Head decode for 
converting from 1401 to binary. Bytes 
OA-OF: Not used. 

10 

1=0 

10 

11---

Row lX (CID card 0410). 

0=0 Compare Disable is inactive. A 
successful address compare on a 
1400 mode indelible address must 
occur before an indelible 
address (I/A Read or Write can 
be executed (M/L%F6/~BBBR/W). 

0=1 

1 

Compare Disable is active. Read 
or write with IIA operations 
will be executed without first 
doing an address compare on a 
1400 mode indelible address. 
This bit should be set to 1 only 
when initializing a disk pack in 
1400 mode. 

Module Overflow Detection is 
active. The 1400 program module 
value, within each disk control 
field, is compared against a 
module value pre-set in auxil­
iary memory. If the module 
values don't match, a coded stop 
occurs with 60 displayed in the 
console R-register. Correct 
module values must be set in MPX 
memory locations. i.e., 11 for 
drive 0, 12 for drive 1, etc. 

Bit 1=1, Module Overflow Detec­
tion is Inactive. 

Module value for Drive O. Nor­
mal value 00 



Features 

12 

13 

14 

15 

16-1F 

Row 8X 

80 

81 

82 

83 

84-S7 

8S-SF 

Module value for Drive 1. Nor-
mal value 00 

Module value for Drive 2. Nor-
mal value 00 

Module value for Drive 3. Nor-
mal value 00 

Module value for Drive 4. Nor-
mal value 00 

If a 1400 program requires a 
module value other than O. the 
correct module value for the 
drive unit must be placed in 
auxiliary storage. 

Not used 

(CID Card 0480) 

File sense 0 

~ 
(Variable) Sense 
inf ormati on from 

File sense 1 the file control 
units. 

File sense 2 Initialized to 00 

File sense 3 

Not used Initialized to 00 

Refer to Miscellaneous Control 
Bytes 

Row 9X (CIn Card 0490) Disk Functions 

90 

91 

92 

93 

94 

System/360 control and unit 
address for 1400 mode disk 
module 0 

(Initialized 01) Cylinder number 
position of access mechanism for 
1400 mode disk module O. 

System/360 control and unit 
address for 1400 mode disk 
module 1. 

(Initialized 01) Cylinder number 
position of access mechanism for 
1400 mode disk module 1 

System/360 control and unit 
address for 1400 mode disk 
module 2 

95 

96 

97 

98 

99 

9A-9F 

(Initialized 01) Cylinder number 
position of access mechanism for 
1400 mode disk module 2 

System/360 Control and unit 
address for 1400 mode disk 
module 3 

(Initialized 01) Cylinder number 
position of access mechanism for 
1400 mode disk module 3 

System/360 control and unit 
address for 1400 mode disk 
module 4 

(Initialized 01) Cylinder number 
position of access mechanism for 
1400 mode disk module 4 

Refer to Miscellaneous Control 
bytes. 

Row Ax (CIO Card 04AO) Disk Functions 

Byte Constant 

AO 00 

A1 32 

A2 OA 

A3 3C 

A4 14 
File-cylinder tens digit decode 
constants, 1401 to binary. 

A5 46 

A6 lE 

A7 50 

AS 28 

A9 SA 

AA-AF Refer to Miscellaneous Control bytes 

Row BX (CID Card 04BO) BO-84: Head and 
Record values. Also key length and data 
length. 

Bytes B5-B7 Not used Bytes 
BS-BF: Refer to Miscellaneous Control 
bytes. 

2030 FETOM (9/1/661 4-51 



Features 

Row 2X (CrD Card 0420). Hundreds high 
conversion. The values in positions 20-29 
are constant for a particular operation. 
These values are determined by the 
1400/2030 core size relationship and 
include carries (if any) from the hundreds 
low table. The actual values for each 
possible combination are shown in Figure 
4-33. Positions 2A-2F are not used. An 
invalid hundreds digit would be detected 
during hundreds low conversion. 

Auxiliary Storage MPX Location 
Core Size 
1400/2030 2 0 2 1 2 2 2 3 2 4 2 5 2 6 2 7 2 8 2 9 

16K/16,384 o 1 o 1 o 2 o 2 o 3 o 3 o 3 04 04 o 5 
16K/32,768 4 1 4 1 4 2 4 2 4 3 4 3 4 3 44 4 4 4 5 
16K/65,536 CO C 0 Cl Cl C 2 C2 C 2 C 3 C 3 C 4 

12K/16,384 1 1 11 1 1 1 2 1 2 1 3 1 3 1 3 1 4 1 4 
12K/32,768 5 1 5 1 5 1 5 2 5 2 5 3 5 3 5 3 5 4 5 4 
12K/65,536 D 0 D 0 D 0 D 1 D 1 D 2 D 2 D 2 D 3 D 3 

8K/ 8,192 o 0 o 1 o 1 o 1 o 2 o 2 o 3 o 3 o 3 o 4 
8K/16,384 2 0 2 1 2 1 2 1 2 2 2 2 2 3 2 3 2 3 2 4 
8K/32,768 6 0 6 1 6 1 6 1 6 2 6 2 6 3 6 3 6 3 64 
8K/65,536 E F E 0 E 0 E 0 E 1 E 1 E 2 E 2 E 2 E 3 

4K/ 8,192 1 0 1 0 11 11 11 1 2 1 2 1 3 1 3 1 3 
4K/16,384 3 0 3 0 3 1 3 1 3 1 3 2 3 2 3 3 3 3 3 3 
4K/32,768 7 0 7 0 7 1 7 1 7 1 7 2 7 2 7 3 7 3 7 3 
4K/65,536 E F E F F 0 F 0 F 0 F 1 F 1 F 2 F .2 F 2 

2K/ 8,192 1 8 1 8 1 8 1 9 1 9 lA lA lA 1 B 1 B 
2K/16,384 3 8 3 8 3 8 3 9 3 9 3A 3A 3A 3 B 3 B 
2K/32/768 7 8 7 8 7 8 7 9 7 9 7 A 7A 7A 7 B 7 B 
2K/65,536 F 7 F 7 F 7 F 8 F 8 F 9 F 9 F 9 F A F A 

1 .4K/ 8,192 lA lA 1 B 1 B 1 C 1 C 1 C 1 D 1 D 1 E 
1 .4K/16, 384 3A 3A 3 B 3 B 3 C 3 C 3 C 3 D 3 D 3 E 
1 .4K/32,768 7 A 7A 7 B 7 B 7 C 7 C 7 C 7 D 7 D 7 E 
1.4K/65,536 F 9 F 9 F A F A F B F B F B F C F C F D 

1400/2030 
-0 "-ex> 0- ~ N M '<t ~ ~ ~ ~ ~ N M '<t -0 "- ex> 0-

N N N N N N N N 

Core Size CID Card 0420 Column Locations 

Figure 4-33. Hundreds High Conversion; 
Auxiliary storage MPX Row 2X 
Values 

4-52 (9/1/66) 

Row 3X (CID Card 0430). Initialized to 00. 
Rows 4X-7X and cx-Fx (CID cards 0440-0470 
and 04CO-04DO) EBCDIC to BCD conversion 
table. These eight rows provide a 128 
character table that contains a BCD code 
corresponding to each EBCDIC character. 
Some positions of the table are dependent 
upon the printer typebar arrangement that 
the system uses. Variations are shown in 
Figure 4-34. Figure 4-31 shows the 
arrangement for the 1403 Printer 
chain/train. EBCDIC to BCD translation is 
required during the execution of instruc­
tions such as Bit Test, Move Zone and Move 
Numeric. 



Features 

1400 Auxilliary Storage B 
o 2 345 6 7 8 9 A 

4x 61 40 4C 4F 80 

5x 50 5E 5F 50 50 

6x 60 7E 4E 90 60 

System/360 
7x 40 70 6E 7F 

Typebar Cx 6F 

Ox 5A 

Ex 4A 

Fx 70 

4x 61 80 

5x 50 50 

6x 90 60 

1403 Printer 7x 40 
with 1442/1443 
Subfeature Cx 4E 

Ox 60 

Ex 4E 

Fx FO 

4x 41 4C 40 80 60 

5x 5C 50 40 

6x 6C 7E 90 50 

52-Charaeter 7x 4E 7B 7C 70 7E 
1400-Series 
Typebar ex 4B 

Ox 5B 

Ex 6B 

Fx 79 

4x 41 40 4E 4F 80 60 

5x 50 5E 5F 40 

6x 6A 60 6E 6F 90 50 

63-Charae ter 7x 7F 7A 70 7E 
1400-Series 
Typebar Cx 4A 

Ox 5A 

Ex 6A 

Fx 79 

Figure 4-34. Table-Load Constants for 1443 Graphics Variations 

2030 FETOM (9/1/66) 4-53 



Features 

MISCELLANEOUS CONTROL BYTES. 
Rows SXi SS-8F, 9x; 98-9F, Ax; A8-AF and 
BXi B8-BF (CIO cards 0480, 0490, 04AO & 
04BO) 
These 32 control byte locations are used to 
contain various compatibility mode data. 
We will define each byte (and bit) func­
tion. 

Byte Hex Char Compatibility Mode Use 
General Stops 

88 

00 

88 01 

02 

03 

04 

05 

06 

07 

08 

09 

Error code (displayed in 
the Main storage Data 
Register) identifying a 
programmed or error stop. 

Normal stop. Appears when 
the stop is caused by the 
stop key ending an 
instruction-execution in 
instruction-stop mode or 
getting a match in SAR 
delayed-stop mode. 

Attempted to use invalid 
1400 B-address 

Attempted to use invalid 
1400 A-address 

Attempted to use invalid 
1400 A- and B-address 

Attempted to use invalid 
1400 operation code 

Invalid I/O operation 
attempted; unit selection 
or unit number invalid 

Storage wrap occurred when 
address was used that was 
outside of system capacity 

Storage protection occurred 
in 1400 mode 

Attempted to switch to 2030 
mode without the PMS fea­
ture 

Invalid source or destina­
tion address on one of the 
special PMS tape operations 

OA 

OB 

oc 

OE 

21 

31 

41 

51 

5S 

*FO 

*F1 

*F2 

*F3 

FF 

Attempted to convert to 
binary an address that was 
less than the bias on a 
clear storage or store STAR 
operation 

Storage wrap around 
1400-address 000. 

Attempted to start a 1400 
I-cycle at main storage 
address 0000 

~ttempted to index without 
advanced programming 
comment in crD 

Word mark missing from 1400 
operation code during I-op 

Word mark in A-address of 
an 1/0 instruction 

An SF character was detect­
ed at an address other than 
the offset address while in 
1400 mode 

An 1/0 operation was 
attempted on a device for 
which the compatibility 
feature is not installed 

A 1400 start-reset function 
was performed using the 
console interrupt key 

A 1400 halt instruction 
with no invalid addresses 

A 1400 halt instruction 
with invalid B-address 

A 1400 halt instruction 
with invalid A-address 

A 1400 halt instruction 
with invalid A- and B­
address 

A 1400 halt and branch 
i nstructi on has been 
executed. 

Hex Reader, Punch & Printer Stops 
Byte 88 Character 

so 

90 

AO 

4-54 ( 9/1166) 

1402/1403 Sub-feature 1442/1443 Sub-feature 

PUnch-transfer error or 
no address compare 

Wrong address sent back from 
the channel 

Operational-in disconnect Invalid d-modifier 
on 2540 or 2501 reader 

operational in disconnect No GMWM in storage 
on 1403 printer 



Features 

BO Operational in disconnect 1442 error on read or punch 
on 2540 or 2520 punch. operation or 1443 error on 

Pr i nt opera tion 

*Note: These stops indicate execution of 
all 1401 Halt instructions (-) except the 
four character Halt and Branch (-AAA). The 
status of the existing address in the STAR 
is provided but does not indicate an error 
stop. (Ex: ~%U1BBBW! would cause an F2 
Halt. ) 

Byte 88 

3F 

4F 

5F 

6F 

7F 

Hex 
Char­
acter 

22 

42 

52 

62 

82 

92 

8F 

2540 or 2501 reader 
error, or invalid 
character occurred 

2540 or 2501 reader 
intervention required 

1442 reader intervention 
required 

2540 or 2520 punch inter- 1442 punch intervention 
vention required required 

1403 printer inter­
vention required 

1443 printer intervention 
required 

2540 stacker-select 
instruction given after 
maximum time-out (6ms 
after a card read) 

Channel 
s=Selector 
M=Multiplexor 

SM 

SM 

SM 

S 

M 

S 

SM 

SM 

Tape stops 

wrong address sent back from channel 

Invalid channel status on data transfer 

Device-end signal before encountering 
a GMWM on a tape-write operation 

status-in and service-in on a tape 
write 

Operational-in disconnect on a tape 
write 

status-in and service-in on a read­
move operation 

Tape error on a 1400 tape initial 
prCXJram load 

Tape-unit intervention required 

Hex Channel 
Char- S=selector 

Byte 77 acter M=Multiplexor Tape Stops 

A2 s 

B2 s 

Invalid channel status was received 
on a branch-if-error operation 

status-in and service-in on a 1400 
read-load operation 

2030 FEr OM (9/1/66) 4-55 



Features 

~ Bit 

89 0 

1 

2 

3 

4 

5 

6 

7 

8A 

8S 0 

1 

C2 M 

02 M 

E2 M 

11 

CF 

OF 

10 

20 

30 

40 

50 

1402/1403 Subfeature 

Operational-in disconnect on a read 
operation 

Premature end to a sense operation 

Operational-in disconnect-on-mode­
set operation 

1050 Stops 

Some other device attempted to take a 
multi plexor-channel data cycle while 
in the data-transfer portion of a 
1050 operation 

1050 intervention required 

Alter or display stop 

Disk-File StoE2 

Read-back check stop 

NO channel or device ends received 

Wrong address sent back from the 
channel 

Unit-check status response to seek 
command 

Operational interlock 

Meaning 

1442/1443 Subfeature 

On during first part of Not Used 
a Read Ope stays on if 
there is a late Stacker Select. 

51-column read feed Not used 

Reader address Reader 1 address 

Reader address Reader 1 address 

Reader address Reader 1 address 

Reader address Reader 1 address 

Reader address Reader 1 address 

Temporary forms control Temporary forms control 
Initialized to 08 Initialized to 00 

On for the read portion of a Channel 9 
PFR Operation 

Forms After 

4-56 (9/1/66) 



Features 

2 

3 

4 

5 

6 

7 

8C 0 

1 

2 

3 

4 

5 

6 

7 

80 0 

1 
2 

3 

4 

5 

6 

7 

~ Bit 

8E 

SF 

98-99 

9A 0 

1 

2 

3 

4 

5 

6 

If an error occurred during the Punch 
Portion of PFR, this bit turns on Channel 12 
during the read portion 

System/360 train/chain 
or typebar configuration 
Not used 

Punch address Not used 

} Command Type 

132 print positions 

Not used 

If a forms Op follows a print error, 
this bit turns on 

Printer address 

Temporary stacker-select } 
information 
Initialized to 10 for 2540, 
00 for 2501 or 2520 where all 
cards on 2520 go into 
stacker 1: 40 for 2501 or 2520 '( 
where valid cards 2520 go 
into stacker 2 while error ~ 
cards are automatically 
directed into stacker 1. 

£QIDpatibility Mode Use 

Reader 2 address 

Not used 

Printer address 

Overlap STAR high (Initialized to Z value of storage bias) 

Overlap STAR low (Initialized to Y value of storage bias) 

Refer to Row 9X Disk Functions 

Last 1400 tape operation was a forward-space-record 

This 1400 tape operation is a forward-space-record 

Tape erase latch is on 

Disk Control Field has been incremented 

1050 Error 

Card reader error 

Card punch error 

2030 FETOM (9/1/66) 4-57 



Features 

9B 

9C 

90 

9E 

9F 

A8-A9 

AA 

AB 

AC 

AD 
AE 
AF 

B8 

B9 

SA 

BB 

7 

0 

1 

2-7 

o 

Printer error 

Tape track in error 

Tape Control Byte for EOF 

A-register (hundreds) backup 

B-register (hundreds) backup 

1050 status 

Load mode (initialized off) 

Type arrangement H element on 1052 

Not used 

Refer to Row Ax, Disk FUnctions 

Previous operation on file 

00 

00 

00 } 00 
00 

Decoded disk control field 
cylinder and high order head 
values (Refer to BO-B4). 

Disk Control Field Cylinder value buffer 

Present 2400 Tape Unit Addres·s (in tape ops) 
File unit number in 1401 form (0, 2, 4, 6, 8) in 
File ops 

Working storage 

Odd redundancy operation (Tape) 

1 This operation is using 9 track tape unit 

2-7 Present command byte with flags 

BC Working storage 

60 File unit address for initial selection 

BE Last File Command sent to File Control Unit 

BF Scan Condition 

PROGRAMMED MODE SWITCHING 

• The programmed mode switching sub-feature provides the abil­
ity to switch the 2030 processor from 1400 compatibility 
mode to 2030 mode and vice versa under 2030 program control. 

• The programmed mode switching sub-feature is available on 
16K or larger Systeml360 Model 30's. 

• A program mask in 9C and 90 LS controls execution of mode 
switching. 

• Special 2030 move instructions are provided to facilitate 
programmed mode switching. 

4-58 (9/1/66) 



Features 

• Multiple 1400 programs may be stored and executed selective­
ly by programmed mode switching facilities • 

• programmed mode switching is implemented by microprogram­
ming. 

The Programmed Mode Switching (PMS) subfea­
ture enables 2030 programs and 1400 pro­
grams to reside in storage coincidentally. 
and to be executed in an interleaved manner 
by providing the capability to switch the 
processor between 1400 compatibility mode 
and 2030 mode under control of the 2030 
program. 

Special System/360 instructions are 
provided to control and facilitate communi­
cation and data movement between the 2030 
program and the 1400 programs. This per­
mits the use of System/360 capabilities and 
devices that are not other wise available 
in 1400 compatibility mode operations. For 
example, tape read or write operations can 
be executed in 2030 mode to take advantage 
of available simultaneous TAU capabilities. 

The programmed mode switching sub­
feature is available on 2030 models having 
16,384, 32,768, or 65,536 bytes of storage. 
The basic compatibility feature is a 
prerequisite. 

If the 1400 program requires 16,000 
positions of core storage, then at least a 
model E30 (32,768 bytes of storage) is 
required in order to accommodate a minimum 
2030 program. 

Utilizing the capabilities of PHS it is 
possible to operate with multiple 1400 
programs in storage, within the limits of 
storage capacity. When switching from one 
such 1400 program to another, it is neces­
sary to switch to 2030 mode to reload cer­
tain areas of 1400 Auxiliary storage with 
data applicable to the 1400 program to be 
executed. An example of such data is Rows 
2X (Hundreds 1400 address conversion 
tables) and Rows 8X and 9X (Disk and Tape 
control bytes, 1400 instruction address, 
Tape Densities, Unit address assignments, 
etc.) 

special instructions facilitate saving, 
in main storage, the contents of auxiliary 
storage that are pertinent to program #1, 
and loading into auxiliary storage the 

Operations and Special Instructions 

information (previously put in main 
storage) that is pertinent to 1400 program 
#2. The process is reversed to change back 
to program #1. 

Switching from 1400 compatibility mode 
to 2030 mode can be controlled by bytes 9C 
and 9D in 1400 Auxiliary storage LS. The 
conditions that can be selected to cause 
mode switching are as follows: 

Invalid Op Code 

Halt Op Code 

Error stops 

Invalid I/O Ops 

Console Ops 

Printer Ops 

Reader/Punch Ops 

Tape Ops 

File Ops 

To switch from 1400 compatibility mode 
to 2030 mode, a supervisor call interrupt 
is executed. When mode switch interruption 
occurs, the new and old PSW's are used in 
the normal manner. A coded byte is entered 
in positions 24-31 of the old PSW to indi­
cate the reason for the interruption. For 
additional information on Supervisor Call 
Codes, refer to Compatibility Mode Inter­
ruptions SRL, Form ~24-3255. The location 
of the last accessed compatibility instruc­
tion is also stored in the old PSW except 
for mode switches due to certain error 
conditions. The current status of 1400 
registers is stored in backup locations in 
auxiliary storage so that they may be 
referenced when necessary. 

Return to 1400 compatibility mode is via 
the Mode set (CFIM) instruction. Refer to 
the SRL manual for additional information 
(format, etc.). 

• Special system/360 instructions are made available by the 
PMS feature • 

• The basic feature special instructions are utilized to mani­
pulate auxiliary storage. 

2030 FETOM (9/1/66) 4~59 



Features 

• Auxiliary storage manipulation is performed in 2030 mode. 

In performing programmed mode switching 
applications, an important consideration is 
the moving of data between 1400 compat­
ibility storage and 2030 storage. 

A tape-read operation in 2030 mode could 
insert the data directly into the 1400 
compatibili ty area of storage. However, 
the 1400 program would then have no indica­
tion of the amount of data received. The 
special compatibility PMS sub-feature 
instructions transfer data from 2030 stor­
age to 1400 compatibility storage (and vice 
versa) and also updates the 1400 A-star and 
B-Star appropriately. This allows the next 
Op code after an I/O instruction (for exam­
ple, store B-Star) to function with the 
correct address. 

Two move and two load instructions are 
used to emulate 1400 treatment of word 
spearators and word marks. For example, in 
emulating a 1400 tape write operation in 
2030 mode, it is necessary to move or load 
data from 1400 compatibility storage to 
2030 storage, then perform the write opera­
tion via 2030 channel. A tape read Op is 
performed by reading via 2030 channel to 
2030 storage, then moving or loading data 
from 2030 storage to 1400 compatibility 
storage, then continuing the 1400 program. 

Compatibility Feature Move To Compatibility 

This operation is similar to a tape-move 
operation in the 1400. Data is moved from 
the 2030 storage area to the area reserved 
for the 1400 portion of the program. The 
binary address specified by general reg­
ister R2 is the source address in the 2030 
core-storage area. Word marks in the 
source field are not moved; word marks in 
the destination field remain undisturbed. 
The binary address specified by general 
register R1 is the destination address in 
the 1400 core storage area. The low-order 
16 bits of the general register specified 
by R1 + 1 is the count field. 

"The two addresses are incremented by 1 
and the count is decremented by 1 in the 
specified general purpose register after 
each byte is moved. The count is checked 
for zero before each byte transfer. If it 
is zero, the operation is terminated and a 
groupmark is inserted in the destination 
field. The operation is also terminated on 
GMWM detection in the destination field, in 
which case no character is moved. 

The destination address is always updat­
ed to 1 beyond the GMWM or GM address at 
the end of the move. The effective 1400 

4-60 (9/1/66) 

B-storage address register is set to this 
address. 

Compatibility Featu.re Move From 
Compat i bil it Y 

This instruction is identical to the Move 
To Compatibility instruction with the fol­
lowing exceptions: 

1. The movement of data is from 1400 com­
patibility storage to 2030 storage. 

2. GMWM detection is done on the source 
field. 

3. When a GMWM terminates the instruction, 
the source address is incremented to 
one beyond the GMWM address, and the 
destination address remains unchanged. 
The effective 1400 B-storage address 
register is set to this (source) 
address. 

4. No group mark is inserted in the desti­
nation field on termination by count. 

Compatibility Feature Load To Compatibility 

The function of this instruction is simialr 
to a tape-load operation. Data is loaded 
from 2030 storage to 1400 compatibility 
storage. The binary address specified by 
general register R2 is the source address 
and the binary address specified by general 
register R1 is the destination address. 
The low-order 16 bits in general register 
R1 + 1 is a count of the number of bytes to 
be handled in the source field. 

Word marks in the destination field are 
cleared. When a word-separator character 
is detected in the source field, the count 
is decremented by 1, the source address is 
incremented by 1 and no character transfer 
takes place. A word mark is inserted with 
the first character following (in the 
source field). 

Termination on GMWM detection or count, 
and setting of the condition register is 
identical to that of the move to compat­
ibility operation. The effective 1400 
B-storage address register is set to the 
final destination address. 



Features 

Compatibility Feature Load From 
Compatibility 

This instruction is identical to the Load 
To Compatibility instruction with the fol­
lowing exceptions: 

1. The movement of data is from 1400 stor­
age to 2030 storage. 

2. Word marks in the source field cause a 
word-separator character to be inserted 
in the destination field. The destina­
tion address is incremented by 1, the 
count is decremented by 1 and the 
source address remains unchanged. 

3. GMWM detection is done on the source 
field. 

4. When a GMWM terminates the operation, 
the source address is incremented to 1 
beyond the GMWM, and the destination 
address remains unchanged. The effec­
tive 1400 B-storage address register is 
set to this source address. 

5. No group mark is inserted on termina­
tion .by count. 

Auxiliary storage Manipulation 

Auxiliary storage Manipulation is accom­
plished by utilizing the basic compat­
ibility feature instructions; compatibility 
Feature Store Variables, Compatibility 
Feature Load Variables, compatibility Fea­
ture Store Constants, and Compatibility 
Feature Loa~ Constants. 

For programmed mode switching applica­
tions, these instructions are used for 
altering the contents of auxiliary storage. 
thus controlling the conditions under which 
mode switching occurs. This facility also 
makes it possible to perform multiprogram­
ming. (Multi-1400 programs.) 

Compatibility Feature Load/Store Variables 

These two instructions are used to alter 
any of the 64 bytes of Auxiliary Storage LS 
rows 8 and 9 and Auxiliary Storage MPX rows 
8 and 9. The Load instruction transfers 
four bytes from 1400 Auxiliary Storage into 
main storage, the Store instruction trans­
fers four bytes from main storage into 1400 
Auxiliary storage. 

Most variables contained in 1400 auxil­
iary storage (such as 1400 instruction 
address, tape densities, and unit address 
assignments,) can be changed with these 
instructions. A selected variable field 
can be transferred from auxilia ry storage, 
altered as desired then transferred back 
into auxiliary storage. 

Refer to the SRL Manual, Form A24-3255 
for additional information on instruction 
format, byte addressing codes, etc. 

compatibility Feature Load/Store Constants 

These instructions enable altering any of 
the 512 bytes of 1400 Compatibility auxil­
iary storage. Transfer from auxiliary 
storage to main storage is done by the Load 
instruction, transfer from main storage to 
auxiliary storage is done by the store 
instruction. Information is transferred by 
blocks of 16 contiguous bytes (one complete 
row in auxiliary storage). 

Multiprogramming is an application for 
these instructions. In switching from one 
1400 program to another, various bytes of 
information in auxiliary storage must be 
changed (address conversion constants 
etc.). This information can be transferred 
out of auxiliary storage into main storage, 
then previously stored conversion informa­
tion applicable to a second 1400 program 
can be transferred into storage. 

LOGIC FLOW CHARTS 

The logic .flow charts that appeared in a 
previous edition of this manual have been 
deleted. Refer to the Maintenance Diagram 
Manual for revised versions of these 
charts. These charts can be used as ins­
tructional and maintenance aids. The 
charts have been revised and e~)anded so 
that a minimum amount of additional des­
cription is needed. 

Two general types of charts are present­
ed. 

1. Objectives: the overall picture. Use­
ful as an introduction and a recall 
device. 

2. Details; the actual operations through 
the microprogram. 

2030 FETOM (9/1/66) 4-61 



Features 

I-CYCLES 

• 1400 addresses are converted to 2030 hexadecimal equivalent; 
address error detection is performed. 

• 1400 operation codes are converted to 2030 type (bit 
significant) operation codes. 

• Indexing is performed if designated. 

The objectives of I-Cycles in 1400 Compat­
ibility Mode are essentially the same as 
for I-Cycles in the 1400. There are impor­
tant additional (support) objectives that 
are necessary as a means of accomplishing 
the I-phase (conversion, etc.) in compat­
ibility mode. 

Refer to the I-Cycle flow charts in the 
Maintenance Diagram Manual. 1401 I-cycle 
and indexing flow charts are included for 
comparison. 

I-phase is of variable length, depending 
on the length of the 1401 instruction. 

The conversion of 1400 decimal addresses 
to 2030 hexadecimal equivalent address is 
performed by table lookup as described in 
"Address Conversion." In a similar manner, 

I/O OPERATIONS 

the operation codes are converted to obtain 
codes that are bit significant for easy 
identification by the microprogram. Refer 
to WOp Code Conversion and Recognition." 

After the 1400 operation code is con­
verted and placed in the G-register a var­
iety of paths are available, depending on 
the type of instruction, length of instruc­
tion, etc. comments and examples that are 
included with the flow charts (Maintenance 
Diagram Manual) explain the I-phase opera­
tion. An example of indexing is presented. 

At the completion of i-phase the micro­
program starts execution phase for the 
instruction. The G-register contains the 
Op Code; LT has the A-address, UV has the 
B-address, and IJ contains the address of 
the next instruction. 

• All I/O operations in compatibility mode are executed in 
burst mode. 

• The 1402 reader automatically feeds a card 6 milliseconds 
after a read command. 

• A stacker select command for the 1402 must be given within 6 
milliseconds after a read command. 

• End of file occurs with Channel End of the last card read. 

• Character representation to and from I/O apparatus is in 
EBCDI code. 

• operation code bit structure changes during execution of an 
I/O Operation. 

All 1400 systems I/O operations are execut­
ed in burst mode. Tape and file operations 
always force burst mode on the multiplex 
channel (compatibility mode included). 

Burst mode for 1402 and 1403 operations 
is forced in the 2030 by holding up Select 
out until Channel End occurs (Figure 4-35). 

4-62 (9/1/66) 



Features 

Bus Out Control ~ 
A 

Address Out 

T3 
'----

CD 
ecycle Reset R 

F 

,....--
OR 

A 
B=K 

'---

p::-
Select in 

Status in p::-

-
® Not 140 1 Mode 

i..- A 

Address in 

OR -r--;;:-

~ 
'---

OR 

Not Op Out Signal p::- 1--'4 

'-P::-
Address Out 

'----

1 • 140 1 Reset Of Burst Mode 
2. Blocks Nonnal Reset to Select Out 

Figure 4-35. Select Out 

~ 

The normal resets of Select Out in 2030 
mode is blocked by the line "Not 1401 
Mode." The only resets available to turn 
off Select out are Recycle Reset, Select­
In, or the microprogram statement K- >FB, 
where no bits or only one bit of the K 
value is on. Example: KO, K1, K2, K4, or 
K8. Parity bit setting has no effect on 
the statement. Recycle Reset is the result 
of giving a system reset or a recycle reset 
when in CE mode. 

In compatibility mode, Select In from 
the channel can come up only due to an 
abnormal condition existing, such as having 
IOU power turned off or a machine failure. 
Therefore, the only controlled reset to 
Select Out will be the microprogram 
statement K->FB, which is given when a 
Channel End is sensed by the 2030. 

Refer to the I/O operation flowcharts in 
the Maintenance Diagram Manual. As I/O 
operatiOns are executed, the bit signifi­
cant Op code changes, indicating the status 
of the operation. A summary of the Op code 
information appears with the I/O operation 
flow charts. For example, in executing the 
Print-Read-Punch instruction, the original 
converted Op Code (27) changes to 25 
(Read-Punch) upon completion of the Print 
operation: to 24 (Punch) upon completion of 

Se lect Out 
r---

Select Out OR 

1 
__ FL __ 

'---

-
OR 

-

the Read operation: and to 20 (indicating 
Operation completed) upon completion of the 
Punch operation. 

The first section of the I/O Operations 
flow chart is the Op decode portion. This 
portion illustrates the sequence of pre­
liminary setup that occurs prior to the 
start I/O command. This includes testing 
the Programmed Mode Switch byte, setting up 
registers and performing other initializa­
tion requirements of the I/O command. Var­
ious I/O operations are discussed under the 
appropriate headings. 

1402 Read Operations 

The functions of the 1402 attached to a 
1400 system are performed by an IBM 2540 
Card Read-Punch or an IBM 2501 Card Reader. 
Recall that with a 1402 operating with a 
1400 system, the programmer has 10 millise­
conds after a read-a-card instruction dUr­
ing which to give a stacker select instruc­
tion. The card being read then, feeds past 
the read brushes and into the selected 
stacker. 

When a 1402, 2540 or 2501 is operating 
on a System/360, Model 30 in 2030 mode, d 

2030 FETOM (9/1/66) 4-63 



Features 

read command causes the buffer to transmit 
data to the CPU, but no card movement 
occurs. 

To cause the 1402, 2540 or 2501 on a 
2030 in 1400 compatibility mode to dupli­
cate the stacker select action of a 1402 on 
a 1400 system, a Provisional Feed circuit 
has been added. Basically, this circuit 
does the following: 6 milliseconds after 
the read conunand data transfer starts, a 
feed cycle occurs, and a card is read and 
selected to the normal pocket. If, during 
the 6-millisecond timeout period, a 1401 or 
1460 stacker select command is sensed, a 
feed and stacker select command is issued 
to the 1402 (2540 or 2501). This feed 
command causes the card to feed immediately 
and select to the stacker. It also pre­
vents the provisional feed from occurring. 
See Figure 4-36. 

The microprogram for stacker select 
detects whether or not the 6 ms timeout is 
over by issuing a se~se command prior to 
the feed and stacker select command. If 
the status byte coming back from the chan­
nel does not contain the attention bit, the 

6-millisecond stacker select time has 
expired (Figure 4-36). In this case, the 
microprogram does not issue the stacker 
select command but indicates an invalid 
stacker select to the operator by a coded 
byte (1F) in the R-register (MSDR). 

Another modification of the reader cir­
cuitry on the 2030 changes the end-of-file 
condition. When the reader is operating in 
2030 mode, an extra Read command must be 
issued after the last card is read in order 
for the end-of-file condition to occur. In 
1400 compatibility mode on the 2030, End­
of-file occurs with Channel End of the last 
card read. This allows the branch on last 
card to occur without issuing an extra read 
command. 

In the Maintenance Diagram Manual, refer 
to: I/O and read operation flow charts; 
I/O Op Decode; I/O Setup; K and F Op:;; 
Branch Cps (Reader, Punch, Printer); Reader 
Data Loop: and Read Instruction Objectives. 

The Read Instruction Objectives chart is 
largely self-explanatory. This chart 
presents the overall objectives. Refer to 

1400 Provisional Feed Latch 1400 Compat Timeout 

1400 Camp Read Feed 

Rd r Rdy and Comd Valid AO 

Not Read Camp 
1400 Comp Read Feed ----:.-_ AO 1--...... __ 

Rdr Command Gate 

Bus Out 0 

Bus Out 1 

Bus Out 3 
1400 Camp Rdr Busy 

Bus Out 6 

Not Rdr Adapter Reset AO 

Not Rdr Device End Smp 

Not Rdr Adapter Reset AO 
1400 Camp Rdr Feed Command 

Not Rdr Queued On 

Not Rdr Feed Command 

1400 Comp Rd Pch Bus in ~ _________ ~ ____ ~1~4O~0~C_om~p_at~P~ro_v_Fe_e_d __ AO 

Rdr Command Gate 1--...... - ...... 
Reader Sense 

Not 1400 Compat Timeout 

Not Rdr Adapter Reset AO 

Status in Sample 

Figure 4-36. Card Read 

4-64 (9/1/66 ) 



Features 

the other charts for details of read opera­
tion execution. Read Column Binary is 
included. 

Refer to the Reader Data Loop flow 
charts for details of data handling during 
a read operation. 

1402 Punch Operations 

1402 Punch Operations in 1400 compatibility 
mode differ from punch operations in 2030 
mode as follows: A stacker select command 
given in 2030 mode causes the carn. entering 
the punch station to be selected. A stack­
er select command given for a 1402 punch in 
a 1400 system causes the card at the punch 
check station to be selected. In the 1400 
compatibility feature (1402/1403 
Subfeature), microprogramming causes the 
stacker select operation to emulate the 
1401 system. 

To cause the stacker select command to 
select the card at the punch check station 
while in 1400 compatibility mode, the punch 
3-bit modifier latch has heen added to the 
control circuitry.. The punch 3-bit modi.fi ... 
er latch turns on when a 3-bit is on the 
bus with d punch command .. 

When the punch 3-bit modifier latch is 
on, it prevents the punch stacker sequence 
1 latch from turning on and causes the 
punch stacker sequence 2 latch to come on 
at punch counter F-E time. 

Refer to the Maintenance Diagram Manual 
I/O and Punch operation Flow chart: I/O Op 
Decode, I/O setup, printer, Punch Data 
LOOps, and Punch Objectives. 

The I/O operations required by the 1400 
object program are performed by their res­
pective microprograms. The 1400 I/O com­
mands sense status, perform the operation, 
and detect any errors that occur during the 
operation. 

For a further illustration of these 
points, examine the 1402 punch objectives 
flow chart. (The device used is the 2540). 

The microprogram first defines the oper­
ation to be performed. Next it fetches the 
unit address from local storage and issues 
a sense corrunand. The microprogram then 
examines the status byte that is coming 
back to ensure that the 2540 can accept the 
command. 

If the 2540 status is go~l, the command 
is given and the microprogram goes into a 
data loop. (Refer to Printer, Punch Data 
Loop). The operation is done in burst mode 
because select out cannot be reset. When 

Channel End occurs (but not as a direct 
result>, the microprogram gives the state­
ment FB->K, that resets select out and 
allows the 2540 to disconnect 
(electrically) from the channel. 

The microprogram examines the status 
byte that comes with Channel End in order 
to determine whether an error occurred. If 
an error occurred, the microprogram exe­
cutes an error routine that displays a 
coded byte in the R register. If there 
were no errors, the microprogram interro­
gates the Op code again to determine wheth­
er or not it is a combined operation (read, 
punch et c. ) .. 

If opera tion is not a combined opera­
tion, the microprogram exits to I-cycles 
for the next op code. 

1403 Printer operations 

The System/360 Model 30 with the 1400 Com­
patibility Feature and the 1402/1403 Sub­
feature can process 1400 programs that 
utilize the 1403 printer. The printer must 
be attached to the multiplexor channel 
through a 2821 control unit. 

The printer is buffered (print buffer is 
standard) on the System/360. However, 
there are no programming differences except 
for channel-9 and -12 interrogation. 
(Refer to Functional Differences.) 

Forms operations and print operations 
objectives are illustrated separately in 
the Maintenance Diagram rJ!anual. For forms 
operations, a space or skip afte.r print is 
conbined with the next Print command. A 
space or skip immediate instruction sets up 
and issues a sense command and proceeds 
wi th execution. 

For print instructi ons, the microprogram 
analyzes the operation, sends device 
address, issues sense command, sends ser­
vice out, and performs various other 
details in preparation for pr int instruc­
tion execution. The microprogram then 
enters a data loop that sends 1 character 
at a time to the print buffer. Table loo­
kup is preformed, if necessary, for charac­
ter conversion. 

Detection of the last character to be 
printed terminates the data loop and per­
forms the routine for disconnecting elec­
trically. The Op code is changed to indi­
cate completion of the print operation and 
the next instruction is read out. 

2030 FETOM (9/1/66) 4-65 



Features 

1442 Reader-Punch Operation 

When running the 1442 in compatibility 
mode, there are two main operational dif­
ferences between the 1442 on the 1440 sys­
tem and the 1442 on a 2030 in compatibility 
mode. 

The 1442 when reading or punching in 
compatibility mode does not stop on a 
col UIIIn in error but conti nues to the end of 
the card. The microprogram tests for 
errors a t the end of the card operation. 
The second difference modifies the last 
card indication. Last card (end-of-file) 
occurs with the Channel End of the last 
card read. 

The 34 MLP characters transmitted by the 
1442 are changed by the microprogram so 
that the 8-9 punches that designated the 
characters as MLP characters are eliminat­
ed. The characters in core storage are the 
EBCDIC equivalent of the card code minus 
the 8-9 punches. 

1443 Printer Operation 

The character configuration of the 52- and 
63-character typebar for the 1443 N1 is not 
the same as the 52- and 63-character bar 
for the 1443 on the 1440 system. To run 
the 1443 N1 in compatibility mode, the 52-
or 63-character bar for the 1440 system 
must be installed in the 1443 N1. 

Because the characters on the bar are 
not the same as the 1443 N1 bar, the micro­
program must construct different character 
configurations to send to the printer 
(Figure 4-37). If the character in storage 
to be printed is an A, the microprogram 
sends a J to the 1443 N1. The 1443 N1 
circuits fire the hammer when it determines 
there is a J in front of the hammer. 
Actually, because the typebar is from the 
1440, there will be an "A" in front of the 
hammer when the print compare equal for a 
"J" occurred. 

Magnetic Tape operations 

Some important differences between tape 
operations in 1440 compatibility mode on 
the 2030 and in the 1401 or 1460 should be 
noted. 

The 1401 or 1460 stores an End-of-file 
in the tape unit as a tape indicate. Tape 
indicate is reset by unloading the tape 
unit or by branching on the End-of-file 
condition. In 1400 compatibility mode on 
the 2030, the End-at-file condition is 

4-66 ( 9/1/66) 

stored as a bit in the tape unit control 
byte in local storage. This bit is reset 
by a rewind-unload instruction or a branch 
on End-of-file. The tape indicate in the 
tape unit is set only by the End-of-file 
reflective strip on the tape during a write 
instruction, and is reset by any backward 
command. 

Because the End-of-file bit in local 
storage is not reset by manually unloading 
the tape unit, the operator must ensure 
that the bit is reset when reloading the 
tape unit to eliminate false End-of-file 
conditions. 

CHARACTER CHARACTER 
IN STORAGE TO 1443 

& 
-
1 
/ 
A 
J 
2 
S 
B 
K 
3 
T 
C 
L 
4 
U 
0 
M 
5 
V 
E 
N 
6 
W 
F 
0 
7 
X 
G 
p 
8 
y 
H 

<D Sent As 01000001 
(6) Sent As 11100001 

& 
-
0 
A 
J 
/ 
1 
B 
K 
S 
2 
C 
L 
T 
3 
0 
M 
U 
4 
E 
N 
V 
5 
F 
0 
W 
6 
G 
P 
X 
7 
H 
Q 

CD 

~ 

CHARACTER CHARACTER 
IN STORAGE T01443 

Q y 
9 8 
:e I 
I R 
R :e 
0 9 

* > 
? < 
~ 4= 
# : 
, 

I 
$ , 

@ # 
% -II * 
* % 
: @ 
v ( 
( ) 
) --v-
> 'V" 
\ + 
< ; 
; -

v-- -
+tt * * 

,. 
~ + 

Blank ..---
Blank Blank 
j{ Blank 

Figure 4-37. 52 and 63 Character Typebar 
Decode 

A tape error during initial program load 
causes a microprogram stop with a coded 
byte in 88 of Auxiliary Storage MPX. The 
Tape Control information in Auxiliary Stor­
age is in AUX storage LS locations 80 
through 87. Refer to Figure 4-38. In byte 
80 (TCU Control), bit 0 on indicates an 
initial program load condition. Bits 1, 2, 
and 3 contain the 1401 o.r 1460 address for 
the last tape unit addressed. Bits 4 
through 7 contain the tape control unit 
number as assigned by the eID. 



Features 

o 2 3 4 5 6 7 

BX 
I TCU I TU1 I I 

TU3 
I 

TU4 
I I 

TCU TU1 
I 

TU2 I TU2 TU3 I TU4 I TU5 I TU5 TU6 I TU6 Last Status 
I 

I I I I I I 
Control I Address Control I Address Control I Address Control I Address Control I Address Control I Address Control I Address From TCU 

I 
I I I I I I I 

Bytes 81 - 86 = 1400 Units 1 - 6 Respectively 

Figure 4-38. Tape Control Information Bytes 80 through 87 Auxiliary storage LS 

Bytes 81 through 86 are Tape Unit 1 
through 6 controls. Bits 0 and 1 provide 
the density or Unit identification as fol­
lows: 

00 = 7 track a 200 BPI 

01 = 7 track a 556 BPI 

10 = 7 track M 800 BPI 

11 = 9 track (Density information is 
in LS 92 and BB) 

Bit 2 on in the TU control bytes (81-86) 
indicates that the last operation performed 
on that particular unit was a backspace 
operation. 

Bit 3 on indicates an End-of-file condi­
tion is outstanding for that unit. 

Tape Unit 1 to 6 address (bits 4-7) 
contains the 2030 address assignment of the 
tape unit to be used as a 1401 or 1460 
unit. 

Miscellaneous bytes in AUX stor are used 
for tape operations as follows: 

~ 

8Ei8F 

9B 

9A 

9F 

MPX MS "0" STAR locations used 
during a read operation 
as back-up for the start­
ing address of the read 
in a rea (B-STAR). 

MPX MS Track in Error Sense byte 
that is stored if a read 
error occurs on a 9-track 
tape. This byte is used 
for the mode set of a 9 
track unit. 

MPX MS Bit 0=1: last 1400 tape 
operation was a forward 
space record Bit 1=1; 
CUrrent 1400 tape opera­
tion is a forward space 
record Bit 2=1: the tape 
erase latch is on. 

LS S Bit 3=1; Alternate Redun­
dance Mode. 

B9 

B9 

BA 

BB 

BC 

Byte 97 
and BB 

MPX SM Temporary storage of tape 
uni t control byte address 
for unit being used. 

LS SM NPL address of the last 
tape unit addressed. 

MPX M Storage location used in 
Read Mask of setting H5 
bit. The actual address 
of the unit being used is 
also stored here. 

MPX SM Temporary storage of 
command byte used to hold 
the command du ring the 
Mode Set routine. 

Bit 0 = 1 denotes Odd 
Redundancy 

Bit 1 = 1 denotes 9 track 

MPX M Temporary storage of the 
read status byte for 9 
track operation. 

LS 
LS SM Seven/nine track and 

density status <refer 
also to bytes LS 81-86). 
These bytes are required 
in addition to bytes 
81-86 to define density 
when 9-track tape is 
used. Bit 0 of each byte 
has track status for tape 
unit 0, bit 1 has sta tus 
for tape unit 1 etc. 
Status is as follows for 
associated tape unit: 

Byte 97 Byte BB 

1 0 9-Track @ 800 BPI 

1 1 9-Track @ 1600 BPI 

Refer to the Maintenance Diagram Manual. 
Separate charts present Tape Selector Chan­
nel Obj ecti ves and Tape Multiplexor Cha nnel 
Objectives. The two operations have much 
in common. The common circuit details are 
shown on the chart Tape-Common. From the 
common chart, the details are developed 
separately for selector and multiplexor 

2030 FETOM <9/1/661 4-67 



Features 

operations. The various tape operation 
charts are corss referenced for ease in 
following an operation through the micro­
program. 

Disk Compatibility operation 

• 1311 Disk Packs must be reloaded and reformatted (by utility 
programs) to enable operation with the 2030. 

• The 1311 file must be loaded into cylinders 1 to 100 on the 
2311 to provide compatibility. Microprograms increment and 
decrement 1400 cyl values as needed to compensate. 

• Disk Compatibility microprograms are not shared with any 
other feature. 

• RBC can be overridden for diagnostics by altering one CCROS 
card. 

The Magnetic Disk operations sub-feature 
permits processing IBM 1311 magnetic disk­
file records in either track or sector mode 
in 1400 compatibility mode using the IBM 
2311 Disk Storage Drive. The 2311 must be 
attached to the multiplexor channel through 
a 2841 file-control unit. 

The 2311 uses the same disk-pack (1316) 
as the 1311. However ~ because of increased 
recording density and different format, 
existing 1311 files must be reloaded using 
the 2311 on the 2030. The 1311 file must 
be loaded into cylinders 1 to 100 on the 
2311. 

System/360 Model 30 file-unit addresses 
must be assigned to correspond with 1311 
module numbers. This is done during 
initial program load by the CID. Ten bytes 
are reserved in auxiliary storage for this 
purpose. (90-99 in IS). Five bytes are 
reserved for seek control (AD-B1 in LS). 

Because formatting is a major considera­
tion, and must be done before compatibility 
operations can be performed~ we will first 
examine formats before discussing actual 
operations. 

4-68 ( 9/1/66) 

FORMATS 

Home Address 

The Home Address is the binary equivalent 
of the cylinder and head physical location. 
Refer to Figure 4-39 for format. Home 
addresses are prewritten by a utility pro­
gram. 

I F 

C C H H 

0 0 

Figure 4-39. Home Address Format (Showing 
Fixed Value) 

Home addresses are not used directly in 
the execution of compatibility mode file 
operations. The Home Addresses serves as a 
reference point. The symbols F, C, C, H 
and H stand for Flag, Cylinder, Cylinder, 
Head and Head. The values of the first C 
and the first H (from left to right) are 
fixed at o. 



Features 

Record Zero (RO) 

Record Zero (RO) for each track is prewrit­
ten by a utility program. Record Zero is 
normally the same as the physical cylinder 
and head address. An exception exists when 
an alternate track is aSSigned to replace a 
damaged or defective track. Refer to 
Alternate Track. 

Record Zero format, count, and data 
fields are shown in Figure 4-40. The data 
field is normally 8 characters. It is used 
for handling alternate track situations in 
2030 mode. The RO data field is not used 
in 1400 compatibility mode. 

RO Count RO Data 

C C H H R KL DL DL 
a a a a a 8 

D1 D2 D3 D4 D5 D6 D7 D8 

X XXXXXXX 

Figure 4-40. Record Zero Format (Showing 
Fixed Value) 

Count, Key and Data Fields (CKD) 

The count field provides an indelible 
address (I/A) for each record. Refer to 
Figure 4-41. The count field for sector 
mode operations specifies a data length of 
100. The count field for Record mode Oper­
ations specifies a data length of 2980. 

Sector Operations 

Count Data 

C C H H R C C H H R Kt. DL DL Dl D2 D3 )~ D98 D99 D 100 

Numeric Value 0 0 0 o 100 

Hexadecimal Value 00 00 00 00 64 

Full Track Record Operations 

Count Dota 

C C H H R KL DL DL Dl D2 D3~~ D2978 D2979 D2980 

Numeric Value 0 0 0 2980 

Hexadecimal Value 00 00 00 OBA4 

Figure 4-41. CKD Format <Showing Fixed 
Value) 

When writing a data field in Load Mode, 
the data transfer is truncated after the 
90th data character is transferred to the 
File Control Unit. Short records are 
filled with valid blanks (40 hex) through 
the 90th character. The File Control Unit 
fills the 91st through the 100th character 
of the record with all Zero-bit bytes. 

When writing a data field in move mode 
and a short record is encountered, the 1400 
compatibility microprogram sends valid 
blanks (40 hex) to the File Control unit 
until a transfer of 100 or 2980 characters 
is completed. This is done for short 
records to provide correct mode detection 
when reading. Refer to Error Checking_ 

RECORD NUMBER. Record numbers in the count 
field are numbered 1 through 20. 1400 
series record numbers are incremented by 1 
before being written on a disk and before 
executing a compare address. Conversely, 
after a record number is read from a disk, 
it is decremented by 1 before it is stored 
in main memory. 

This handling of record numbers permits 
a record zero, while maintaining a unique 
number for each data record. 

HEAD NUMBER. The head numbers that are 
written on the disk (0 through 9) are the 
same as the head value specified by the 
Disk Control field. 

CYLINDER NUMBER. The cylinder numbers that 
are written on the disk are one greater 
than the cylinder value specified by the 
disk control field. These values are 1 
through 100. 

MODULE OR UNIT NUMBER. In 2030 format, a 
module number is not recorded on the disk 
pack as was done in 1400 disk operations. 
Thus, there is no protection against acci­
dentally using the wrong pack. Module 
overflow detection is provided however. 

DATA FIELD. Data is written on the disk in 
EBCDIC code. Each record is written in the 
data field identified by its unique count 
field. 

Operations 

Disk operations, as in 1400 series, fall 
into three major groups: Seek, Read or 
write. The 1400 operation code is as fol­
lows: 

M/L ~Fn BBS R/W 

Values of n and meanings are: 

o = Seek 

1 = Sector mode 

2 = Track-Record mode 

2030 FE TOM (9/1/66) 4-69 



Features 

3 RBC 

4 = Not used 

5 = Sector Control Overlay 

6 = Sector mode with I/A 

7 = Scan (LO or Eq) 

8 Scan (EQ) 

9 = Scan (Hi or Eq) 

il = Track Record mode with I/A 

SEEK COMMAND. Seek commands are either 
Return To Home (RTH) or Direct Seek. 
Direct seek, an option with 1400 series, is 
standard with the 1400 Compatibility Fea­
ture (Disk Sub-Feature). 

RTH Seek: To execute an RTH seek, the 
disk Control Field is decoded to binary 
values and a 2030 full seek command is 
issued to the File Control unit. A 6-byte 
address transfer follows. The 6-byte 
address specifies in Binary values: 

B B C C H H 

000 o 

The 0 values are not significant, as 
only the cylinder value is needed to per­
form seek. 

Direct Seek: To execute a direct seek, 
the Disk Control Field (DCF) is decoded to 
determine the difference between acutal 
location and desired location. ~ plus or 
minus sign denotes the direction of the 
difference. This value is added 
(algebraically) to the cylinder location 
stored in auxiliary storage (91, 93, 95, 
97, or 99--LS) for the appropriate drive 
unit. The RTH seek value is sent to the 
File Control unit during the 6-byte address 
transfer. 

Note: It is necessary to ensure that 
the control unit is not busy before updat­
ing a cylinder value in auxilairy storage. 
ot·herwise, the true location of an access 
can be lost. 

RTH seek (Recalibrate): A 
re-orientation/recalibrate seek command 
chain, is initiated by the following 
sequence of events: 

1. A read or write operation resulting in 
X and not WLR branch indicators 

2. Seek command 
3. A second read or write resulting in X 

and not WLR 
4. A return to home seek command 

4-70 (9/1/66 ) 

This sequence discriminates between cylin­
der overflows and access disorientation, 
and provides seek recovery without impair­
ing thruput time. 

Cylinder Displacement: During execution 
of a seek Op code, the cylinder value is 
incremented by one. Thus, a seek to cylin­
der 0 actually places the access at cylin­
der 1. This reserves cylinder 0 for the 
Initial Program Load (IPL) function. 1400 
Series programs occupy cylinders 1 through 
100. 
Caution: 1311 Diagnostics (4F series) 
should not be run on a CE disk in compat­
ibility mode. Adjustment data will be 
erased. 

Direct Seek Special Case: Some exist­
ing customer programs cause a Direct Seek 
in the reverse direction (outward), with a 
number-of-cylinders value, which results in 
a cylinder value of less than zero. The 
1311 drive will seek to minus one cylinder, 
turn around and finish out the seek in the 
forward direction. This behavior has been 
simulated arithmetically for compatibility 
operation, to provide program compat­
ibility. 

Read/Write Operations With Indelible 
Address 

A Head Seek command must precede all 
Read/Write commands to ensure that the head 
specified by the Disk Control Field is the 
head selected. If a search equal 10 com­
mand is issued to emulate an address com­
pare function, two equal address compares 
are necessary. First, a compare equal on a 
1400 mode formatted indelible address must 
be made. (For disk packs not formatted in 
1400 mode, this first compare is bypassed 
by setting the auxiliary storage LS posi­
tion 10 bit 0 to 1). Upon satisfying the 
first compare equal, the cylinder value in 
the compare argument is set to the seek 
cylinder value. The second number is set 
to 0 and an address compare equal on record 
zero must be satisfied. 

This provides correct time orientation 
so that subsequent indelible address and 
data fields will be written in their cor­
rect loca tions. 

substitution of the seek cylinder value 
is necessary to provide for cases where the 
Disk Control Field contains an abnormal 
cylinder value. Cylinder overflow recogni­
tion is provided when compare disable is 
active. 

Cylinder Values: The cylinder value 
written on the disk pack is one higher than 
the value specified by the Disk Control 



Features 

Field. Because all seeks are microprogram 
incremented by one. the RO cylinder value, 
written in 2030 mode, will be the same as 
the indelible address cylinder value writ­
ten in 1400 mode (in most cases). 

When indelible addresses are read from a 
disk, the cylinder value is decremented by 
one before being placed in main memory. 

All indelible address search arguments 
taken from the Disk control field are 
microprogram incremented by one. 

Head Values: The Head value during the 
Address Compare operation will be the same 
as the value specified by the DCF. 

When formatting a disk in 1400 mode, the 
head specified by the Disk Control Field 
must be the same as the head which executes 
the command. 

An exception is made for Alternate Track 
operation. 

MODULE OVERFLOW DETECTION. This function 
is necessary when a 1400 program uses a 
change in module value in the Disk Control 
Field to set the No Address Compare (No-X) 
branch indicator and branch to a seek rou­
tine. 

Module overflow detection (byte 10, bit 
1 off in MPX) is accomplished by comparing 
the Disk control Field Module Value to a 
corresponding Module value that is preset 
in the MPX Auxiliary Storage. Module 
values are: 

1400 
Drive Number MPX Location Normal Value 

o 

2 

4 

6 

8 

11 

12 

13 

14 

15 

00 

00 

00 

00 

00 

The module values are normally set to 00 so 
that Changes in module value can be detect­
ed, and abnormal module values written by 
the disk-label utility program will not 
present a problem. 

The operator must set the module values 
into the MPX manua lly as required by the 
operation to be preformed. When a module 
mismatch is detected, a coded stop occurs 
displaying 60 in the MSDR. 

Module overflow or mismatch detection 

can be made inactive by setting MPX byte 10 
bit 1 to 1. 

Missing Address Mark Detection: The 
compatibility microprogram checks that the 
last record number read into memory on 
address ops is 16 or greater. If the last 
record number is less than 16, it is 
assumed possible that address marks might 
have been missed, and the No Address Com­
pare (X) branch indicator is set. 

Zero the DCF 6th Digit: When reading 
with indelible addresses into main memory, 
the 6th digit of the Disk Control Field is 
set to zero. This prevents residual char­
acters in main memory from being trans­
ferred to tape or other permanent records. 

READ BACK CHECK (RBC). Read Back Check 
interlock is provided to enSure that a RBC 
instruction follows each write instruction. 
If an instruction other than RBC follows a 
write operation, the instruction is not 
executed and the system returns to I cycles 
and stops. 

It is possible to override RBC interlock 
for testing purposes by altering a branch 
condition in the microprogram. Refer to 
CAS logic page QH301 address ID06. The 
statement Z=O must be changed to Z=l. 
Remember to restore the original card upon 
completion of testing. 

Word Marks and Zone Bits in Control Fields. 
Disk Control Fields: The Disk Control 
Field word marks, zone bits, and numeric 
values are unaltered during the execution 
of Read/Write operations with indelible 
addresses because no arithmetics are per­
formed On the DCF. 

Sector Count Field: The sector count is 
decremented each time a record is trans­
ferred to or from a disk. The sector count 
field is modified to conform with 1400 
series arithmetic operations as follows: 

Load Mode: Zone bits and word marks are 
removed from the sector count 
field. 

Move Mode: Zone bits are removed, word 
marks are retained in the sector 
count field. 

At the end of a Read or Write 
operation--(free of error conditions), the 
final A-Star value is BBB+9. 

Read/Write Operations, Sector Mode. 

This operation is a normal customer appli­
cation. 

2030 FETOM (9/1/66) 4-71 



Features 

As previously stated, a Head Seek com­
mand precedes all Read/Write commands. A 
Search Equal identification (ID) command is 
issued to emulate an Address Compare. The 
record number in the search argument wi 11 
be the binary equivalent of the 1400 series 
record number, plus 1. Data record numbers 
on a disk are 1 through 20. 

The head number in a search argument 
will be the binary equivalent of the 1400 
series head number in the DCF. The cylin­
der value in a search argument will be the 
binary equivalent of the 1400 series cylin­
der number in DCF plus 1. 

SCAN OPERATIONS. The Scan Feature is 
standard with the Disk Compatibility Sub­
feature. This scan is independent of the 
Scan Feature provided by the File Control 
Unit. 

OVERFLOW CONDITIONS. This section discuss­
es the overflow conditions affecting Head, 
Cylinder and Module values. 

Head - When execution of a Read/Write oper­
ation requires Head switching, the multi­
track bit is set on. This causes the next 
head to search the first record. After one 
search, the multi-track bit is reset. 

Cylinder - When the execution of a 
Read/Write operation goes beyond the last 
record on surface 9, the head value is set 
to 0 and the cylinder count is incremented 
by 1. This forces a No-Address-Compare 
branch condition to be set following the 
next search. At this time, WLR branch 
condition is also set (to simulate 1400 
operation) • 

Module - When the execution of a Read/Write 
operation exceeds the capacity of a drive 
unit or module, the Disk Control Field is 
updated to the first address on the next 
module. If the 5th drive unit gets a 
module overflow (exceeds 099999), the 
resulting Disk Control Field following 
incrementation is 000000. 

WORD MARKS AND ZONE BIT HANDLING--SECTOR 
MODE. The DCF word marks and zone bits are 
altered whenever the original sector count 
is two or greater. In load mode, the zone 
bits and word marks are removed from the 
Disk Control Field in main memory. This 
does not include the alternate module sel­
ect position which is not processed arith­
metically during incrementation. 

In move mode, Except for alternate 
module select position) the DCF Zone bits 
are removed and the wordmarks are saved in 
main memory. 

4-72 (9/1/66) 

The Sector count field word marks and 
zone bits and Final B-Star va lues are 
treated the same as for Indelible Address 
values. 

The final A-Star value upon error free 
completion of a Read/Write operation is 
BBB+6. 

ERROR CHECKING AND BRANCH CONDITIONS. 
Error conditions posted by the file control 
unit are interpreted and translated into 
1400 series branch conditions as follows 
(Branch Byte 98 in LS). 

o 

1 

2 

3 

4 

5 

Condition 

No Address Compare 

Busy 

Wrong Length Record 

Any Disk Condition 

Parity 

Not Ready 

6 RBC Interlock is On 

Symbol 

X 

\. 

w 

y 

v 

N 

A unit check posted by the file control 
unit as a response to a 2030 mode .file 
command (initial status) is interpreted 
directly as a not ready condition and the 
not ready branch condition is set. 

When a unit check is posted by the file 
control unit as a part of ending status, a 
sense command is issued to the file control 
unit, the results are examined and corres­
ponding branch conditions are set. Sense 
byte interpretation is as follows: 

Sense Byte Sense Bit 1400 Equivalent 

o (MPX 80) 0 N 

1 N 

2 V 

3 N or V 

4 V 

5 V 

6 Defective Track, go to 
Alternate Track 

7 N 

1 (MPX 81) 0 Not Checked; Duplicate 
In.formation 

1 N 



Features 

2 X, w 

3 Not Checked; Duplicate 
Information 

4 X 

5 Not Checked; Duplicate 
Information 

6 Unused 

7 Not Checked; 2030 
Feature 

2 (MPX 82) 0 N 

1 Unused 

2 V 

3 N 

4 N 

5 Unused 

6 Unused 

7 Unused 

3 (MPX 83) Byte not CE Use 

Examined 

Some branch conditions are recognized 
directly or evaluated during the execution 
of file commands. Busy can be recognized 
when posted during initial status in the 
initial selection sequence. Busy can be 
recognized as a short busy signal sequence 
when the disk is being formatted. 

If Busy is caused by a microprogram 
decision (example: busy because of a seek 
to an alternate track) the microprogram 
will loop in the initial selection sequence 
until the busy is cleared, then issue the 
final command. 

If Busy occurs under conditions that the 
macro-programmer would not anticipate 
(example: A RBC instruction is specified 
by the macro-programmer, and the programmer 
expects the file to be not busy), the 
microprogram must take the initiative, 
looping until the busy condition is 
cleared, then re-issue the command. 

If a Busy and Device End are encountered 
during initial status, the unit in question 
is not busy as soon as the Device End is 
accepted. In this case, Device End is 
accepted and the file command is set to the 
File control Unit. This is a convenient 
way to clear seek completes following the 
first seek of a file. 

In situations where a macroprogrammer 
can anticipate a Busy condition, the Busy 
Branch condition is set when a Busy condi­
tion is detected. 

For Wrong-Length Record, a counter is 
set for each data transfer and decremented 
during the data transfer. When the group 
mark with a word mark in main storage and a 
count of 0 do not coincide, the wrong­
Length Record (WLR) branch condition is 
set. 

On scan operations, WLR is set only if 
the group mark with word mark fails to 
precede the end of data field by two bytes 
or more. 

MODE CHECKING. Checking is done to ensure 
that records are read from a file in the 
same mode as they were written on the file. 

Read Load MOde Check--The 91st data 
character is read from the disk and exam­
ined for a word mark. If the record was 
written in Load Mode, the 91st character 
should contain a word mark. If this 
requirement is not met, the validity condi­
tion is set to simulate 1400 series set­
ting. Reading full track record in load 
mode, the 2683rd character is examined. 

Read Move Mode Check--The 100th data char­
acter is examined for a'word mark. The 
lOOth character (and preceding 99 
characters) should not have a word mark. 
If this requirement is not met, the validi­
ty condition is set. Reading full track 
record in move mode, the 2980th character 
is examined. 

Alternate Track operation 

Alternate tracks can be assigned for any 
imperfect or damaged tracks on a disk pack. 
Provision is made to seek an alternate 
track when necessary, process, then return 
to the original track, either to continue 
processing with the next sequential head, 
or to end the operation (Figure 4-42). 

An alternate track situation is recog­
nized following an address compare opera­
tion (Search ID). 

2030 FETOK (9/1/66) 4-73 



Features 

Yes 

End Operation 

Figure 4-42. Alternate Track operations 

4-74 (9/1/66) 

ALTERNATE TRACK FORMATTING. Alternate 
track formatting (by a formatting program 
in 2030 mode) is prerequisite to alternate 
track operations in 1400 compatibility 
mode. 

Alternate tracks will normally be 
assigned to cylinders 201, 202, and 203, 
but this is not necessary on disks used 
only for 1400 file programs. 

An alternate track can have a head 
assignment different from the head value of 
the original track. It is possible to 
write other than normal indelible address 
cylinder values on an alternate track, but 
not an abnormal head value. 

A normal address is an address that 
could be expected to appear on the original 
track. 

CONSOLE INQUIRY (1050) 

When operating in 1400 compatibility mode, 
the 1050 performs the functions of the 1400 
inquiry station. Because the graphic rep­
resentation of 1400 system defined charac­
ter is not the same as the 1050 graphic 
representation of EBCDIC characters, some 
graphic conversion is necessary to obtain 
the correct character printout for 1400 
system characters. 

The microprogram converts the characters 
going to and coming from the 1050 in accor­
dance with 1400 graphic representation. 
For example, if a"?" (1100 0000) is sent 
to the 1050, it is first converted by the 
microprogram to 1100 0111 to comply with 
the special typehead. 

There is one operational difference 
between a 1447 on a 1400 system, and a 1050 
on a 2030 in compatibility mode. A charac­
ter in error on a typewriter read operation 
prints as an underscore (_) on a 1400 sys­
tem, but on the 1050, the character prints 
as the character it most closely resembles. 
However, the character in error presents an 
error condition to the 2030 that can be 
tested by the 1400 system object program. 

The special typehead should be used on 
the 1050 when in 1400 compatibility mode to 
get the correct character printout. 



l .... eatures 

1620 COMPATIBILITY 

• The 1620 Compatibility Feature consists of: 

A 4,032 position Read Only storage (ROS) 

A 1620 Emulator Program 

ROS control field changes 

2030 console changes 

The purpose of the 1620 Compatibility Fea­
ture is to emulate the IBM 1620 system as 
closely as possible while processing 1620 
programs. There are restrictions and limi­
tations placed on the program being run and 
the 1620 system being emulated. These 
restrictions and limitations may be found 
by referring to IBM System/360Model 30 
1620 Compatibility Feature, Form A24-3365. 

The 4,032 position R05 is in addition to 
the standard ROS and is located to the rear 
of and adjacent to the standard ROS. This 
additional ROS contains all the micropro­
grams necessary to perform the logical, 
arithmetic, internal data transmission, and 
most of the program control instructions. 
The input-output instructions are handled 
by the compatibility microprogram up to the 
point of translation and format testing, 
the Input-Output Control Program (IOCP) 
takes control at this point. 

The IOCP is part of the 1620 Emulator 
Program which is loaded into the 2030 prior 
to any 1620 program or group of programs. 
The initialization deck consists of an 
initialization program, the IOCP, the Disk 
Format program and variable data control 
cards. 

The control cards contain info.rmation 
about the 1620 system being emulated and 
the System/360. Model 30 being used. This 
information, such as storage capacities, 
system configurations, and special feature 
information, is used by the 1620 compat­
ibility microprogram to properly process 
and direct the 1620 programs being run. 

The IOCP handles the data transmission 
between I/O units and the input-output 
areas in storage. After an input-output 
instruction is translated and recognized by 
the compatibility microprogram, control is 
transferred to the IOCP, the machine leaves 
compatibility mode, and the data is handled 
in 2030 mode. Translation of data is han­
dled by the compatibility microprogram. 

ROS control fields CH, CL, CM, and CS 
have changes made in their functions to 
perform specific operations needed by the 
1620 compatibility feature. These changes 
are brought about through 6 SLT cards; 

these cards and the ROS field changes are 
shown in Figure 4-43. 

5LT Cards Producing the Changes to the R05 Field 

Frame Gate Board Socket 

01 A Al L4 

01 A A2 J2 

01 A A3 L7 

01 A B2 B3 

01 A B2 B4 

01 A B2 C2 

ROS Field Changes 

1620 
ROS Field Decode Normal Function Compatibility Function 

CH 3 VOO 51 

4 511 RHVDD 

5 OPI RLVDD 

8 SI R2 

CL 3 AI RL = E 

4 5VI Gl 

6 IBC Rl 

C Gl R3 

CM 5 T-MN LT-MN 

C5 5 TREQ-Sl 1-51 

F K-FA O-SI 

Figure 4-43. ROS Control Field Changes 

The 2030 console is changed by altering 
the F and G rotary switches. The F and G 
switches allow the emulation of the 1620 
program switches, machine check switches, 
1311 write address switch, and control 
keys. The functions of the F and G switch­
es for 1620 compatibility mode are indicat­
ed .by the inner ring of labels. These 
compatibility functions are operative only 
when the 2030 is in compatibility mode and 
the machine is stopped (Figure 4-44). The 
F switch emulates the 1620 program switches 
1-4 by setting or resetting bits 4-7 of 9B 
LS. Program switch 1 is represented by bit 

2030 FETOH (9/1/66) 4-75 



Features 

1. switch 2 by bit 6. 3 by bit 5 and 4 by 
bit 4. 9B LS also contains the following 
1620 switches; Write-Address key. Disk 
switch. I/O switch and the Overflow switch. 
Write-Address key is represented by bit 0 
of 9B LS, Disk switch by bit 1. I/O switch 
by bit 2, and Overflow switch by bit 3. 
The remaining functions of switch G are not 
test type switches and perform a particular 
job immediately upon activation. Read 
Console Procedures in IBM 1620 Compat­
ibility Feature. Form A24-336S, for details 
of F and G switch functions. 

F 

F Switch - Sets or Resets 1620 Program Switches 1 - 4 
into Bits 4 - 7 of Byte at 9B LS 

G Switch - Sets or Resets 1620 Switches. Write Address (W/A), 
Disk (OK), Input Output (I/O), and 
Overflow (OF), into Bits 0 - 3 of Byte 
at 9B LS 

Bits 0 2 3 4 5 6 7 

98 LS I W/A I DK 11/0 I OF ! PS-4! PS-3! PS-2! PS-l 

Figure 4-44. F and G Switches 

PROGRAM DATA HANDLING AND STORING 

• The digit and flag portions of 1620 characters are separated 
and stored into specific areas of mapped storage • 

• The 1620 digits are stored two per byte and the flags are 
stored eight per byte. 

The mapped areas of 2030 storage for 1620 
program data vary with the storage size of 
the 1620 being emulated. 

1620 Digit 
Storage Size Locations 

(Decimal) (Hexadecimal) 
20.000 OEOO-3S0F 
40.000 OEOO-SC1F 
60,000 OEOO-832F 

Flag Locations 

(Hexadecimal) 
360o-3FC3 
6000-1381 
9000-A04B 

The 1620 digits are stored two per byte 
into the mapped digit area of storage. 
Bits 0-3 of a byte in the digit area 
receive the digit from an even 1620 
address. Bits 4-1 of the same byte receive 
the 1620 digit from the next higher 1620 
address which is odd. Example; the byte at 
OEOO contains the digits from 1620 storage 

4-76 (9/1/66) 

locations 00000 and 00001. The digit from 
1620 address 00000 is contained in bits 0-) 
and the digit from 1620 address 00001 is 
contained in bits 4-7. The flag portions 
of the 1620 characters are stored as bits 8 
per byte into the mapped flag a.rea of stor­
age. Example; the flag from the character 
at 1620 address 00000 is stored in the 0 
bit position of the first byte in the flag 
area. The 1 bit position of the first byte 
contains the flag from the 1620 character 
at 1620 address 00001. See Figure 4-45 for 
storage example. 



Features 

A 1620 Instruction Placed Into the Mapped Areas of Storage 

1620 Address 14 15 16 17 18 19 20 21 22 23 24 
I I 

1620 Characters 2 1 : 0 2 6 7 4 ! 0 4 8 9 

Op P Q 

Code Field Address Field Address 

Mapped area for digit portions 
of 1620 characters. 

(Assume 20K 1620, 16K 2030) 

2030 Address 
Hexadecimal 0E07 0E08 0E09 OEOA 0E08 OEOC 

I 21 I 02 

Mapped area for flag portions 
of 1620 characters. 

2030 Address 
Hexadecimal 3601 

67 40 48 95 

3602 

25 
I -, 

51 
I 
I 

3603 

BitP05itions Ixlxlxlxlxlxlolol 1010101o111o10101.101llxlxlxlxlxlxl 

;r /," ~ 
Flag-bit positions-OE07 0E08 0E09 OEOA 0E08 OEOC 
for digits at 

Figure 4-45. Digi t and Flag Storage 

MODE SW ITCHING 

• setting the 3 bit of the W register to 1 allows addressing 
of the additional 4K ROS. 

• The Vl3 hit on indicates the 2030 is in compatibility mode. 

• Setting of the W3 bit is accomplished by issuing one of the 
special System/360 compatibility operation codes, or by the 
F switch on the console. 

The W3 bit may be turned on in three ways: 

1. Console switches. Setting the F switch 
on the console to any odd hexadecimal 
digit turns on W3 bit. 

2. Micro program control UV->WX. The 
status of U3 determines W3 when the 
roicro program statement UV->WX is used. 

3. ~icro program control CA->W. The sta­
tus of AA determines w3 when this 
statement is used. 

The 1620 compatibility program is pro­
perly entered after a stop of some kind, by 
dialing 1620 into the switches, pressing 
System Reset, ROAR reset, and the Start key 
in that order. If the machine had been 
properly initialized, and the LS and MPX 
auxiliary storage areas aSSigned to the 
compatibility feature had not been altered, 
the 1620 program should run. The program 
will start with the next sequential 
instruction. 

2030 FETOM (9/1/661 4-77 



Features 

SPECIAL COMPATIBILITY OP CODES 

• The Special Compatibility Op Codes a.re enabled by the Diag­
nose instruction • 

• There are five 99 type special op codes in the SI format, 
and three other special op codes in the RR format. 

The Diagnose instruction in the S1 format 
provides a means to enable and disable the 
special op codes. When the diagnose 
instruction is used, the displacement will 
contain the hexadecimal address 3CC and a 
base of o. When the immediate operand is 
80 the special op codes are enabled. When 
the immediate operand is 00, the special op 
codes are disabled and will cause a program 
interruption if used. 

To enable the special op codes use; 
838003CC 

To disable the special op codes use; 
830003cc 

The 99 op codes in the S1 format and 
their functions are as follows: 

1. 99 00 B+D, Loads 512 bytes of informa­
tion into the auxiliary storage areas 
listed as MPX and LS for compatibility 
mode. Loading takes place from 2030 
main storage, starting at the address 
specified by the B+D effective address. 

2. 99 10 0 000, branches to 1620 1/cycles 
and executes these instructions located 
at ODEO. These three instructions are; 
clear mapped core, read a card, and 
branch to 1620 address 0 (OEOO 1620 
mapped digit area). This routine is 
the initial program load from cards. 

3. 99 30 0 000, branches to 1620 I cycles 
and executes three instructions located 
at ODFO. These three instructions are; 
clear mapped core, read from the typew­
riter, and branch to 1620 address 0 
(OEOO 1620 mapped digit area). This 
routine is the initial insert from 
typewriter. 

4. 99 2R B+ 0, Reads a byte from auxiliary 
storage and stores it at a 2030 main 
storage location specified by B+D·. The 
low digit of the second byte of this 
instruction deSignates one of the gen­
eral registers. The general register 
contains in its low byte the address 
coordinator of a byte in auxiliary 
storage. The high byte of the general 
register contains a code to indicate 
the auxiliary storage area to be 
addressed; 00 = M/LS, 01 = LS, 02 = 

4-78 (9/1/66) 

MPX, (these mnemonics are the 1620 
compatibility designations). 

5. 99 6R B+D, Reads a byte from 2030 main 
storage designated by B+D, and stores 
it into an auxiliary storage area. The 
auxiliary storage address is derived in 
the same manner as for the 99 2R B+D 
instruction. 

The three special op codes in the RR 
format and their functions are: 

1. OCR 1 Rz , issued by the 10CP program to 
switch to 1620 compatibility mode and 
enter the move and translate micropro­
gram. The R1, R2 field of this 
instruction contains the routine poin­
ter that indicates to the move and 
translate microprogram the proper rou­
tine to execute (Figure 4-46). 

2. ODR1 Ra issued by the 10CP to enable a 
1620 mode system interlock. The 
machine stops in 1620 compatibility 
mode at ROS address 10FF. The two 
hexadecimal characters specified in the 
R1, R2 fields of this instruction are 
displayed in the MSAR (Figure 4-46). 
Pressing the start button returns con­
trol to the next System/360 instruction 
of the IOCP. 

3. OER1 Rz , issued by the 10CP to switch to 
1620 compatibility mode and enter some 
disk operation. The code determining 
the disk operation to be performed is 
in the R1, R2 field of this instruction 
(Figure 4-46). 



Features 

OCXX Operation Code Modifiers 

Modifier XX Routine to Perform 

00 Alpha Output 

20 Numeric Output 

OC Binary Input 

04 Alpha Input 

24 Numeric Input 

64 Numeric Input (Flagged ChC!lracter on Type) 

ODXX Operation Code Modifiers 

Modifier XX Causes for Stop 

20 Invalid Typewriter Control 

21 No Device Address 

22 Machine Check 

30 I/O Release 

33 Program Check 

44 Invali d Input Command 

55 Invalid I/O Device Code 

77 Error in Reading Overlay fram Disk 

88 Paper- Tape Overrun 

FO Reader Check Stop 

F5 Paper-Tape Read 

F6 Card Punch 

F7 Card Read 

F8 Printer 
Device Not Available 

F9 Disk Drive 0 

FA Disk Drive 1 

FB Disk Drive 2 

FC Disk Drive 3 

FD Disk Track Read or Write Error 

OEXX Operatian Code Modifiers 

Modifier XX Rautine ---

00 Go to 1620 I-Cycles 

11 Disk Sector Mode Interrupt 

20 Disk Track Mode, Data Transfer to Buffer 

22 Disk Track Mode, Data Transfer to Mapped Core 

28 WLRC Disk Track Mode, Data Transfer to Buffer 

2A WLRC Disk Track Mode, Data Transfer to Mapped Core 

• Figure 4-46. Special Op Code Modifiers 

2030 FETOM (6/67) 4-79 



Features 

AUXILIARY STORAGE 1620 COMPATIBILITY MODE 

• Two 256 byte Auxiliary Storage areas are needed by the 1620 
Compatibility Feature. 

The Auxiliary storage areas assigned to the 
1620 Compatibility Feature are designated 
by the mnemonics MPX and LS (Figure 4-47). 
The 2 auxiliary storage areas contain 
address and op code translation tables, 
special characters, index registers, 
instruction counters, and other pertinent 
data for use by the 1620 compatibility 
feature. 

1620 
Compatibility 

2030 Mode Desi gnation 

MPXO 

MPX1 MPX 

MPX2 LS 

LS MILS 

16K 

1620 
Compatibility 

2030 Mode Designation 

MPXO 

MPX1 

MPX2 

MPX3 

MPX4 

MPX5 MPX 

MPX6 LS 

LS MILS 

32K or 64K 

Figure 4-47. Auxiliary storage Designa­
tions 

The 2030 auxiliary storage area labeled 
LS is used by the 1620 compatibility fea­
ture during I/O operations. General Reg­
isters are used in the following manner: 

4-80 (9/1/66 ) 

General 
Register 

2 

3 

4 

5 

6 

7 

8 

contains the character count 
less one during data transmis­
sion in I/O operations. 

contains the current buffer 
address 

ContainS the I/O indicators 

Contains the current flag mask 
and flag address 

Contains the current digit 
address 

Contains the flevice code 

Contains the routine code. 

Bit 1 of the byte at 8C 2030 LS when set to 
one indicates to the 2030 that the next 
instruction should be taken from the 
address in the bytes at A9, AA of 2030 LS. 
If the bit is zero the next instruction 
will be taken from the address in the IJ 
registers. 

The byte at BB 2030 LS contains the 
condition codes as set by the Move and 
Translate microprogram, before it branches 
to the IOCP. These condition code settings 
in BB 2030 LS are; 

Bit 0 = 1, Record Mark or Group Mark 
detected. 

Bit 1 = 1, Wrap detected. 

Bit 2 = 1, Invalid character detected. 

Bit 3 1, count equal zero. 



Features 

I-CYCLES 

• The 1620 operation codes are translated to bit significant 
by table lookup. 

• Flag analysis, address conversion, and sign and field length 
routines are performed for most instructions. 

• Indexing and or Indirect addressing is performed if desig­
nated. 

The translation of the 1620 operation code 
is done by table lookup. The two digit 
1620 operation code is used as the low byte 
of an address that reads out an operation 
code from a table located in the MPX Auxil­
iary Storage area (Figure 4-48). The 1620 
operation codes are translated to obtain 
codes which may be more fully used for 
branching through the microprogram. 

Once the 1620 operation code is trans­
lated and placed in the operation register, 
various paths are taken. The different 
types of operations require various methods 
of setting up data and registers for accom­
plishing the operation designated (Figure 
4-49). See I-Cycle Flowcharts in IBM 1620 
Compatibility Feature Diagram Manual, Form 
Y25-3478, for I-Cycle detail~. 

o 2 3 4 5 6 7 8 9 A B C D E 

ox De~ice D~-
pendent Char-

lX acters for 
Alpha Output 

2X Operation Code 

3X ... 
I I I ... - - . ~ 

Translation Table ...2 Qj 3 :l 
- .~- (IJ 

g>- 0-
tt >-c.: l-

4X 

5X 

6X 

7X 
i 

8X 

9X 

AX 

BX Address-Conversion Table 
High Byte 

CX Thousands and Ten Thousands 

DX 
Specia I Characters for 
Alpha Output 

EX 

FX 

Other Information Contained in MPX Auxiliary Storage Area is: 
Co-ordi nates Contents 

8A} --
8B Instruction Counter Saved by the BT Instruction 

9A} 
9B 
9C 
9D 
9E 

AB} 
AC 

Instruction Counter Saved by the Save Operation 

High 2 Digits of Highest Flag Byte Address 
Low 2 Digits of Highest Flag-Byte Address 
High-Order Byte of Field Length for TF or BT Instructions Only 

Size of Machine in Hexadecimal 

Figure 4-48. MPX Auxilia ry Storage 

F 

r--

-

2030 FETOM (9/1/6&) 4-81 



Features 

Read the 1620 
Operation Code From 
Mapped Core 

I 
Translate the 1620 
Op Code to Bit 
Significant Form 

I 
Test Op Code Category 
To Determine the Next 
Function to be Performed 

I 
Test F lags of Addresses 
To Determine Whether 
Indexing or Indirect 
Addressing Will Be Per-
formed 

I 
Convert 1620 Addresses 
To Hexadecimal. (Not 
Changed in Mapped Core) 

I 
Perform Sign and Field-
Length Routines If Required 
By Op Code 

I 
Branch to Various Execution 
Routines, Determined By Op 
Code Analysis 

Figure 4-49. I-Cycle Objective Flow 

Flag analysis is performed for Q and P 
addresses for most of the 1620 operations. 
There are certain operations however that 
do not require this information for both 
addresses. 

There are two Instruction counters which 
are used primarily during I cycles; one 
contains the hexadecimal digit address of 
the operation code portion of the instruc­
tion to be executed. This counter is 
updated to address the lowest two Q-address 

4-82 ( 9/1/66) 

digits once the 1620 operation code has 
been read out of storage. The other 
instruction counter is called the Flag 
Instruction counter and contains the 
address of the byte in mapped flag storage 
which has the flags for the p~ and P3 
digits of the instruction that is to be 
executed. 

The flags are tested (normally for the 
Q-address first) to determine if indexing 
and or indirect addressing is to be done. 
If indexing is designated and an index band 
has been selected, the contents of the 
index register called for is decimally 
added to the address being operated on. 
The result becomes the new address and is 
now translated to its hexadecimal equival­
ent by table lookup (Figures 4-48 and 
4-50). This hexadecimal address may now be 
used to read out an indirect address if 
indirect addressing was called for during 
the flag analysis. The new address (which 
will be a 5 digit 1620 address) is tested 
for indexing, and indirect addressing, and 
operated on. This sequence continues until 
an address is obtained which has no indi­
rect or indexing flags. 

The sign and field length routine is 
performed for the instructions that require 
this information. The signs of both fields 
are found if required, and are stored as 
status bits for use in the execution phase. 
The field length is determined for one or 
both of the fields and is saved for use in 
the execution phase. The field length is 
found by computing the flag address of the 
low order digit of a field and ~earching 
right to left for the field limiting flag. 
A digit counter keeps count of the number 
of flag post tions scanned before a limiting 
flag is found. This counter then contains 
the correct field length and is located in 
LS Auxiliary storage for use during 
instruction execution. For an example of 
an instruction processed in 1620 compat­
ibility mode, see Figure 4-51. 



Features 

ox 

1X 

2X 

3X 

4X 

5X 

6X 

7X 

8X 

9X 

AX 

BX 

CX 

DX 

EX 

FX 

o 2 3 4 5 6 7 8 9 

Address Conversion Table 
Tens and Hundreds 

Address Conversion Table 
Low Byte 
Thousands and Ten Thousands 

Figure 4-50. LS Auxiliary storage 

1620 Representation of a Transmit Field Instruction 

1620 Stor~ge Representation (Assume 1620 Specified as 20K) 

A B C D E F 

,....g' ,....g' ,....g' g' 

~ a. o :J o :J ,....:J 
~ a... ~ a... o a... 

I- I '" I - ~ 
'" ~ 

0 0 I 

t- a..._ 0 
0...- 0..-
~ ~ ~ 
0:> 0:> 0:> 

~-~-~-~-
CD CD 
o a. 0 
..... --n- ..... -a.-
~ c :l- Q 
(Q-:::~~=1-"_'&_ 

3'"~ a. a... a.~ 5..> 
g-O"'CD~CDo.../1)O'" 
;,m;,~·;,~ ;,~-
~. a.~. a. .~. ~ ~. ~ _ 
~ ~ ~ ~~ 
;: '" CII '" 

Special Characters for 
Alpha or Numeric Input-

I I I I I 

1620 Address 200 201 202 203 204 205 206 207 208 209 210 211 

Transmit Field Instruction 2 6 4 2 5 3 3 2" 6 

1620 Address 

P-Data Field 

Op Code P-Field Address Q-Field Address 

Flag at 209 indicates a call for index register 
2. Assume Band 1 selected. 

14246 14247 14248 14249 14250 14251 14252 

o 2 4 9 2 6 8 

8 

14253 

7 

1620 Address 19923 19924 19925 19926 19927 19928 This is Q-Field address 
after indexing. 

Q-Data Field 3 4 

1620 Address 310 311 

Index Register 2 Band 1 o 6 

1620 Address 14246 14247 

P-Data Field After Execution 0 2 

8 

312 

6 

14248 

1) 

5 

313 

6 

'9 

314 

o 

14249 14250 14251 

3 4 8 

Figure 4-51. Instruction Example (Part 1 of 2) 

14252 14253 

5 "9 

Other Information Contained in LS Auxiliary 
Storage Area is: 

Co-ordinates Contents 

8A,8B Instruction Counter 

8C,8D Flag Instruction Counter 

8E Indirect and Index 
Indicators 

8F Field-length Low-order 
Byte for TF or BT 
(High Byte in 9E MPX) 

9A Arithmetic Indicators 

9B Console Switches 

9C,9D Flag Bas!,! Address 

9F Flag Bit Mask for Sign 
and Field Length 

AA, BB Highest Digit Address 

2030 FE TOM (9/1/66) 4-83 



.f: I'%j 
I ..... 

ex> I.Q 
.f: C 

Ii 
CD 

~ 
I\C I 

" U1 
j-l ..... 
...... 
C7\ 
C7\ 

H 
::3 
en 
rt 
1'1 
C 
0 
rt .... 
0 
::3 

t2] 

~ 
r6 
r; 
~ 
OJ 

:+ 
tv 

0 
HI 

~ ..... 

Transmit Field Instruction Represented in 2030 Storage 

Digit Address Hexadecimal 0E64 0E65 0E66 0E67 
,----, r---l ,--, ,--, 

0E68 
r---l 

0E69 
r---l 

26142531 3 2 6 8 

OpCode P-Address Q-Address 

Instruction Digit Flag Address 3619 361A 
0000 0000 0100 0000 

Transmit Field Procedure 

1. Do table lookup using 1620 Op 
code as low-order MPX address, 
read out translated OP code. 

2. Scan Q-field flag area for flags. 
Flag is found for Q9 digit; this 
signifies index register 2 selected. 

3. Test 8E LS to determine what index 
band has been selected. A branch 
and select instruction given before 
this instruction selects a band, and 
this information is placed in 8E LS. 

4. Decimally add the Q-field address and 
the contents of the index register, taking 
into account the sign, if any, of the in­
dex register. Band 1 had been selected. 
This addition does not affect the Q-field 
address of the instruction in storage. 

5. Convert Q-field address (effective) 
to hexadecimal. This address points 
to units digit. 

6. Test the P-field address for flags, none 
are found, convert P-field address to 
hexadecimal. 

t 
Flag From Q9 Digit 

16200p code 
Translated op code 

Hex flag addressES 
3619 361A 

00 00000 0 0100 0000 
---~~ . --P-Flags Q-Flags 

26 
30 

8E LS I 1 1 0 0 0 1 0 0 I 
~~ 

Index band Indirect 
Indicators Addresssing 

Indicators 

0= Band 0 
C= Band 1 
D = Band 2 

0= Indirect 
4 = Indirect 

Index 2 0E9B 0E9C 0E9D 
B::md 1 o 6 6 6 0 

Q-field 
Address 1 3 2 6 8 

1 9 9 2 8 

Effective Q-field address (1620) 

19928 

19928 effective 1620 Q-field address 
34EC effective 2030 Q-field address 

14253 1620 P-field address 
29D6 2030 P-field address 

Transmit Field Procedure 

7. Compute Q-field flag address. Through 
computation the flag position for units 
digit is found to be bit 0 of 3FBB. Read 
out next lower flag byte for remaining Q­
flag positions. 

8. Retain flag for units digit of Q-field as sign 
of Q-field. 

9. Scan Q-field flag area for field limiting flag, 
increment digit counter for every flag position 
read. 

10. Compute P-field flag address. Computation 
indicates units - digit flag position is lo­
cated in bit 5 of 3CF5. This is all the in­
formation about the P-field neede for transmit 
field. 

11. Set the flag of the P-field units digit equal to 
the flag of the Q-field units digit (Q field sign). 
Clear P-flag area according to Q-field length. 
Set a flag in the high-order P-field flag area 
according to the Q-field length. 

12. Transmit Q-field digits to P-field until 
digit counter steps to zero. Q-field 
remains un changed. 

Q-field flag byte which contains flag 
position for units digit. 

3FBB 

1000 0000 

/ 
Flag for 
units 3FBA 
digit (Sign) 

0001 0000 

Flag for / 
field limitation 

Q-Units digit flag -- S2 

3FBA 
00010000 

3FBB 
10000000 
I 

Q-field flag area scan 

8FLS is Digit counter = 6 

P-field flag byte containing units digit flag. 

3CF5 
o 7 
00000000 

t 
P-units digit flag position. 

3CF5 
o 7 
00000100 

t 
Sign of Q-field 

3CF5 
o 7 
00000100 
CT;;"flags 

3CF5 
o 7 
10000100 

High10rder new P-field 

effective 
Q-field 

P-field 

34E9 34EA 34EB 34EC 
'x6"1 f341 ~ f9X1 

I 
~~LL.3 
29D4 29D5 29D6 



Features 

DISK FILE FORMATS FOR THE 1620 COMPATIBILITY FEATURE 

• The IBM 1311 Disk storage Drive is emulated ~ the IBM 2311 
Disk Storage Drive • 

• The 2311 track format is changed to give maximum performance 
for the 1620 Compatibility Feature. 

The format of the 2311 disk packs are 
changed by a disk file format program which 
is supplied with the 1620 compatibility 
feature. Each 1311 track is mapped onto 
the corresponding track of the correspond­
ing cylinder on the 2311. The alternating 
arrangement of the records on the track and 
the addition of dummy records provides for 
maximum performance when doing multiple 
sector disk operations (Figure 4-52). 

The 1311 cylinders 00 thru 99 are mapped 
onto cylinders 100-199 on the 2311. cylin­
ders 00 thru 98 of the 2311 are not res­
tricted as to contents and are not used by 
the 1620 compatibility feature. cylinder 
99 track 0 of the 2311 contains the IOCP 
program which is also contained in main 
storage. Track 1 contains the disk track 
IOCP for a 16K 2030. This disk track IOCP 
is called into main storage whenever a disk 

2311 TRACK 

J Home Record Dummy Sector Sector Dummy Sector 

( Address Zero Record Record Record Record Record 
1 0 10 2 1 

'Go s p 
Home Address = Address of Track 
Record Zero = 8 Bytes of Zeros 

track operation is called for (Figure 
4-53). Upon completion of the disk track 
operation, the Ioep program is called back 
into main storage from Track 0 of cylinder 
99 and control is given to the micropro­
gram. Track 2 and 3 of cylinder 99 contain 
the disk track programs for 32K and 64K 
sizes of 2030. One of these routines is 
called in during the initialization period 
and remains in main storage until cleared 
out or written over. 

The sector records (20 per track) are 
127 bytes in length and contain the 1311 
sector address, and the 100 digit data 
record with associated flag bits. The 
dummy records are 101 bytes in length and 
contain all F·s for a 1311 sector address 
(invalid) and a data field of all zero's 
(Figure 4-54). The dummy records are read, 
only in track mode, but are ignored. 

Sector ) 
Record 

Dummy Sector Sector 
, 

Record Record Record 
11 r 10 9 19 

Figure 4-52. 2311 Track Format for 1620 Compatibility Feature 

2030 FETOH (9/1/66) 4-85 



Features 

Map of 16K 2030 for 20K 1620 

Address Use 

0000 Hardware Locations 
0088 

008C Overlay Area * 
OB03 

0804 Non-Disk Track and 
ODDF Disk Track IOCP 

ODEO 1620lnitilization 
ODFF Instructions 

a: 00 1620 Digits 
350F 

3510 1620 Digit Ending 
3515 Characters 

3516 Not Used 
351 F 

3520 Auxiliary Storage Re-
355F store 

3560 Not Used 
35F3 

35F4 Initilization Instruction 
35FF Flags 

3600 1620 Digit Flags 
3FC3 

3FC4 Not Used 
3FFF 

*Overlayarea for any instruction 
other than disk full track 

008C Non-Disk Track IOCP 
0908 

090C Maintenance Area 
OB03 

*Overlay area for disk full track 

008C Disk Track IOCP 
QA.5 F 

OA60 Maintenance Area 
OBOC 

Mop of 32K 2030 for 40K 1620 

Address Use 

0000 Hardware Locations 
0088 

008C Non-Disk Track 
0908 IOCP 

090C Maintenance Area 
0803 

0804 Non-Disk Track and 
ODDF Disk Track IOCP 

ODEO 1620lnitilization 
ODFF Instructions 

OEOO 1620 Digits 
5C1F 

5C20 1620 Digit Ending 
5C25 Characters 

5C26 Not Used 
5FF3 

5FF4 Initilization Instruction 
5FFF Flags 

6000 1620 Digit Flags 
7387 

7388 Not Used 
739F 

73A0 Disk Track IOCP 
7D5F 

7060 Maintenance Area 
7EOD 

7EOE Not Used 
7EFF 

• Figure 4-53. Core Storage Maps 

4-86 (6/67) 

Map of 64K 2030 for 60K 1620 

.Address Use 

0000 Hardware Locations 
0088 

OOSC Non-Disk Track JOCP 
09D8 

09DC Maintenance Area 
0803 

OB04 Non-Disk Track and 
ODDF Disk Track IOCP 

ODEO 1620lnitilization 
ODFF Instructions 

OEOO 1620 Digits 
832F 

8330 1620 Digit Ending 
8335 Characters 

8336 Not Used 
8FF3 

8FF4 Initilization In-
8FFF struction Flags 

9000 1620 Digit Flags 
AD4B 

AD4C Not Used 
AFFF 

8000 Disk Track JOCP 
B9BF 

89CO Maintenance Area 
BA6D 

BA6E Not Used 
FFFF 



Features 

11 18 63 

50 Bytes of Digits 

Digits and Flags are Left Adjusted 

Count 
Marker ~-...' 

~---') 
Bytes 5 2 2 

SECTOR RECORD 

Key 
Not Identification Not Data Length 
Used Field Used Length Must be 

00 

Byte 1 Byte 2 Byte 3 Byte 4 Byte 5 
I 

I Read: ......... ......... I 1311 Data Area Length 3F (Hex) 

Cyclic 
Check 

~:~:-~ Sector Address-
LL.OI in Decimal I 

I 

Only:~:~ 
Flag !LL.O 

I 

Unused . for Sector Data 26 (Hex) for 
Dummy Data 

Sector Address for 
Dummy Records is 
All F's 

DUMMY RECORD 

Bytes 2 1 , 11 18 

Marker Count Gap 

38 

All Zeros 

Figure 4-54. Sector and Dummy Records 

DISK OPERATIONS 

2 

Cyclic 
Check 

29 

Gap 

• Disk Operations are executed by a combination of compat­
ibility microprogramming and the regular IOCP or disk track 
IOCP. 

• All Seek operations are direct. 

• The 1311 Write Address Switch function is performed by the 0 
bit position in 9B LS Auxiliary storage. 

Gap 

2030 FETOM (9/1/66) 4-87 



Features 

Sector mode operations are executed by a 
combination of compatibility microprogram­
ming and the regular IOCP. The micropro­
gram controls the data flow between the 
buffer and mapped 1620 storage and checks 
the data for group marks if Wrong Length 
Record Check (WLRC) is specified. The 
microprogram also transfers the flags. 
properly aligning them according to the 
1620 address specified. The IOCP controls 
the transfer of data between the disk and 
the buffer. 

The microprogramming functions of data 
transfer and checking are performed while 
the disk is skipping over the two records 
adjacent to the sector record heiD} operat­
ed on. Once these microprogramming func­
tions have been performed. the next sequen­
tial sector record will be in position to 
be read or written. 

A sector mode write instruction is per­
formed only if the write Address switch 
(bit 0 of 9B LS) is off. If it is on and a 

NON DISK I/O OPERATIONS 

write sector mode is called for, the system 
stops and displays the stop code BO in the 
Main storage Address Register. pressing 
the start key causes the system to resume 
the program at the next sequential instruc­
tion. 

Track mode operations are executed by a 
combination of the compatibility micropro­
gram and the disk track Ioep. In any read 
full track operation, the entire track 
involved is read into a buffer by the disk 
track IOCP. The microprogram then trans­
fers the 20 sectors to mapped 1620 storage, 
checking for group marks for WLRC instruc­
tions, and aligning flags. 

A track mode write operation is executed 
only when the write Address switch is on 
(Bit 0 of 9B LS). If it is off and a write 
full track is called for, the system stops, 
displaying the stop code eo in the main 
storage address register. Pressing the 
Start key causes the system to resume the 
program at the next sequential instruction. 

• All data is handled by the compatibility microprogram and 
the IOCP. 

Daring I phase of a 1620 I/O operation, the 
compatibility microprogram scans the opera­
tion fields of the instruction and places 
the data in the general registers (Figure 
4-55). This information will be used by 
the Ioep, and the move and translate micro­
program routines for proper data handling, 

Register Number 

0 71 8 15 116 23124 31 

2 I I I Character 
I I ! Count - (CT) 
I I Buffer Address (BA) I 3 

I : 
I 

I 
1620 I/O Indicators (IN) 4 

5 Flag Mask (FM) I I F lag Address (FA) 

I I 
Digit Add~ess (DA) 

I I I 
6 

I 

I I Device Code I Pointer (DCP) 
I I I 

7 

I I I Routine 

I I ! Pointer (RP) 
8 

I I Start 1/<; Device 
I I 

15 

Figure 4-55. General Register Assignments 

4-88 (9/1/66) 

data placement, device recognition, and 
error detection. After the compatibility 
microprogram has set up the general reg­
isters, external interrupt is masked off 
and a switch is made to 2030 mode for 
entering the IOCP. 

CT 

BA 

IN 

FM,FA 

The count byte contains the number of data characters minus 
1 to be processed by the move and translate microprogram. 
Set up by the 10CP. 

Buffer address set up by the 10CP for use by the move and 
translate microprogram. 

I/O indicators set by the JOCP for testing by the 1620 micro­
program. 

The flag address is the address of the flag byte associated with 
the current digit address. The flag mask, in bits 0, 6, 7 of the 
mask byte indicates the bit of the flag byte at which the flag 
corresponding to the current digit address is found. 

DA The digit address is the current digit address in 1620 mapped 
core. 

DCP 

RP 

The device code pointer is set by the 1620 microprogram before 
entering the 10CP. 

The routine pointer is set by the 1620 microprogram; indicates 
to the 10CP the proper routine to be performed as stated by the 
operation code. 



Features 

The IOCP scans the contents of the gen­
eral registers and forms a single CCW or 
chain of CCw·s for the particular write or 
read operation to be performed. 

If the operation is a write operation. 
the IOCP will transfer control back to the 
compatibility microprogram for the move and 
translate routine which fills the buffer. 
Control is now given to the IOCP and the 
start I/O command is issued. The 2030 
enters wait state until a channel end 

MOVE AND TRANSLATE ROUTINES 

interrupt is received, the IOCP will then 
branch back to 1620 compatibility mode I 
cycles. If the operation is a read, the 
IOCP will issue the start I/O command and 
enter wait state until channel end inter­
rupt. When the I/O device has completed 
its transmission to the buffer, the IOCP 
gives control back to the compatibility 
microprogram. The proper move and tran­
slate routine is entered to read the infor­
mation from the buffer into the mapped area 
of storage. 

• The Move and Translate routines are part of 1620 compat­
ibility microprogram • 

• Entered from the IOCP by the execution of the special Opera­
tion Code OC. 

The Move and Translate routines move data 
to and from the buffer, translating the 
data to the proper format dependant on the 
device used and the mode of operation. 
There are four major routines: Alpha or 
Numeric input, Alpha out, Numeric out and 
Binary input. 

If the operation is an Alpha input, each 
character in the buffer is tested to deter­
mine if it is a special character. If the 
character is special, a table lookup is 
performed and the character found in the 
table is read and placed directly to the 
deSignated mapped area of storage. If the 
character is not special, the translate 
routine will translate the character to the 
proper 1620 coded alpha character and place 
it into the designated mapped area of stor­
age. 

For Numeric input, each character in the 
buffer is tested for special character 
format. If it is special, a table lookup 
is done and the digit portion of the char­
acter in the table is placed in mapped 
storage. A flag will be placed in the 
proper flag area if called for by the flag 
portion of the byte read out from the buf­
fer. If the character were not special, 
the low half of the buffer byte would be 
placed directly into mapped storage and a 
flag placed in the proper mapped flag area, 
if designated. For either special or regu­
lar characters, the proper f lag position in 
mapped storage will be reset if a flag is 
not called for by the byte in the buffer. 

For Alpha output, the characters to be 
written out are tested to determine if they 
are special. If yes, the special character 
alpha output table in the MPX Auxiliary 
Storage is scanned. If the character is 
not present, the device dependent table is 
referred to and the correct EBCDIC charac-

ter is written into the buffer. If the 
character is not found in either table, a 
blank is written into the buffer and the 
invalid character condition code is set in 
BB 2030 LS. For non special characters, 
direct translation to EBCDIC is performed 
and the translated character is written 
into the buffer. 

Binary input from the Paper Tape Reader 
is handled almost entirely ~ the IOCP. 
The IOCP reads in the paper tape character, 
checks for correct parity, translates the 
character to 1620 binary format and places 
the character in the buffer. The Move and 
Translate routine moves the 1620 binary 
character from the buffer to the proper 
digit area in mapped core (Figure 4-56)\_ 

I 
Bits of Translated 

1620 Paper Tape 
Paper Tape Buffer Character to 
Character Bit Positions 1620 Mapped Core 

EOl \ 

X 

0 

C ! IOCP reads chara-
cter, checks for 

8 parity, and trans-

4 
lates to binary 1620 
character 

2 

1 / 
*Set to 1 if parity bad 

Set to 0 if parity good 

0* 0 

1 X 

2 0 

3 8 

4 0 

5 4 

6 2 

7 1 

Figure 4-56. Binary Paper Tape Input 

2030 FETOM (9/1/66) 4-89 



Features 

If the IOCP detects a parity error, bit 
zero of the byte in error is set to one in 
the buffer. The move and translate routine 
checks the zero bits of the characters in 
the buffer before moving them to mapped 
storage. If an error is found the zero bit 
of the error byte is reset, the error byte 
is moved to mapped storage, the invalid 
character condition code is set in BB 
2030 LS, and control is given back to the 
IOCP. The IOCP tests the condition code 
and sets the read/check indicator on. Con­
trol is returned to the move and translate 
routine which continues to transmit the 
buffer characters to mapped storage. 

The Move and Translate routines are 
entered from the IOCP by the execution of 

ERROR-STOPS AND ERROR HANDLING 

the instruction OCXX. The value of xx 
determines the major routine to be entered. 

XX Function 

00 Alpha output 
04 Alpha input 
OC Binary input 
20 Numeric output 
24 Numeric input 
64 Numeric input (Flagged 

Character on Type) 

All data. except binary, is translated 
between EBCDIC in the buffer and 1620 data 
code (separate digit and flag areas) in 
mapped 1620 storage. 

• All programming and operational error stops are displayed in 
the MSAR as a stop code. 

• Other errors and conditions are displayed (Figure 4-57) on 
the 2030 console. 

The majority of the programming error stops 
should be handled by reloading the IOCP and 
the program being run to eliminate the 
possibility the program had been loaded 
incorrectly on the initial run. All con­
sole indications should be noted before and 

CARD READ OPERATION 

after program is rerun, to determine if the 
identical stop occurs. Refer to Figure 
4-58 for stop codes and stop conditions. 
Stops other than error stops are mainly for 
operational convenience. 

• Provisional Feed Feature must be installed on the 2821 for 
proper operation of card read in 1620 compatibility mode. 

The Provisional Feed circuit provides an 
automatic feed cycle and a select to the 
normal pocket after a 6 millisecond time­
out. The 6 millisecond timeout starts when 
the read-command-data transfer begins. 

The IOCP issues a stacker select canmand 
during this 6 millisecond timeout to allow 
an immediate card feed and normal pocket 
select. When the last card is read and the 
channel-end is received. the IOCP tests the 

4-90 (9/1/66) 

unit exception bit of the CSW and if on the 
IOCP sets the last card indicator (bit 23 
of general register 4). The IOCP, after 
every stacker select, returns control to 
1620 compatibility I cycles. 

The last card indication being set as 
the last card is read, eliminates the need 
for an extra read command to be issued to 
provide this information. 



Features 

Main Storage Address Register 

>-. 
a ~ T en thousands position of i- u 

~ CII 
next sequential instruction 0 

u or: 
CII U or: address, in decimal .... 

6 u c: 
'0 CII 

i 
c: 

CII U 0 > !tj Q. 
a 

.E 4: x 
V) W 

0 1 2 3 4 5 6 7 

Main Storage Data Register 

Switch Indicators 

~ ~ 0 ~ M N ~ ... 
3: 0 ~ 0 

V) V) V) V) 
Q. Q. Q. Q. 

0 1 2 3 4 5 6 7 

y 
From R Register 

B Register 

Thousands position of Hundreds position of next 
next sequential instruct- sequential instruction 
ion address, in decimal address, in decimal 

0 1 2 3 4 5 6 7 

Figure 4-57. Console Displays 

~ 
0 

;:;: 
v 
> 

0 
Qi 

""0 .: 
>.. 
u 

0 

0 

0 

~ 
u 

~ <II 
~ ~ or: u 

U CII U U 

~ or: CII CII 
II> U or: or: 

0:: II> U u 
I CII 

.~ .... 0:: -0 ""0 
...J ""0 ~ 

a '2 3: « CII 
0:: Q. 

1 2 3 4 5 6 

T 

If indicator display bit on, indicators 
shown above are displayed. If indicator 
display bit off, listed stop codes 
are displayed. 

ALU Output 

High Positive = FF 

Equal Zero = 99 

I 2 

Tens position of next 
sequential instruction 
address, in decimal 

1 2 

3 4 5 6 

1 
From Z Bus 

A Register 

Units position of next 
sequential instruction 
address, in decimal 

3 4 5 6 

2030 FETOM 

7 

7 

7 

(9/1/66) 4-91 



Features 

MSAR Tens and Units Positions Will Display Stop Codes If Indicator Display Bit Is Off 

Stop Code Condition 

01 Correct F or G switch operation executed 

02 Incorrect F or G switch operation executed (one switch 
not neutral) 

03 Entry into 1620 mode executed 

CJ7 Console stop key pressed, or rate switch set to INSTR STEP 
position 

IF Exponent flag error (no exponent limiting flag) 

20 Invalid typewriter control 

21 No device address 

22 Machine check 

2F Mantissa length error (not equal, too long) 

30 I/O Release (attention bit on) 

31 Invalid decimal data used in DTO and OTD or Wrap in DTO 

33 Program check 

3F Floating-point address check 

41 Quotient wrap 

44 

48 

4F 

51 

55 

5F 

61 

6F 

71 

77 

7F 

Invalid input command 

Halt instruction executed 

Storage wrap in transmit field 

Invalid decimal digit used as data for add, subtract, 
or compare. 

Incorrect I/O unit address 

Field length greater than 255 characters in TFL, BTFL, 
BTA, or BTAM 

Divide P-address is not less than 99 

No BT (or BTM) before a BB instruction 

Storage Wrap detected in sign and field-length routine 

Error in overlay from disk 

Storage Wrap on index execute 

81 Storage Wrap detected in a logic operation 

88 Paper Tape Overrun 

8F Invalid Band 0 selection 

90 Specified sector count is inval id 

91 Field longer than 255 digits detected in sign and 
field-length routine 

9F Invalid modifier in Branch and Select instruction 

• Figure 4-58. Stop Condition Codes 

4-92 (6/67) 

Stop Code Condition 

AO Specified 1620 storage address is odd 

AF Branch to an odd location attempted (1620 address) 

BO Write-Address switch is on (Bit 0 9B LS) 

Bl Storage wrap detected, right to left field operation 

BF Invalid decimal digit used in exponent 

CO Write Address switch is off (Bit a 9B LS) 

Cl Invalid decimal digit used in multiplicand (P-field) 

CF Addressed location not available in 2030 storage 

00 Disk-control field is at an odd address 

01 Invalid decimal digit used in multiplier (Q-field) 

OF Address wrap attempted in either direction, or invalid 
address 

EO I/o operation code incorrect 

El Product Area Wrap 

EF Invalid op code used 

Fa 

Fl 

F3 

F6 

F7 

F8 

F9 

FA 

FB 

FC 

FD 

FE 

Reader check stop 

Right to left wipe-out attempted, or an even alpha address 
used in TNF 

Typewriter Read 

\ 
Card Punch 

Card Read 

Printer 

J 

( 
Disk Drive 0 

Disk Drive 1 ( 

Disk Drive 2 

Disk Drive 3 
I 

Device Not Avai lable 

Disk Track read or write error 

Left to right wipe-out executed 



Power SUpplies 

CHAPTER 5. POwER SUPPLIES 

POWER-ON SEQUENCE (STEPPER SwITCH) 

• Information on I/O sequencing for processing units without 
the stepper switch can be found in the System/360 Model 30 
FUnctional Maintenance Diagrams, pages 5-14A and 5-14B • 

• Before power can be applied to the IBM 2030 processing unit, 
the over-voltage, over-current, and over-temperature condi­
tions must be normal and the high frequency 
inverter/converter oscillator must be running. 

Pressing the Power-on key picks RY3 to 
initiate the power-on sequence (Figures 
5-1, 5-2, and 5-3). Relay RY3 in turn 
picks contactor .K2 applying power to the 
blower motors and the converter-inverter. 

The inverter/converter output brings up 
all dc voltages except-30 volts (+40 volts 
on M2 machines) and the special -3 sequence 
voltage for the storage-protect feature. 
With +6 volts up, a point of RY3 picks RY4, 
the 6 volt sense relay. The pick of RY4 
causes contactor K3 to pick applying -30 
volts and the -3 volt sequence to the cir­
cuits. A point of RY4 eN/O) applies the 
control voltage to the Stepping switch that 
will power-on each I/O unit in sequence. 
The Stepping switch is advanced from the 
home position to the first I/O control 
position (position 1) when RY16 picks 
through the N/C cam contact (Figure 5-2). 
With the step to position 1, the cam turns 
and allows the N/O cam contact to close. 
At the same time, the Stepping switch 
(decks B and C) provides a circuit to pick 
the power-on relay(s) in the first I/O 
unit. This in turn closes the N/O points 
designated power-on-signal in (Figure 5-2). 

NOW, a circuit is made from the CPU 
control voltage, through the power-on­
signal NIO points, positon 1 of the 
Stepping switch (deck A), and the cam con­
tact N/O pOints, to again pick RY16. This 
advances the stepping switch to position 2 
and the cycle is repeated for the next I/O 
unit. 

When the Stepping switch has advanced 
through all wired I/O units, and all lID 
units have power on, the last unit to 
power-on advances the switch one position 
to the dummy plug position. This picks 
relay TOR1 to start a two-second time delay 
before removing system reset and turning on 
the system Power-on light. The stepping 
switch remains in this position until a 
power-off sequence is initiated. 

At the end of the two second time delay, 
the -3 volts is removed from the reset line 
by the pick of TOR! and relay RY5 picks to 
indicate that the processor is ready. 

2030 FETOM (9/1/66) 5-1 



Power Supplies 

24 Volts DC 
+ 

Power On Switch 

Power Off Switch 

RYl 

RY2 

All Thermal Contacts 
Thermal 

~ ______________________________ ~ __ ~TDRl 

f----'-. All Supplies 
v--':> Contacts in 

~ Pa.aliel 

RY3 

RY3 

x 

K3-4 
~ +6V DC 

c:t=Y_3--('l_~ 
+6V 
Sense 

Figure 5-1. Power On-Off Control 

5-2 (9/1/66) 

Convenience 
Outlet 

Over current 
Trip 

Thermal Trip 

Over current 
Sense 

Y 

Thermal 
Sense 

To I/o 
Power On 
Relays 

To DC Ground Bus 



Power Supplies 

Control 
Voltage 

RY-4 

Com Transfers 
Operating Strop 

Interrupt 
Points 

RY-16 
Cam Contacts 

I 2 
o 3 

B 0\ 
Control Voltage J 
Common 

\-------OX ~ 0 
25 24 

Control 
Voltage 

CPU 
I/O Control Jack 

Note X 

r-------------r---~ 

Control 
Voltage 

To Pick 
TORI 

RY-4 

Cam Transfers 
Operating Strop 

Control Voltage 
Common 

Interrupt 
Points 

I 2 00\ 

yl I-------------000 : J 
25 24 

I 2 00\ 

J 
25 

RY4-7 ~----Q---+-~ 

(Group af R8,RlO,RI2,and R14. 

Relays 
To Next I/o Position RY 9 (Group of R9,RIJ,RI3, and R15. ~

Y 8 Picked when CBI is on and 2030 
EPa ~ Power Cord is Attached to Line.) 

I/O Power On Relays fo---------- Picked while 2030 PWR is up.) 

Control Voltage Common 1---------------1 

Control 
Voltage 

Note X: 24 I/O Pasitions Possible 

* Cam Shown in the Home Position 

CPU 
I/o Control Jack 

r~ I/O EPO Control 
~ 2~--------~ 

3 r---<D-o-- Power - On 

:=======~7 ~ Signal 

Note X 

r-----------~----~ 

Figure 5-2. 

Dummy 
Plug 

TORI 
A Coil 

T a Next I/o Position 

(Group of R8,RIO,RI2,and R14. 

~
Y 8 Picked when CBI is on and 2030 

~:~ys~~--------- Power Cord is Attached to Line.) 

RY 9 (Group of R9,RII,RI3, and R15. 
I/o Power On Relays 1-----------1. Picked while 2030 PWR is up.) 

Control Voltage Common f---------------I 

. NoteX: 24 I/O Positions Possible 

* Cam Shown in the Home Position 

I/O Sequencing (Upper--Inv/Con, Lower--Mid-Pac) 

2030 FETOM (9/1/66) 5-3 



Power Supplies 

No Name Logic 

1 Power On Sw YZ041 n 
2 RY - 3 041 J 

3 K - 2 041 J 
4 RY - 4 041 I 

5 RY - 5 041 I 

6 K - 3 041 I 

7 Ry - 16 041 *J 

8 TDR - 1 041 

9 System Reset 042 r 
10 Power On Light 041 

* Time Varies with Number of I/O Units 

Figure 5-3. Power On Sequence 

Nc Name Logic 

1 Power Off Sw 041 n 
2 RY - 6 041 J 

3 TDR - 3 041 J 5 sec Delay 

4 K - 3 041 I 

5 RY - 4 041 l 

6 RY - 16 041 I 

7 RY - 3 041 I 

8 K - 2 041. I 
Figure 5-4. Power Off Sequence 

5-" (9/1/66) 

l 

1
2sec i 

I 

I 

l 

I 



Power Supplies 

POWER OFF SEQUENCE 

• When system power is turned off, RY4 performs two major 
functions: 

1. It removes the -30 volts from the storage unites). 

2. It advances the stepping switch to the home position. 

The Power-off key, besides picking RY6 to 
start the power-off sequence, starts a five 
second time delay. This delay prevents 
another power-on cycle for at least five 
seconds. Without the delay, damage to the 
Inverter/Converter power unit can occur if 
power-on is pressed immediately after 
power-off. 

Pressing the Power-off key on the con­
sole panel sequences power down in the CPU 
and the power-on control relays (Figures 
5-1 and 5-4). Power to all I/O units is 
dropped simultaneously. 

All data in core storage remains 
unchanged. If the allow-write latch is on 
at the time the Power-off key is pressed. a 
memory write is forced and the contents of 
the R-Register is inhibited into core. 

EMERGENCY POWER-OFF 

The EPO switch removes all power except the 
24 volt control power from the CPU and 
every I/O control unit attached to a chan­
nel simultaneously, and without sequencing. 

An emergency power-off can cause the 
data in core storage to be lost. 

OVERVOLTAGE OR OVERCURRENT SENSE 

Either of these conditions remove primary 
power from the inverter/converter and the 

blowers by initiating a normal power-off 
sequence. An indicator lights on the power 
supply module affected, or on the relay and 
connector panel. 

Power cannot be restored until the cause 
of the overload is corrected and the reset 
pushbutton, located on the high-frequency 
inverter, is pressed. 

OVER TEMPERATURE SENSE 

The thermal switches, located thr'oughout 
the CPU, remove primary power from the 
inVerter/converter and the blowers by a 
normal power-off sequence. 

The thermal trip light on the relay and 
connector panel remains on, and RY7 the 
thermal interlock relay re-picks, even 
though the thermal reset switch is pressed 
as long as the over-temperature condition 
exists. Power cannot be restored while any 
thermal switch is open. When the over­
temperature condition is corrected, power 
can be restored only after the thermal 
reset switch is pressed to pick RY2 and to 
drop RY7. 

POWER DISTRIBUTION 

Figure 5-5 shows the power distribution in 
the two existing models of the 2030 cPU. 

2030 FETOM (9/1/66) 5-5 



Power Supplies 

208 V or 230 V 

3-Phase 

Figure 5-5. 

Contactor K2 

Contactor K 1 

Transformer 
28 V AC 
Step Down 

Power Distribution 

5-6 (9/1/66) 

+ 60 M (M2) 

+ 18 V 

+6 V 

DC Dist. 

R/W Storage 

R/W Storage 
CCROS 

R/W Storage 
CCROS 

r-----------·Gate A 
+6 M Console 

1--_______ ""-_. Gate B 

-3V 

+3V 

- 30 M2-1 
+40VM2 

+3 V 

208 V AC 3-Phase _---4 Inverter/Converter or 
Mid Pac Transformer 

208 V AC 3-Phase 

208 V AC I-Phase 

Transformer 
7.25 V AC 
Ferro-Supply 

Convenience Outlet 

Distribution 

To Interval 
Timer, Audible 
Alarm, and 
Inverter/Converter 

Rectifier 
24V DC 

System 

Gate A 
Console 
R/W Storage 
CCROS 

R/W Storage 

Gate B Only 

To Blower Motor 

Distribution 

To Power Supply 

Blower Motors and 
M2 - I Heater 

To Console 

Indicator Lights 

To Power On-Off 

Controls 



Power Supplies 

POWER-ON SEQUENCE CMID-PAC) 

Before power can be applied to the 2030 
processing unit, the Thermal Trip Sense 
relay CRY1) must be energized, and the 
over-current sense circuitry must he 
normal. 

Pressing the Power-on switch picks relay 
3 through position 26A of RY-7 to initiate 
the power-on sequence (Figure 5-6 and 5-7). 
Voltage is fed to the Power-On key thru 
RY-7-26A to pick RY-3; once RY-3 is picked 
and latched up, RY-7 is free to move when 
it receives voltage via RY-4. This pre­
vents a Power-On before RY-7 has returned 
to its home position after a Power-Off has 
been initiated. 

The mid-pac blowers will run after CB-12 
trips. AC power does not drop, only the dc 
levels do. Relay 3 picks contactor K2, 
which causes power to be supplied to the 
blower motors and the mid-pac transformer. 
Relay 4 (+6v Sense) is picked when PS6 
supplies a +6 volts. Relay 4 and relay 3 
combine to pick contactor K3 (-30v Sequence 
on). K3 picks the I/O power-on control 
relays 9, 11, 13, and 15. This prepares 
the sequencing of the individual I/O 
groups. 

When relay 4 is picked, voltage is sup­
plied to pick the stepper control relay 7 
(Figure 5-2). Relay 7 causes the stepper 
switch to advance to the first contact 
position. A cam activates the stepper 
contacts and causes relay 7 to drop and 
await a power-on signal from the I/O group 
being sequenced. Relay 7 will be picked 
again by a power-on signal from the I/O 
group contacted, and will cause the stepper 
switch to advance to the next contact. 
This procedure continues until all I/O 
groups are powered up. Once all I/O power 
is up, the stepper switch causes relay 
TDR-l (Power-on Reset) to pick, opening the 
-3V power-on reset line and turning on the 
System Power-On indicator. 

POWER-OFF SEQUENCE (MID-PAC) 

The normal power-off sequence is initiated 
by pressing the power-off switch that opens 

the circuit to relay 3 (Figures 5-6 and 
5-7). Relay 3 opens the circuits to con­
tactors K2 and K3. Relay 4 drops when the 
-6v power supply no longer is active. 
Relay 4 pOints cause the pick of relay 7 
(Stepper Control), which allows the stepper 
contactors to return to the home position. 
The stepper switch returning to home will 
open the circuit to TDR-1 (Power-on reset 
relay) causing the system power-on indica­
tor to be turned off. Contactor K3 causes 
power to drop to all I/O units simultane­
ously. 

EMERGENCY POWER-OFF (MID-PAC) 

The Emergency Power-off switch opens the 
circuit to contactor Kl and removes all 
power from the system and all I/O units 
attached. Multi-system EPO and two-system 
EPO connection require special considera­
tion because suppression diodes are added 
to the sequencing relays as a noise consid­
eration. Refer to YZ045 for two system EPO 
connections, and to wiring diagram number 
5271794 for multi-system EPO connection. 

OVERVOLTAGE OR OVERCURRENT (MID-PAC) 

The over-current trip sense circuitry opens 
the circuit to relay 3 and a normal power­
off sequence occurs. The over-current 
indicator is turned on, and will remain on, 
until the circuit breaker causing the 
voltage trip is reset. Power may then be 
brought up normally. 

OVER TEMPERATURE (MID-PAC) 

The Thermal sense circuitry, when activat­
ed, causes the drop of relay 1 and the pick 
of relay 2 (Interlock relay). Picking 
relay 1 opens the circuit to relay 3 and a 
normal power-off sequence occurs. The 
thermal circuit may be restored only after 
the temperature is brought back to normal. 
After all thermal switches are closed, the 
thermal reset must be pressed to re-pick 
relay 1 and drop relay 2. The power-on 
switch may then be pressed to initiate a 
power-on sequence. 

2030 FETOM (9/1/66) 5-7 



Power Supplies 

24 Volts 
+ 

EPa Sw 

Convenience Outlets 
and Control Voltage 

~------------------~~~o---------------------------------------~~ 

All Thermal 
Sense Elmenh 6 

Thermal 
Thermal 
Trip Sense 

G---~JL~-o------r 
Thermal 
Trip Ind. 

12 
RY-l 11 6 

12 

12 
14 

'-P~S~CB-- --, 

Sense Ckt ~ __ ~ ____________________ -J 

RY-3 

K-3 

T 

RY-l 

~10 
9 

Pwr-Off 
Switch 

RY-7 ~ 
Pos 26A Pwr-On 

Switch 

Audible Alarm 

15 RYt"l-,.-3 -o __ -c6~R_Yr"-4 
o-------4------<~~ 16 ~~o_-------------o~ 

System Pwr On 

• Fi9ure 5-6. 

5-8 (6/67) 

RY-7-26 B 

TDR1-A 
'(7'"""-o------OJ 

Pwr On Reset 

From I/O Pwr 
RY -7-25 C "r--------~:>--J 

RY-7 Cam 
Contacts 

To Deck Selector ~ ____ -J 

Arm A of RY-7 +6V On Sense 

RY-7 
Interrupt 
Points 

(2 Sec De lay) 

Stepper 
Control 

RY-7 

)o-
___ ~~~~ ______ ~RY-4 ... ____________ ~ +6 Volts On 5 DC Gnd. 

Power On/Off Control (Mid-Pac) 



Power Supplies 

Power-On Switch 

2 Power-On-Pick 

3 Power-On-Hold 

4 +6 On Sense 

5 +30 Seq On 

6 Stepper Control (RY-7) 

D 
1 I RY-3 

2 I K-2 

3 I RY-4 

41 K-3 

All I/O 
/'1Il/1A'<1M Powered 

7 Power-On 6 I TDR- 1 

18 

Return 
4/1 To Home 

8 Power-Off Switch 0 
Figure 5-7. Power-On. Power-Off Sequence (Mid-Pac) 

2030 FETOH (9/1/66) 5-9 



Console and Maintenance Features 

CHAPTER 6. CONSOLE AND MAINTENANCE FEATURES 

2030 CONSOLE 

• The system console (Figure 6-1) is divided into seven 
panels: 

1. ROS, selector and multiplexor channels, and CPU reg­
ister, status, and check indicators are in the upper­
left and left-center panels. 

2. The EPO (Emergency Power Off) switch, and use meters are 
in the upper-right panel. 

3. Four rotary switches, used for testing purposes, are in 
a center-right panel. 

4. Pushbutton switches for various functions (such as 
system reset) are in the lower-left corner panel. 

5. Rotary switches for storing, displaying, and matching 
purposes are in the lower-right corne~ panel. (Also in 
this section is the operator9 s Control Panel which con­
tains all switches and indicators needed for normal 
probl~program processing.) 

The IBM 2030 ProceSSing Unit has a number 
of indicators and manual controls that 
permit operation of the system in any of 
several modes, and observation of the 
results of any operation. These indicators 
and controls are on a panel (Figure 6-1, 
Part 1 of 2) that serves as both an 
operator's system-control-console and a 
customer engineer's panel. The console is 
divided into seven sections or panels. In 
one section (on the lower-right corner 
panel) is a portion designated as the OCP 
(Operator's Control Panel). The OCP con­
tains four pushbutton switches, three 
sixteen-position rotary switches and six 
indicators. Except for the nomenclature 
printed on the panel, the OCP is identical 
on all CPU's in System/360. The OCP con­
tains all controls and indicators necessary 
for normal problem-program processing. The 
remainder of the lower-right corner panel 
has six 16-position switches (A, a, c, D, 
E, and F). These switches are used in 
conjunction with other console controls to 
provide for such operations as manual set­
ting of a core-storage address for storing 
or displaying purposes. 

Just above the OCP is another section 
(center-right section) that has four rotary 
switches. These switches are all set to 
their process positions for normal problem­
program processing. If anyone or more of 
these switches is set to a position other 
than process, some kind of test is 
indicated. (The Test light on the OCP is 
then on.) 

In the upper-right corner panel are the 
system Emergency Pull switch and the 
customer's and customer engineer's use­
meter counters. The key-switch that 
determines which meter is to record time is 
also in this section. (The blank panel to 
the left of the Emergency Pull and meter 
panel is not used for any standard or spe­
cial feature indicators or switches.) 

In the lower-left corner panel are push­
button keys. Each of these keys is used to 
initiate a particular function such as 
system reset, manual store, or system 
start. 

In the upper-left panel (called the 
upper indicator-panel) are ROS indicators 
and indicators for various items associated 
with channel number one (selector channel 
one). Note , however. that the count reg­
ister indicators are used for displaying 
the data count for either selector channel. 
(Selection of which se lector channel's 
count is to be displayed is made with 
rotary switch E.) 

The lower indicator-panel (in the 
middle-left portion of the console) con­
tains indicators for channel number two 
(selector channel two) and multiplexor 
channel functions. CPU status and checks 
indicators and the main storage address 
register (MN), main storage data register 
(R), ALU output, and B- and A-register 
indicators are also in this panel. 

2030 FETOM (9/1/66) 6-1 



Console and Maintenance Features 

The following descriptions relate to the 
circuit function(s) performed by switches 
and the circuits used to light indicators. 
For operating procedures, refer to IBM 
Systeml160 Model 30 Operator's Guide, Form 
A24-3313. Additional diagnostic procedures 

EA NLY RA E 

W 

II " . 1 5 I ,p I : I ~ I ~ I ~ 2 
2 

Al I M 

I 

~ I : 
I 

are described in diagnostic documentation 
shipped with each system. 

Figure 6-1, Part 2 of 2 shows the ALD 
locations of the console indicators and 
controls. 

. 2 
5 . 9 ...... -

~ 
pi . 1 2 , I . 1 2 , I 2 , I . 1 I . 1 2 I· 1 I A pi 0 1 2 3 

I~!: ~~ ~~ ~~ I S:v I ~t I 5:1 . 1 . 1 . 1 I . 1 I· 1 21A 

~ I ~ ~ I ~ I : I ~ ~ I : 
N 

I K Y I M A 

I : I ~ ~ I : ~ I :1 . ~ I: ~ I . 
fA 

CD CC '" IN 
STAT 

IN ~~~~ ~~:tl INT 
FACE 

~ OUT ""'. SOY SU, 
OUT 

W 

DATA REGISTER I KEY I COMMAND 

: I ~ ~ ~ ~ I : ~ I ~ I ~ ~ I . . 2 
~ I . 5 . 

flAG AGS HECKS .m 
IN I 

PROT g~~~ ~~:tL INT 
FACE 

0." OUT OUT I ~T IN 

~ 
MYX 'HANNH fAGS MPX CHANNEL BUS - OUT REG'sTER 

SH\' sa ADI CMND P 8 '" 2 1 8 " 2 1 
IN OUT OUT OUT POI 2 3 '" 5 6 7 

IN T A E AD 

~ I ~ ~ I : . 2 d ~ I g . 2 ~ I : 5 . 1 2 

MAIN A RE ITER I ALU UT PU STATUS PU HE KS 

,1. .I • 1 I I. II. EX MATCH ~l~~~ ~T~R ~~~~ 
8 RE I T I ISTER 

~ I g 2 ~ I : d I ~ ~ I: 2 

1050 1050 . A 
INTV REQ REG REG 

~~~l Sf' COMP 'OS ROS ~~~l CHNL MODE AD. SALS 

s:::r D rNTT~1
COMPARE ADDRESS

MAIN STORAGE ADDRESS

~ _UET W IC B
D I CHEC_I RESlT ~ TEST

B B \ DI$"A. ,

Figure 6-1. IBM 2030 Console (Part 1 of 2)

6-2 (9/1/66)

"

ROS CONTROL
INHIBIT PROCESS ROS

~:OP \li SCAN

ADDRESS COMPARE

ROAR SYNC ~"OCLESS SAlt DELAYED

I
STOP

RO 5TO'--......: ~SARSTOP

EARLY -JI~SARRESTART
RCARSTOP '\..

ROI\R RESTART ROAR ROAR RESTART
WITHOUT REseT RESTART STOR IYPASS

\ POWER I ON

o

RATE
INSTR 'ROCESS SINGLE STfP\I/CYClE

CHECK CONTROL

DISA.lE~ROCESS/,STO'

DIAGNOSTIC ~ I i---RESTART

I POWER I OFF

IN TR CTiON ADDRESS - ROS ADDRESS

LOAD UNIT

B 00000 81

Console and Maintenance Features

READ ONLY STORAGE

W-REGISTER X-REGISTER

PBOSI PB091

(yZ045)

Read Only S,0"'9. Desplay IncHea.a .. k. On PB031 Th,augh PB08I.

COUNT REGISTER

PB191, PB201

PB211,PB221

FLAGS TAGS CHECKS

PBllI PBllI, PBISI PBISI, PBI91

FLAGS TAGS CHECKS
PB22 I PB221, PB231 PB231, PB241

MPX CHANNEL TAGS MPX CHANNEL BUS-OUT REGISTER
PBI31

MAIN STORAGE ADDRESS REGISTER

PBOII, PB021

MAIN STORAGE DATA REGISTER ALU OUTPUT PU STAT S

PB02I, PB031 PB121, PBI31

B-REGISTER A-REGISTER

PBIII PBI01

SYSTEM D INTTMII:

p~~5r "" PAil I

ROAR SET STORE
~iWi IC PAil I PAIOI

D CHECK LAMP

mn n.~)1

mM STOP DISPLAY
PAIOI PAIOI

Figure 6-1. Logic Locations (Part 2 of 2)

PU HECKS

ROS CONTROL
PAOS2

ADDRESS COMPARE
PAOSI

1 po,,~r , (YZ041)

o
~

(YZ04I, YZ045)

o

(METERS YZ043)

~
lbd

RATE
PA082

CHECK CONTROL
PAOS2

(YZ041)1 '0,,":. .. ,

2030 FETOM (9/1/66) 6-3

Console and Maintenance Features

UPPER INDICATOR-PANEL (FIGURE 6-2)

READ-ONLY-STORAGE DISPLAY AND LP INDICATOR

• ROS display consists of 55 ROS-output indicators and 15
ROS-address indicators.

• When a system stop occurs, the ROS word and ROS address (in
WX indicators) displayed depends upon what caused the stop.

• The LP (Low Pressure) indicator, in the ROS dL~play area of
the console, has a dual purpose. When on, it indicates that
either:

1. The pressure to the ROS unit is too low, or

2. The core-storage unit is below minimum operating temper­
ature (on 2030's with a 1.5-microsecond RW cycle only).

The WX register is used to address ROS,
but a separate indicating WX-register is
used to light the WX indicators on the
console. When the system stops, the 55
ROS-output indicators do not always display

the output of the ROO word indicated by the
WX address lights. The displayed word and
addr.ess are dependent upon switch settings
and the condition that causes the system to
stop, as follows:

1.

2.

3.

4.

Condition

Normal program
processing (test
light off)

Address compare
switch in
early ROAR
stop position

Check control
switch in stop
position

Check control
switch in stop
position

6-4 (9/1/66)

Stop Caused By

pressing system
stop key

Match of ROAR
address with
setting in
rotary switches
A, B, C, and D

ROS ADR, A REG,
B REG, STOR DATA,
STOR ADDR, or ALU
check (i.e., one
of these indi­
cators is on in
the CPU checks
section of con­
sole)

CTRL REG, ROS
SALS (indicators
in CPU checks
section of con­
sole)

Indicators

Address of dis played
ROS word

Address of the ROS
word just before
match occurred (ROS
word displayed is at
ROS address equal to
setting of switches
A, B, C, and D).

Address of ROS word
in process when the
error occurred. (The
ROS word displayed
is the Wnext- ROS
word.)

Address of ROS word
in process when the
error occurred. (The
ROS word displayed
is the ROS word
indicated by the WX
display.)

Console and Maintenance Features

READ ONLY STORAGE

N AD DR I W REGIS ER

d 0 1 2 3 4 5 I ' P I lP I n ~ I 8 4 2
4 5 6

SAl H I CL I A I

P I 0 1 2 3 I 0 1 2 3 I A 0 1 2 3 I 0

R I F I
pi 0 1 2 3 I I 0 1 2 I 0

R S ER

~ I
HANNEl NUMBER :'lNF

I A A REGISl ER I

I ~ I ~ 4 2 ~ I 8 4 2 ~ I ~ I 8
1 2 4 5 6 0

FLAGS I TAGS

CD CC Sli SKIP PCI

I
or AD' STAT -RRV
IN IN IN IN

sn AD. CMND SEIY
OUT OUT OUT OUT

Figure 6-2. Upper Indicator Panel

I
1 I 7

B I

1 I

G I

1 I

KEY
4 2
1 2

I

I SUP
OUT

X REGISTER

~ I ~ 4 2 ~ I : 4 2 1
1 2 5 6 7

M I U I K
0 1 2 I 0 liAPlo123

V I ~:i

0 1 I 0 1 21 A o 1 2 3

I MMAND I

~ I: 4 2 jl 5 6

HECKS
Il PROG PROT CHNl CHNl INT

DATA CTRl FACE

W Indicating

WX Reg Bus ____ ~----------_4--~P I--________ To P Indicator
Driver

PH

T4

~ORI--__ "'-+~ __ } To W indicating 3,4,5,6,7

Chk ro Diag Stop Sw

Machine Reset Set Latch

(Not) ALU Check r­
~~------110R
(Not) Chk or Diag Stop Sw r-:--l

'--I A I

~LJ

,.......-,\ A ROSAR IND
Any Mach Chk
;"";';':"""--';'''''';;;'''''---......fo....- OR 1----...
Early ROAR Stop

- FL-

Mach Start Rst
-------------------~.----
Figure 6-3. WX Indicating

Figure 6-3 shows the conditions required to
set the Wand X indicating registers.
Notice that an ALU check line prevents
setting the Wand X indicating registers if
the check- or diagnostic-stop-switch line
is also active. This is necessary because
ALU checks occur late in a cycle (T4 time).

If (as in the preceeding item 4) the
check control switch is in the stop pa;i­
tion and a control register or a ROS SALS
parity check occurs, the ROS word in which
the error occurred is displayed. The SALS
cannot be loaded with a new word because
the CROS GO pulse is blocked at T2 time
(Figure 6-4) ..

Set IND ROSAR

Chk or Diag Stop Sw

Allow PC SALS

SAL PC

Ctrl Reg Chk

X-Indicating

~ P
PH

I--____ To P Indicator
Driver

Ioooo--}TO X Indicating 0,1,2,3,4,5,6,7

A

CCROS GO Pulse

Figure 6-4. CCROS GO Pulse

The LP indicator (not a ROS word output
display light) is turned on whenever the
pressure to the ROS unit is too low or the
core storage unit is below minimum operat­
ing temperature.

2030 FETOM (9/1/66) 6-5

Console and Maintenance Features

COONT REGISTER

• The contents of the GC and GO (for selector channel one) or
the HC and HD (for selector channel two) registers can be
displayed in the eighteen positions of the count register.

• The GC and GO (HC and HD for selector channel two) registers
contain the residual data count for an I/O operation on
selector channel one.

The ccw count is loaded into the GC
(high-order count bits) and GD (lo~order
count bits) registers at the start of an
I/O operation on selector channel one. As
each data byte is transferred, the count is
decremented by one. Normally, it is not
possible to stop a selector channel
operation in order to observe an intermedi­
ate count. However, if there is a residual
count (after the I/O operation is completed
and the system is stopped), it can be dis­
played in the count register indicators.

The conditions necessary to display the
GC and GO registers are shown in Figure
6-5. Notice that it is not necessary to
press the Display key to gate the contents
of the GC and GD registers to the count

GC Reg

o
1 PH
2
3
4
5
6
7

GD Reg

o
~ PH
3
4
5
6
7

E Sw Sel GUV-GCD

Sel and Basic Clock Off

GP Bus

Other Inputs

GO Bus

Figure 6-5. GCD to Count Register Display

6-6 (9/1/66)

register indicators. All that is required
is to set, rotary switch E to the GCD-GUV
position. (The HC and HD registers provide
the same function, but for selector channel
two).

CHANNEL NUMBER ONE DISPLAY

Channel number one indicators are used for
display of selector channel one informa­
tion. For detailed descriptions of selec­
tor channel one (and selector channel two
and multiplexor channel) register opera­
tions, refer to the 2030 I/O Control,
System/360 Model 30 Theory of Operation,
Form Y24,-3362.

Modify
Circuits
+1, -1, 0

Modify
Circuits
+1, -1, 0

GHY Bus

GHZ Bus

To GHY Indicator Drivers (Eight
High-Order Indicators of Count
Register)

To GHZ Indicator Drivers (Eight
Low-Order Indicators of Count
Register)

Console and Maintenance Features

Data Register

• The data register indicators display each byte set into the
GR register (for selector channel one).

The data register indicators provide full
time display of the GR register's contents.
That is, GR register outputs are sent
directly to the data register indicator
drivers. Hence, it is not necessary to
press or set any console switch to gate the
GR register outputs to the data register
indicators •

• The protection key from the GK register is displayed in the
key indicators.

The protection key from the CAW is set in
the GK register. For any selector channel
one operation during which data is sent
from the channel into main storage, the GK
register contents are compared to the stor­
age key for the main storage area affected.

Command

The key indicators provide full time
display of the GK register's contents. It
is not necessary to set or press any con­
sole switches in order to gate the
GK-register's outputs to the key display
lights.

• The command indicators display the contents (four low-order
bits of the CCW operation code) of the GG register.

The four low-order bits of the CCW opera­
tion code are loaded into the GG register
and displayed in the four command indica­
tors. It is not necessary to set or press
any console switches to gate the GG reg­
ister outputs to the command display
lights •

• The flag indicators <CD, CC, SLI, SKIP, and PCI) display the
contents of the GF register.

The flag bits, when on, indicate the fol­
lowing functions:

GF Reg Bit

0
1
2
3

Flag

CD
CC
SLI
SKIP

Function

chain data
chain command
suppress incorrect length
suppress data transfer to
main storage during read,
read backwards, and sense
operations.

4 PCI program controlled inte.r­
ruption bit (causes chan­
nel to attempt an inter­
ruption upon fetching the
ccw that contains this
bit).

The flag indicators provide full-time
display of the contents of the GF register.
It is not necessary to set or press any
console switch to gate the GF register
outputs to the flag display lights.

2030 FETOM (9/1/66) 6-7

Console and Maintenance Features

• Indicator drivers for selector channel one outbound tags are
activated by the outputs of the GA-register

• Indicator drivers for inbound tags are activated by inter­
face terminator circuits

The outputs of the GA-register provide
inputs to the indicator drivers for the
outbound tags of selector channel one:

Tag

1. SEL OUT
(select out)

2. ADR OUT
(address out)

3. CMND OUT
(command out)

Function

Indicates that I/O units
On selector channel one
are being polled to deter­
mine which unit requested
service.

Indicates that the
information on bus-out
is an address.

Indicates that the
information on bus-out is
a command; means "proceed"
in response to address-in
after initial selection;
or means that no more data
is needed.

4. SERV OUT Indicates that the CPU
(service out) has accepted the

information on bus-in or
has provided data on bus­
out.

5. SUPP OUT
(suppress out)

Checks

Indicates by itself or
with other tags.
a. suppress status
b. chained command

control
c. selective reset

Inbound tag indicator drivers are activated
by the outputs of standard interface
terminator circuits in the CPU:

1. OP IN
(operational
in)

2. ADR IN
(address in)

3. STAT IN
(status in)

4. SERV IN
(service in)

Function

Indicates that an I/O
unit is selected and
is in communication with
the channel.

Indicates that address
of the selected I/O unit
is on' bus-i n.

Indicates that the
selected I/O unit has
placed status information
on bus-in.

Indicates that the
selected I/O unit is
ready to transmit or
receive data.

It is not necessary to set or press any
console switches to gate tag signals to the
tag indicator drivers.

• The channel one checks lights indicate detected
malfunction(s) during selector channel one operations.

• The checks indicator drivers for selector channel one are
activated by outputs from the GE-register.

The outputs of the GE-register activate
indicator drivers for selector channel one
check lights. It is not necessary to press
or set any console switch to gate the out­
put of the GE-register to the checks indi­
cator drivers. For detailed inforroation
about what the check conditions signify,
refer to 2030 I/O Control,
System/360 Model 30 Theory of Operation,

6-8 (9/1/66)

Form Y24- 3362.
the checks are:

1. IL
(incorrect
length)

The general functions of

Function

Indicates that the number
of bytes contained in the
assigned storage area is
not equal to the number of

Console and Maintenance Features

2. PROG
(program)

3. PROT
(protec tion)

4. CHNL DATA
(channel
data)

5. CHNL CTRL
(channel
control)

6. INT FACE
(interface
control)

flAGS
CD CC Sli

bytes requested or offered
by the I/O unit, provided
the SLI flag is not on.

Indicates that the channel
has detected a programming
error.

Indicates that channel has
attempted to place infor­
mation in a protected area
of main storage. (This
check can occur on read,
read backwards, or sense
operations.)

Indicates that a data byte
in the GR-register has
even parity.

Indicates a control byte
in GR-register has even
parity. (Certain other
conditions may also cause
this indication.)

Indica tes that:
a. A response from a
control unit is not given
to a signalling sequence
initiated by the channel,
b. A device is busy
(after device end has been
given) to an initial sel-

CHANNEL N MBER TWO

I DATA REGISTER I KEY

I ~ I g 4 2 i I ! 4 2 ~ I ~ I g 4
1 2 5 6 1

I TAGS I

SKIP PCI

I
0' AD. STAT SERV

I IN IN IN IN

Sf< AD. CMHD SERV SUP
OUT OUT OUT OUT OUT

2
2

I

i I

IL

ection sequence,
c. Either no address
response or an address
mismatch occurs as a
result of an addressing
sequence initiated by the
channel, or
d. A parity error is
detected on status or
address information sent
from a control unit to the
channel.

LOWER INDICATOR PANEL (FIGURE 6-6)

CHANNEL NUMBER TWO DISPLAY

These indicators provide the display of the
same functions as the channel number one
display, except that these indicators are
for selector channel two.

MPX (MULTIPLEXOR) CHANNEL TAGS

The functions of the multiplexor channel
tags are the same as the corresponding tags
described in the Channel Number One Display
section, except that they pertain to the
multiplexor channel only. It is not neces­
sary to set or press any console switch to
gate the mUltiplexor tag lines to their
corresponding indicator drivers.

COMMAND I

8 4 2 ~ I 4 5 6

CHECKS

PROG PROT CHNl CHNl INT
DATA CTRl FACE

MPX HANNEL TAGS I MPX HANNEL BUS- UT REGISTER

0' AD. STAT SERV SEL AD. CMHD SERV SUP I P 8 4 2 1 8 4 2 1
IN IN IN IN OUT OUT OUT OUT OUT P 0 1 2 3 4 5 6 7

MAIN STORAGE ADDRESS REGISTER

~ I
MAIN
STOR

~ I ~ 4 2 U ! 4 2 ~ I ~ 4 2 ~ I 8 4 2 1 I ~~~R 1 2 5 6 1 2 4 5 6 7

MAIN STORAGE DATA REGISTER I ALU OUTPUT CPU STATUS CPU CHECKS

P 18 11 I 18 118
EX MATCH ~~~t STOR STOR

4 2 8 4 2 1 4 2 4 2 1 ADR DATA

8 REGISTER I A REGISTER 1050 1050 B A ALU
INTV REQ REG REG

~.I g 4 2 ; I ! 4 2 ~ I P I ~ 4 2 ; I ! 4 2 1 MPX SEt COMP ROS ROS CTRl
1 2 5 6 P 1 2 5 6 7 CHNl CHNl MODE ADR SAlS REG

Figure 6-6. Lower Indicator Panel

2030 FETOM (9/1/66) 6-9

Console and Maintenance Features

MPX CHANNEL BUS-OUT REGISTER

• The outputs of the multiplexor channel bus-out register (FO)
activate the MPX channel bus-out indicator drivers.

The Fa-register is loaded with data from
the R-register when information is to be
sent to the bus-out lines of the multiplex­
or channel. The contents of the FO­
register are indicated in the MPX channel
bus-out lights. It is not necessary to
press or set any console switch to gate the
contents of the Fa-register to these
lights.

Note that if a stop occurs immediately
before processing a micro-word that gates
the R-register to the MPX channel bus-out
register, the bus-out register may have bad
parity. This results from the fact that
the bus-out register has been reset, but
not set (i.e., all bits, including parity
bit, are off).

MAIN STORAGE ADDRESS REGISTER AND MAIN STOR AND AUX STOR
INDICATORS

• The main storage address register lights display the con­
tents of the M- and N-registers.

• The main storage address register display is for a main
storage location if the MAIN STOR light is on and for an
auxiliary storage location if the AUX STOR light is on.

The M-register's contents (eight high-order
bits of the storage address) and the
N-register's contents (eight low-order bits
of the storage address) are displayed by
the main storage address register indica­
tors. For a 64K 2030 with a 2-microsecond
storage cycle, there are two M and two N
registers (one MN set for each 32K of
storage). Only the one for the lower 32K
of storage, however, causes the main stor­
age address indicators to light. If an
address that pertains to main storage is
displayed, the MAIN STOR light is on; if an
address that pertains to auxiliary storage
is displayed, the AUX STOR light is on.
The MAIN STOR and AUX STOR lights are just
to the right of the main storage address
register display indicators. Note that if
the AUX store light is on, it remains on
until an access to main storage occurs; if
the MAIN STOR light is on, it remains on
until an access to auxiliary storage
occurs.

The M- and N-registers are set by inputs
from the UV- or IJ-registers or rotary
switches A, fl, C, and D. Also, the T­
register can provide input to set the N­
register. (In 1400 compatibility mode, the
L-register is gated to M at the same time
that the T-register is gated to N.) During
selector channel data transfers, the M- and
N-registers are set with address
informatiOn from the GUV-register (for
selector channel one) or the HUV-register
(for selector channel two).

6-10 (9/1/66)

In manual operations, the information to
be displayed in the main storage address
register indicators is determined by the
setting of rotary switch E (and in some
cases by additional settings of switches A,
S, C, and D). The selections that can be
made (for input to the M- and N-registers)
with rotary switch E are:

Rotary switches A. B, C, 0
UV-registers
IJ-registers
GUV- registers
HUV-registers

The system clock must be stopped and the
allow write indicator must be off before
any of these items can be manually dis­
played in the main storage address register
indica tors.

If an access to auxiliary storage is
required, the contents of the high-order
hexadecimal digit (four high-order bits) of
the main storage address register determine
which part of the auxiliary storage (i.e.,
local storage or one of the MPX storages)
is to be addressed.

Note that during wait state and process
stop, the contents of the instruction coun­
ter (1- and J-registers) are displayed in
the B- and A-register indicators. The
current operation code (i.e. the last
processed or the next to be processed) is
not displayed.

Console and Maintenance Features

MAIN STORAGE DATA REGISTER

• The main storage data register indicators provide display
for information (9-bits) in the R-register.

Information (for CPU or multiplexor channel
operations) sent to or from core storage
(either auxiliary or main) passes through
the R-register. The main storage data
register indicators provide full time dis-

ALU DISPLAY

play of the contents of the R-register. It
is not necessary to press or set any con­
sole switch in order to gate the
R-register's outputs to the main storage
data register indicator drivers.

• The ALU indicators provide display of ALU output (including
the P bit generated at the output of ALU).

The ALU indicators provide full-time dis­
play of the output of ALU. Also, the P bit
generated for a result byte at the output
of ALU is displayed. It is not necessary
to press or set any console switch to gate
the outputs of ALU to the ALa indicator
drivers.

B- AND A-REGISTER DISPLAY

• The B- and A-register indicators display the outputs of the
B- and A-registers.

• During wait state and process stop, the contents of the
instruction counter (1- and J-registers) are displayed in
the B- and A-registers.

The B- and A-register indicators provide
full-time display of the contents of the B­
and A-registers. It is not necessary to
press or set any console switch to gate the
outputs of the B- and A-registers to the B­
and A-register indicator drivers.

During manual operations, the informa­
tion to be displayed in the A-register
depends on the console switch settings

used. (Refer to the Display Key section of
this manua 1.)

When a wait state (instruction process­
ing stopped and program waiting for an
interruption) or process stop (such as when
the stop key is pressed) condition occurs,
the instruction counter is displayed in the
B- (I-register contents) and A-registers
(J-register contents).

2030 FETOM (9/1/66) 6-11

Console and Maintenance Features

CPU STATUS

• The CPU status lights indicate the operating status of the
cpu.

The CPU status lights provide full-time
display of the CPU's status condition. It
is not necessary to press or set any con­
sole switch to gate a CPU status signal to
the associated indicator driver. The CPU
status indicators are:

1. EX: This lamp is turned on at the end
of each instruction execution (i.e.,
whenever the micro-instruction branch­
on-interrupt occurs). During execution
of the micro-instruction immediately
following the branch-on-interrupt word,
the EX lamp is turned off. Note that
if the system stops at the end of
instruction execution (for example, if
the stop key is pressed), the EX lamp
remains on. It is turned off when the
CPU clock is restarted and processing
of the next micro-instruction is start­
ed.

2. MATCH: Some modes of operation require
use of an exclusive-OR match circuit.
The match indicator is turned on when
the compare-address (in rotary switches
A, B, C, and D) matches the contents of
either the main storage address reg­
ister (MN) or the read-only-storage
address register (WX). The position of
the address-compare switch determines
which of these registers is monitored,
as well as the system response to a
match.

3. ALLOW WRITE: Whenever the allow write
indicator is on, a read operation for a

CPU CHECKS

storage location (auxiliary or main) is
completed, but the subsequent write
operation has not occurred. This indi­
cator must be off before manual display
or store operations for core storage
are allowed.

4. 1050 INTV: This light is turned on
whenever operator intervention is
required at the 1050 Documentary Con­
sole.

5. 1050 REQ: This light turns on whenever
the operator presses the Request key on
the 1052. It is reset when attention
status is recognized by the attachment
and accepted into the unit status reg­
ister.

6. MPX CHNL: Whenever a multiplexor chan­
nel share-request is recognizeu by the
CPU, this light turns on. It is turned
off at the completion of the share
cycle.

7. SEL CHNL: This lamp is lighted whenev­
er either selector channel is using ROS
(such as for a selector channel chain­
ing opera tion).

8. COMP MODE: Whenever the system is
operating in compatibility mode, this
light is on. It is turned on at the
same time as the W3 lamp (i.e., the
three-bit position of the W register)
and turned off at T2 time of the first
ROS cycle in which W3 is not on.

• The CPU checks indicator drivers are activated by outputs
from the machine check register.

• Each CPU check lamp (except the ALU) indicates, when on,
that bad parity is detected.

The outputs of the machine check register
activate the indicator drivers for the CPU
checks lamps. The indicator turned on and
the machine check register position set for
each check are:

6-12 (9/1/66)

Position
o
1
2
3
4
5
6*
7

Indicator
A REG
B REG
STOR ADDR
CTRL REG
ROS SALS
ROS ADDR
STOR DATA
ALU

Check
A-register parity
B-register parity
MN-register parity
Control-register parity
ROS SALS parity
ROS address parity
R-register parity
ALU check (not a
parity check)

Console and Maintenance Features

(*If the storage protection feature is
used, a parity check for the low half of
the Q register can also set bit six of the
MC-register and cause a STOR DATA check
indication.)

INDICATORS ON OCP (FIGURE 6-7)

In ALU, a duplicate check is made to
determine that each output line at an up
level has a corresponding line at a down
level.

• The lamps on the OCP indicate overall system state.

As already mentioned,_ the OCP (Operator's
Control Panel) is a portion of the lower­
right console panel that has all the keys
and indicators needed for normal problem­
program processing. The OCP indicators and
their functions are:

1. SYS: This indicator is on whenever the
customer or CE use-meter is recording
time.

2. MAN: Whenever the CPU clock is stopped
(and no selector channel transfer is in
progress), this indicator is on. As
the name of this light implies, several
of the manual controls are operative
only when the system is in this state.

3. WAIT: This light is on when the CPU is
in the wait state (i.e., CPU clock
running but instruction execution is
not taking place). If an interruption
occurs, the CPU is taken out of the
wait state and processing occurs,
depending upon the program directing
the system.

Figure 6-7. Operator Panel

4. TEST: This light is on whenever any
one or more of the following switches
is in any position other than process:

a. ROO Control
b. Rate
c. Address Compare
d. Check Control

For normal problem-program processing, all
of these switches should be in the process
positions.

5. LOAD: Whenever a load microprogram is
in progress, this indicator is on. It
turns on a fter the Load key has been
pressed and then released, and it turns
off when the initial PSW is successful­
ly loaded.

6. Power-on Key Indicator: A light behind
the Power-on key turns on after the
Power-on key is pressed, but only after
the CPU and all on-line I/O units have
been power-sequenced on.

I POWER I ON
I POWER I OFF

00'000 EJ

2030 FETOM (9/1/66) 6-13

Console and Maintenance Features

PUSHBUTTON CONTROLS ON OCP (FIGURE 6-7)

POWER-ON KEY

• The Power-on key, when pressed, starts the power-on sequence
for the CPU and all on-line I/O units.

The power-on sequence for the CPU and all
on-line I/O units starts when the Power-on
key is pressed. When the entire sequence
is successfully completed, a light behind
the Power-on key turns on. A system reset
function (for CPU and on-line I/O units)
occurs during the power-on sequence.

All data flow registers (but not the
general-purpose or floating-point registers
in local storage) in the CPU are reset to
zero. Any priorities that happen to turn

POWER-OFF KEY

on are reset. Also, the CPU clock is reset
so that a possible access to storage is
prevented. Hence, inf ormation in core
storage is not disturbed.

The I/O units are sequenced on, one by
one, to prevent line surges. If power
cannot be brought up for an on-line I/O
unit, further power-on sequencing is pre­
vented (console Power-on light remains off)
until coreective action is taken for that
I/O unit.

• Pressing the power off key removes power trom the CPU and
all on-line I/O units •

• If the allow write latch is on, the contents of the R­
register are written into the storage location specified by
the contents of the MN-registers.

OR Man Wr (Not) Read Echo Man Write Ca II
Call ----------i------:;--1---------------I OR Write Call

I---- to Stg

Other Inputs
--....:..---~-...... -FL-

Other Inputs
OR Store R

-FL-

Other Inputs

Store R

Figure 6-8. Forced Write Cycle During Power Off

The Power-off key, when pressed, drops
power to the CPU and on-line I/O units.
Power to the I/O units is not sequenced
off, but is dropped for all I/O units
simultaneously. The contents of core stor­
age are not altered during the power-off
operation. If a storage read cycle has
been taken (the allow write latch is on), a

6-14 (9/1/66)

manual write cycle (i.e., not a normal
clock controlled write cycle) is forced
during the power-off operation (Figure
6-8) •

The Power-off key takes precedence over
the Power-on key, such that when both are
pressed simultaneously, power is dropped.

Console and Maintenance Features

INTERRUPT KEY

• Pressing the interrupt key causes an external interruption.

The external interruption that occurs when
the Interrupt key is pressed results in
setting bit 25 on in the interruption code
of the old PSW. (The system recognizes
this interruption, however, only if pro­
grammed to do so.)

LOAD KEY

• when pressed, the Load key initiates a system reset; when
released, it starts an initial program load routine.

The address of the I/O unit, from which the
program is loaded, is set into rotary
switches G. H, and J before the Load key is
pressed. pressing the Load key causes a
system reset and sets the machine reset
latch. When the Load key is released, the
load indicator turns on, the CPU clock
starts, the basic microdiagnostic routine
is initiated, and this is followed by the

DATA AND ADDRESS ENTRY SWITCHES (FIGURE 6-7)

clear-UCW microprogram routine. At the end
of the clear-UCW microprogram, the machine
reset latch is reset an? a load trap
occurs. The load microprogram is then
started. The loading operation is complet­
ed when the IPL PSW (for the program being
loaded) is successfully set up in circui­
try. At this time the Load light turns
off.

• Eight rotary switches (A, B, C. 0, F. G, Hand J) are used
to enter addresses or data (in odd parity) into the CPU.

Rotary switches A. B, C, D, F, G. H, and J
are all sixteen-position switches. Each
position of each switch provides one hexa­
decimal digit (four bits plus parity). The
names (on the console) over the switches
describe the general purposes of the
switches. Information in the switches can
be used for :

Functions

1. A restart or stop
address for matching
against the contents
of the main storage
address register (MN)
or the ROS address
register (WX).

2. A core storage address
for manual store or
display operations.

3. Manual change of an
instruction address
or a ROS address.

Switches

A,B.C,D

A.B.C.D

F,G,H,J

4. Manual set-up of the
address of a load unit
(from which a prog ram
is to be loaded in to
core storage).

5. A data byte to be
stored into core
storage or into a
data-flow register.

G.H,J

H,J

6. Sense switch settings F
(on or off) for
compatibility mode
opera tions.

Switches A, B, C, and D are connected to
the main storage address register and to
the match (or compare) circuit, while
switches F,G,H, and J are connected to the
data-bus system through the A- and B­
registers and to circuitry that leads to
the WX-registers.

Rotary switch E is set to MS (for main
storage) or AS (for auxiliary storage)

2030 FETOM (9/1/66) 6-15

Console and Maintenance Features

during manual store or display operations
involving storage. Local storage (or one
of the MPX storages) is further designated
by the setting of switch A (Figure 6-9).
switches C and D are then used to specify
the address of a particular local or MPX
storage byte.

DISPLAY STORAGE SELECTION SWITCH (SWITCH E--FJ:GURE 6-7)

• The display storage selection switch is two concentric
switches at one console location.

• The inner switch has three positions.

• The outer switch has sixteen positions, each performing one
of three different functions, depending upon the position of
the inner switch.

• The display storage selection switch is used to select a
register or storage area for display or store plrposes.

The Display Storage Selection switch
(switch E) provides a means of selecting
anyone of a number of registers or a gen­
eral storage ~ (main or auxiliary) for
manual store or display operations. (If
main or auxiliary storage is selected, the
address of the specific storage location is
specified by the settings in switches A, B,
C, and D.)

Selections that can be made with switch
E are:

Inner Inner Inner
Outer Switch Switch Switch
Switch Position position position

Position 1 2 3

1 Q M3 I
2 C AS J
3 F Spare U

"4 TT Spare V
5 TI Spare L
6 JI spare T
7 GS Spare D
8 GT Spare R
9 GUV,GCD Spare S
10 HS Spare G
11 HT Spare H
12 HUV,HCD Spare FI
13 Spare Spare FT
14 Spare Spare Spare
15 Spare Spare Spare
16 Common Common Common

Note: The MPX 0 setting is on all
2030 consoles. The MPX 1 and MPX 2
settings are on all 2030's that have 16K
or more main-storage addresses. MPX 3,
MPX 4, MPX 5, and MPX 6 settings are
on 2030's {with 32K of more main-stor­
age addresses} that have the 224 sub­
channel special feature.

Figure 6-9. Rotary Switch A

6-16 (9/1/66)

Console and Maintenance Features

PUSHBUTTON KEY CONTROLS (FIGURE 6-10)

SYSTEM RESET KEY

• When the System Reset key is pressed, the system (CPU, chan­
nels, and I/O control units) is reset to its initial state.

• ROS address 0000 is set into the wx-registers when the Sys­
tem Reset key is pressed.

• pressing the System Reset key initiates a system reset
regardless of the state (i.e., CPU clock can be running or
stopped) of the system.

• Any error status information is reset when the System Reset
key is press ed.

When the System Reset key is pressed, a
system reset is initiated. During the
reset, all registers (but not the 16 gener­
al or the 4. floating point registers) are
set to zero with correct parity. Also, all
latches, except the Machine Reset and the
diagnostic latch are reset. The Diagnostic
latch then causes the priority latch to
turn on. The Machine Reset latch is set
on, thereby disabling all traps until it is
reset. If the Start key is then pressed
(after the system reset function is
completed), the machine starts at a diag­
nostic microprogram (unless the Check Com­
pare switch is in the disable position)
which is looped 128 times. The clear-UCW
routine then clears the flag bytes of all
the UCW's. After these flag bytes are
reset to zero, the Machine Reset latch is
reset and traps can occur. The system
reset function is completed when the
Machine Reset latch is reset.

D
QO Ie

D
B B

B
~ TEST

I DISPLAY I
Note that if the ROAR Reset key is

pressed after the System Reset key is oper­
ated (and before the Start key is pressed)
the flag bytes in the UCW's are not cleared
when the Start key is pressed, and the
microdiagnostic routine is not processed. Figure 6-10. Pushbutton Controls

ROAR RESET KEY

• Pressing the ROAR Reset key allows a manual change of the
ROAR address by gating the contents of switches F, G, H, and
J to the WX-registers when the start key is pressed.

• The ROAR Reset key is effective only when the CPU clock is
stopped. (The ROAR reset function, however, does not occur
until the CPU clock is subsequently started.)

• Pressing the ROAR Reset key blocks the clear-UCW routine and
the microdiagnostic routine that normally occur after a
system reset.

2030 FETOM (9/1/66) 6-17

Console and Maintenance Features

The ROAR Reset key is used to set-up for a
manual change of the ROAR address in the
WX-registers. The address to be set in
ROAR is manually set into switches F. G, H,
and J. (The CPU clock must be stopped
before the ROAR Reset key is active.) The
ROAR Reset key is pressed and then the
start key is pressed to start the CPU
clock. As soon as the CPU clock starts,
the ROAR reset function occurs.

When the ROAR Reset key is pressed, a
latch is set that gates the outputs of

START KEY

switches F, G, H, and J to the WX-registers
and blocks next-address information from
being sent to the WX-registers.

If the ROAR Reset key is pressed after a
system reset function, but before the CPU
clock is started, the machine reset latch
and the diagnostic latch are turned off.
Then when the CPU clock is started, the UCW
flag bytes are not reset to zero, and the
microdiagnostic routine is not performed.

• The start key starts the CPU clock: resulting system opera­
tion depends on what conditions exist when the start key is
pressed.

If the start key is pressed after a normal
stop (for example, after the stop key is
pressed), instruction processing continues
as if no stop occurred. Machine status is
unaffected.

If the Start key is pressed after a
system reset, the microdiagnostic routine

SET IC KEY

is performed and the flag bytes of the
UCW's (in MPX storages) are reset to zero
by a clear-UCW microprogram routine. If
the start key is pressed again, the 2030
loads a PSW from address 0000 and process­
ing starts.

• The Set IC key is used in conjunction with switches F, G, H,
and J to manually change the setting of the instruction
counter (IJ-registers).

• The set IC key is operat,ive only if the CPU clock is stopped
(Manual light is on).

Before the address in the instruction coun­
ter (IJ-registers) can be changed, the CPU
clock must be stopped (Manual light is on).
Then the address to be set into the
instruction counter is manually dialed into
rotary switches F, G. H, and J and the Set
IC key is pressed. When the Set IC key is
released, the CPU clock is started and a
forced branch (trap) is taken to ROS
address 0001 (the set IC trap). The
address from switches F, G, H, and J is set
into the instruction counter and displayed
in the B-register (I-register portion of
address) and A-register (J-register portion
of address). The CPU clock then stops at

6-18 (9/1/66)

ROS address OFF. Any outstanding channel
share cycles are completed before the stop
at address OFF occurs.

A set IC operation after a system reset
is similar to a Start key operation after a
system reset in that the flag bytes of the
UCW's are cleared. Then the instruction
counter is s'et with the address in switches
F. G, H. and J.

If you desire to start processing at the
instruction address set up by the set IC
procedure, press the Start key.

Console and Maintenance Features

CHECK RESET KEY

• Pressing the check reset key causes the machine check reg­
ister and several machine check control latches to be reset
to the no-error state •

• The check reset key is operative when the CPU clock is eith­
er running or stopped.

PreSSing the Check Reset key resets all
positions of the machine-check register to
the no-error state. In addition, the first
machine check, the second error stop, and
the check-restart latches are reset. In
other words, all machine-check logic cir­
cui ts are reset.

STOP KEY

• Pressing the stop key causes the CPU to stop (manual light
turns on) at the end of execution of the instruction in
progress •

• All pending interruptions are taken before the CPU clock is
stopped.

The CPU proceeds to the end of execution of
the instruction being processed at the time
the Stop key is pressed. (This state is
recognized by a branch on interrupt.) All
pending interruptions are taken before the
CPU clock is stopped. Any I/O operation in
process at the time the stop key is pressed
is allowed to finish before the CPU clock
is stopped. If an I/O device is involved
in command or data chaining, then the

chaining is completed before the clock is
stopped. The Manual light turns on when
the clock stops. At this point, the 2030
is in a stopped state that permits the
multiplexor channel to take share-request
traps and the selector channels to take
data cycles. When the CPU clock stops, the
address of the next instruction is dis­
played in the B- and A-registers.

INTERVAL TIMER SWITCH

• When on, the Interval Timer switch allows the interval timer
to advance •

• When off, the Interval Timer switch prevents interval timer
advance.

If the interval timer special feature is
installed in the 2030, the
Interval-Timer-Toggle switch (not a
pushbutton) controls its operation. If the
Interval Timer switch is off, the timer
control latch is held on to block C-counter
drive pulses, thus preventing timer
advance.

2030 FETOM (9/1/66) 6-19

console and Maintenance Features

lAMP TEST KEY

• When the Lamp Test key is pressed, all console indicators
should light.

• The Lamp Test key can be pressed at any time and does not
affect any system operation.

An input is provided to each indicator
dri ver for testing purposes. This input is
one leg of an OR function; the second leg
is the fUnctional indicator-driver input.
When the Lamp Test key is pressed, all

STORE KEY

indicator drivers should light all console
panel lights. (The console lamps do not
light as brightly when this test is made as
they do when the lamps are lighted by their
normal functional inputs.)

• During a store key operation the byte specified by the data
switches (H and J) is loaded into the area specified by the
Display-store Selection switch (E).

• The Store key is inoperative if the CPU clock is running.

• The clock is not used during a Store key operation.

• ROS is not used during a Store key operation.

Pressing the Store key gates the contents
of switches Hand J into the B-register.
The B-register is gated high and low
through ALU. The resultant data byte
appears on the Z-bus and is gated to the
area selected by switch E. If a register
is selected to receive the data byte, the
Z-bus is gated directly to the selected
register. If a storage location is select­
ed to receive the contents of Hand J, the
Z-bus is gated to the R-register. The
selected register is then gated to the
A-register. Therefore, at the end of a
store operation, the A- and B-registers
should contain the data specified by the
settings of switches Hand J.

In the case where storage is selected by
switch E, switches A, B, C, and D provide

6-20 (9/1/66)

the storage address, and a manual read­
cycle and a manual write-cycle are taken
(the clock is not used) to place the data
byte from switches Hand J (then in the
R-register) into the desired location.

The CPU clock must be stopped for the
store operation to take place. The allow
write latch (allow write indicator) must be
off if the store operation is to core
storage.

Data cannot be manually stored in all
registers selected by switch E. The reg­
isters into which data cannot be manually
stored are designated by an asterisk (.) in
Figure 6-11.

Console and paintenance Features

Register to be Displayed Usual Function

I Instruction Address (high-order bits)

J Instruction Address {low-order bits}

U Data Address (high-order bits)

V Data Address (low-order bits)

L Data Length

T Auxil iary Storage Address

o General Purpose Data Register

R Storage Data Register

S Status (CPU)

G Instruction Operation Code

H Priority Status Register

• FI Multiplexor Channel Bus-In

* FT Multiplexor Channel Tags

Q Storage-Protection key in PSW (High
4-bits) Storage-Protectection key of
block of storage just used (low 4-bits)

* C Interval Timer Count

* F External Interrupt: Interval Timer (bit
0) Console (bit 1) Six direct-control
interrupts (bits 2 through 7)

* TT 1050 Documentary Console Tags

* TI 1050 Documentary Console Bus-In

* JI Direct Control Bus-In

* GS Selector Channel One Status

* GT Selector Channel One Tags

* GUV-GCD GUV contains storage address for data
for se lector-channel one. GC D
contains the current byte count for
selector-channel one

*HS

* HT

, HUV-HCD

Selectol Channel Two Status

Selector Channel Two Tags

HUV contains $torage address for data
for selector-channel two. HCD con­
tains the current byte count for
selector-channel two.

Where Displayed

A-register (also the high-order eight bits of the main-storage address
register if the allow-write indicator is off)

A-register {also the low-order eight bits of the main-storage address
register if the allow-write indicator is off}

A-register {also the high-order eight bits of the main-storage address
register if the allow-write indicator is off}

A-register (also the low-order eight bits of the main-storage address
register if the allow-write indicator is off)

A-register

A-register

A-register

A-register {Also has own display in main-storage data-register
indicators}

A-register

A-register

A-register

A-register

A-register

A-register

A-register

A-register

A-register

A-register

A-register

A-register

A-register

GUV in main-storage address register.
GCD in count register (18 bits each).

A-register

A-register

HUV in main-storage address register. HCD in count register (18 bits
each)

Note: * Indicates that you cannot manually store data in the designated register

Figure 6-11. Display

2030 FETOM (9/1/66) 6-21

Console and Maintenance Features

DISPIAY KEY

• A Display key operation allows selected information to be
gated to a display register.

• The selected information can be from any register or from
any core storage location selectable by rotary switch E.

• The CPU clock must be stopped for all display operations.

• The allow write latch must be off for display of any storage
location or display of the contents of the I, J, U, or V
registers in the MN register indicators. (If allow write is
on, I, J, U, or V can be displayed in the A-register.)

• ROS is not used during a Display key operation.

Because certain registers in the 2030 do
not have their own console indicators,
provision has been made to display these
registers in another way. with the CPU
clock off, pressing the Display key causes
the contents of the register or storage
location specified by console switch E (and
sWitches A, B, C, and 0 if a storage loca~
tion is specified) to be displayed in a
display register.

An additional display function occurs
when the 1-, J-, U-, or V-registers are
selected. If either the 1- or J-register
is selected and displayed in the A­
register, the contents of both the 1- and
J-registers are transferred to the M- and
N-registers so that the entire address is
displayed by the main storage address
register (M- and N-register) indicators.
Similarly, if either the U- or V-registers
is displayed via the A-register, then the
contents of both U and V are transferred to
and displayed by the main storage address
register indicators. (Note: This transfer
of IJ or uv to MN during display takes
place only if the allow write latch is off
and the CPU clock is stopped. Allow write
must be off in order to change the address
in MN).

To use the display feature, first make
sure that the CPU clock is stopped. In
addition, if a storage position is to be
displayed, the allow write latch must be
off. (The allow write latch, when on,

6-22 (9/1/66)

causes the allow write CPU status indica­
tor, on the lower console indicator panel
to light.) Next, set the Display-Store
Select switch (switch E) to the register or
storage area to be displayed. If a storage
area is selected (main storage or auxiliary
storage), the storage address must be set
up in the main storage address switches (A,
B, C, and D). If a register is being dis­
played, pressing the Display key gates the
selected register into the A-register for
display. No storage cycle is taken. If
the I-, J-, U-, or V-register is being
displayed, pressing the Display key gates
the selected register to the A-register,
and also gates the selected register and
its complementing register to the MN­
registers for display (if allow write is
off). No storage cycle is taken.

If a storage location is displayed, a
storage read cycle and a storage write
cycle occur. The desired byte is retrieved
from storage and placed into the R-register
for display (main storage data register
indicators). When a storage location is
displayed (when a p~ogram has been halted),
it is a good idea to record the contents of
the R-register prior to the display
operation. Then, the R-register can, if
necessary, be restored before reentering
the program and starting the CPU clock.

The selections made with switch E, for
display, are listed in Figure 6-11.

Console and Maintenance Features

ROTARY CONTROL TEST SWITCHES (FIGURE 6-12)

RATE SWITCH

• The Rate switch is a three-position switch with process,
instruction step, and single cycle positions.

• If the Rate switch is in the instruction step or Single
cycle position, the Test light (on OCP) is on.

• The Rate switch controls the rate that the CPU processes
instructions.

INSTR (INSTRUCTION) STEP POSITION: When
the Rate switch is in the instr step posi­
tion, one complete instruction, (including
all unmasked, pending interruptions) is
executed each time the Start key is
pressed. When the clock stops after exe­
cutinq an instruction, the B and A-register
lights display the address of the next
instruction.

PROCESS POSITION: When the Rate switch is
set to the process position, the CPU clock
is allowed to run until some condition
causes a stop. This is the position in
which customers process problem programs.

If the instruction is an I/O instruc­
tion, then the I/O operation (including all
associated chaining) is completed before
the CPU clock is stopped. This stop is
identical to the stop that occurs when the
Stop key is pressed.

ROS CONTROL
INHIBIT PROCESS ROS

~:OP '\ I ;- SCAN

ADDRESS COMPARE

ROAR SYNC :\PROC

1

~ESS SAR DELAYED
STOP

ROAR STOP--........: y.---SAR STOP

EARLY -JI,\--SAR RESTART
ROAR STOP "'-

ROAR RESTART ROAR ROAR RESTART
WITHOUT RESET RESTART STOR BYPASS

RATE

INSTR PROCESS SINGLE

STEP '\ I / CYCLE

CHECK CONTROL
DISABLE PROCESS STOP

DIAGNO=S I Z=START
SINGLE CYCLE POSITION: When the Rate
switch is in the single cycle position, the
CPU advances by one ROS cycle each time the
start key is pressed. Thus, the CPU proc­
esses instructions in .75-microsecond (or
1-microsecond depending on cycle rate of
2030) increments. I/O data-overruns may
occur in this mode. Figure 6-12. Rotary Control

Test switches

ADDRESS COMPARE SWITCH

• The Address Compare switch determines the function to be
performed by the address match circuit.

• If the Address Compare switch is at any position other than
process, the test indicator (on the OCP) is lighted.

• Switches A, B, C, and 0 outputs are compared with the con­
tents of either ROAR or SAR as defined by the Address Com­
pare switch.

tents of the read-only-storage address
register (WX).

PROCESS POSITION: This is the position in
which customers process problem programs.
A sync pulse is generated when the address
specified in the address switches (A,B,C,
and 0) matches an address in SAR.

ROAR SYNC POSITION: This position provides
a sync pulse when the address specified in
switches A, B, C, and 0 matches the con-

ROAR STOP POSITION: with this setting, the
operation proceeds until the contents of
the ROAR match the contents of switches A,
B, C, and D. When this match occurs, the
clock is turned off at the end of the cur­
rent ROS cycle and the system stops.

2030 FETOM (9/1/66) 6-23

Console and Maintenance Features

EARLY ROAR STOP POSITION: with this set­
ting, processing proceeds until the con­
tents of the ROAR match the contents of
switches A, B, C, and D. When the match
occurs, the clock is turned off at the end
of the current ROS cycle, and the system
stops. This function differs from the ROAR
stop function in that the indicating ROAR
is not set by the contents of WX at T4
time, and the address displayed is the
address of the ROS word just prior to the
ROS word-address set in switches A, B, C,
and D.

ROAR RESTART WITHOUT RESET, ROAR RESTART,
AND ROAR RESTART STOR (STORAGE) BYPASS
POSITIONS: These three posi tions are simi­
lar in that the occurrence of a match
between the ROAR and the switches A, B, C,
and 0 cause the ROAR to be reset to the
val ue set in switches F, G, H, and J. In
the case of the ROAR restart position, the
CPU hardware registers (except the
R-registec) are reset to zero before the
ROAR is reset to the value in switches F,
G, H, and J. In the ROAR restart storage
bypass position, operation is similar to
that in the ROAR restart position except
that main storage is not permitted to oper-

ROS CONTROL SWITCH

ate. Note that a normal problem program
cannot be processed if the main storage
does not operate. ROAR restart without
reset is similar to ROAR restart except
that the reset function is blocked.

SAR RESTART POSITION: When a match occurs
in this mode, the CPU is reset and a fixed
address is forced into the ROAR. The bas ic
microdiagnostic routine and then the clear
UCW routine are performed. Then the micro­
program loads the contents of switches F,
G, H, and J into the instruction counter
(registers-I and J) and starts an
instruction cycle.

SAR STOP POSITION: In this position a
match between switches A, B, C, and D and
the address in SAR causes the CPU clock to
stop at the end of the write cycle in which
the match occurs.

SAR DELAYED STOP POSITION: In this posi­
tion, a match causes the CPU clock to stop
at the conclusion of execution of the
instruction in which the match occurs. All
pending interruptions are taken before the
clock is stopped.

• The ROS control switch is used for certain FE diagnostic
procedures.

INHIBIT CF STOP: In this position, proc­
essing occurs in the normal fashion except
that microprogram stops (a particular pat­
tern of bits in the CF field) are ignored.

ROS SCAN: This pOSition is used when the
microprograms that scan the R/W storage or
the ROS are run. The switch performs the
following functions (SLD references are in
parentheses) :

1. Modifies all ROS trap addresses from
OXX to 3XX (OlB-C4).

2. Provides a constant reset (04B-ES) to
the diagnostic latch. (However, the
diagnostic position of the check con­
trol switch provides a constant set to
the diagnostic latch.)

3. I nhibits certain functions of the
introduce-ALU-check latch (06B-ES).

4. Inhibits normal machine reactions to
selector channel checks (llA-06).

5. Resets the introduce-ALU-check latch

6-24 (9/1/66)

(06B-E5) when switches F, G, H, and J
are gated to the wx register.

6. Turns on the hard-stop latch (03C-E4)
with a priority pulse when the rate
switch is set to the instruction step
position.

7. Prevents the W-register 3-bit from
placing the CPU in 1400 compatibility
mode (05A-OS).

8. Forces continual multiplexor channel
share requests (080-D2).

9. Inhibits A-register checks (07A-A4).

10. Blocks machine check stop when the
sUppress-malfunction-trap latch is off
(0 3A-A3).

PROCESS: This position allows normal oper­
ation of the ROS. This position is like
the equivalent on the other three switches
on this panel in that, when not in this
position, the test indicator is turned on.

Console and Maintenance Features

CHECK CONTROL SWITCH

• The Check control switch determines system action when an
error is encountered •

• The test indicator (on the OCP) lights when the Check Con­
trol switch is not in the process position.

DISABLE POSITION: In this position, any
parity check causes its associated check
latch to be set, but otherwise the failure
is ignored. Results of program processing
may be wrong when updating in this mode.

STOP POSITION: Detection of a parity error
in the stop position causes an immediate.
unconditional clock stop.

DIAGNOSTIC POSITION: In this position,
stopping or ignoring of machine checks is
under the control of a latch that can be
turned on or off under microprogram con­
trol.

RESTART POSITION: Upon detection of an
error, action is conditioned by the setting
of the Address Compare switch, as follows:

1. With the Address Compare switch in the
SAR restart position, a system reset is
initiated, the basic microdiagnostic
and clear-UCWroutines are executed and
then the instruction counter is set by
the outputs of switches F, G, H, and J,
and an I-cycle is started.

2. In the ROAR restart or the ROAR restart
storage bypass position, a recycle
reset is given which resets circuitry

METER PANEL (FIGURE 6-13)

EMERGENCY PULL SWITCH

registers only (not the UCW's) and then
gates the contents of switches F, G, H,
and J to the read-only-storage address
register and starts the resulting
microprogram (with or without the oper­
ation of main storage).

3. In the ROAR restart without reset posi­
tion, operation is identical to that in
the ROAR restart position except that
no reset is initiated.

4. In any other position of the Address
Compare switch, operation is like that
in the SAR restart poSition except that
no reset. no basic roicrodiagnostic
routine, and no clear-Uew routine are
initiated.

PROCESS position: This is the position in
which problem programs are processed. Upon
detection of a parity check with the switch
in this position, the ROS automatically
initiates what is known as the malfunction
trap routine. This routine stores the
contents of the machine check register in a
fixed location (80, in hexadecimal) of main
stor.age, stores the current program status
word, and upon successful completion of
these tasks, originates a machine check
interrupti on.

• When the emergency pull switch is operated, all power in the
CPU and all I/O devices is dropped immediately •

• The contents of core storage may be altered if the emergency
pull switch is operated.

when the emergency pull switch is pulled,
all system power (including that to all
on-line I/O units) is dropped without
regard to sequencing. Therefore, the con­
tents of main storage may be partially
destroyed during an emergency power-off
operation.

As the name of the switch implies, emer­
gency power-off should be initiated only

under unusual circumstances. Once the
Emergency Pull switch is pulled, it is
mechanically locked so that system power
cannot be brought up again until the Cus­
tomer Engineer has reset this switch.

2030 FETOM (9/1/66) 6-25

Console and Maintenance Features

o

Figure 6-13. Meter Panel

METERING SWITCH

• The metering switch enables one and disables the other use
meter.

• The metering switch is operated by a removable key.

• Two positions of the metering switch are:

1. Normal -- Enable process meter, disable CE meter.

2. CE -- Disable process meter, enable CE meter.

The 2030 console is provided with two
direct-reading meter counters that record
operating time: a customer's meter and a
Customer Engineer's meter. The posit.ion of
a Key switch determines whether the
customer's meter or the CE meter is operat­
ing. The Customer Engineer holds the key
for this switch, and whenever he is per­
forming either scheduled or unscheduled
maintenance in the CPU, he sets the switch
to cause the CE meter to operate. One of
these meters (determined by Key switch
setting) operates whenever:

1. The CPU clock is running and the CPU is
not in the wait state.

6-26 (9/1/66)

2. The metering-in signal is up on an I/O
channel.

3. Selector share cycles (selector hold
la tch) occur.

4. Manual store or display operations are
in prog ress.

The meter, when started is forced to oper­
ate for a minimum of 400 milliseconds_

The system indicator is on whenever
either meter is running_

Appendix A

Type Mod

360
360

360

360

360
360
360
360

1015
1015
1016
1051
1052
1231
1285
1403
1403
1403
1404
1412
1418
1418
1419
1428
1428
1442
1443
1445
1801
1802
1827

30
40

44

50F,G
SOH
501

65
75
1
2

Nl

Nl

2,7
3
Nl
2

1,3
2

1
1,3
2
Nl
Nl
Nl

2067 1,2
2150 •
2167 1 to 6
2250 1
2250 2
2260 1,2
2260 3
2280
2281
2282
2301
2302
2302
2311
2321
2361
2365
2365
2365
2365
2401
2402
2403
2404
2415
2415
2415
25Ql

3
4

1,2
1

1,2
2,3
12
1,2,3
1,?,3
1,2,3
1,2,3
1

2
3

Bl,B2

Description

Inquiry Display Terminal
Inquiry Display Terminal
Control Unit
Control Unit
Printer-Keyboard
Optical Mark Page Reader
Optical Reader
Printer
Printer
Printer
Printer
Magnetic Char Rdr
Optical Char Rdr
Optical Char Rdr
Magnetic Char Rdr
Alphameric Optical Reader
Alphameric Optical Reader
Card Read Punch
Printer
Printer
Processor-Controller

Data Control Unit
Processing Unit
Console
Configuration Unit
Display Unit
Display Unit
Display Station
Display Station
Film Recorder
Film Scanner
Film Recorder Scan
Drum Storage
Disk Storage
Disk Storage
Disk Storage Drive
Data Cell Drive
Core Storage
Processor Storage
Storage
Processor Storage
Processor Storage
Magnetic Tape Unit
Magnetic Tape Unit
Magnetic Tape Unit and Ctrl
Magnetic Tape Unit and Ctrl
Magnetic Tape Unit and Ctrl
Magnetic Tape Unit and Ctrl
Magnetic Tape Unit and Ctrl
Card Reader

BTU/Hr KVA CFM

10,000
7,000

10,000

14,900
18,700

12,000
43,000

900
900

1,600
670
335

3,700
5,000
2~SOO
3,000
3,000
3,800
6,300
8,300
8,300
8,500

10,500
10,500
1,500
3,200
3,200
8,900

2,000
15,700
1,740
8,792
7,200
6,600

477
477

36,500
36,500
36,500
3,800

20,000
28,000
2,000

19,500
24,600
21,840
33,000
34,130
50,268
3,500
7,000
5,500
6,300

10,000
12,500
15,000
2,700

3.8 900
2.5 300

4.0 ,1,600

9.0
10.6
13.8
6.9

12.6

0.28
0.28
0.5
0.2
0.1
1.2
2.0
1.0
1.2
1.2
1.5
2.7
3.8
3.8
3.3
4.6
4.6
0.7
1.1
1.1
5.2

0.69
8.0
0.65
3.5
2.8
2.4

13.3
13.3
13.3

1.5
9.0

12.6
0.75
8.7
9.0
8.0

12.5
12.5
18.5
1.6

2,350
2,990

2,100
3,350

o
o

50
o
o

300
600
310
350
350
280
320
575
575
400
575
575

o
50
50

650

490
2,700

180
500
480
320

1,405
1,405
1,405

320
2,210
2,210

100
850

1,095
1,055
2,150
1,495

2,345
500

3.2 1,000
2.1 1,000
2.4 1,200
3.25 1,250
4.1 1,500
4.9 1,750
0.5 0

APPENDIX A. SYSTEM CHARACTERISTICS

Conn Dimensions (inches)
Type Weight H F S

B
D

E

E

E
E

E

A
A

A

D

C
D

D

C
D

D
A

A

A
E

A

E

B

A
A
A

E

E
E

E
E

D

E
E
E
E
E

E

E
D
D

o
A

1,500
1,700

1,800

4,700
5,350

2,400

375
300
200
195
65

620
850
750
750
825

1,600
2,475
2,650
2,700
2,675
2,750
2,800

575
800
825

1,200

800
2,992

800
583
590
375
45
25

1,900
1,900
1,900

850
4,025
4,425

390
1,950
2,125
2,200
2,560
2,500
3,950

800

60 68 84
60 60 109

67-1/2 102-1/2 72

72-1/2
72-1/2
72-1/2
72-1/2
72-1/2
47
47
29
27
9

44-3/4
60
47-3/4
47-3/4
53-1/2
53-1/2
60-1/4
60-1/4
60-1/4
60-1/4
60-1/4
60-1/4
49
46

46

72

72

48

48

29
29

15 37
26 15
23 19-3/4
43-1/2

71-1/4
28-1/2
28-1/2
57-1/2 29

67-1/8

24

35-3/4
53-1/4
53-1/4

31-3/4
41-1/4
41-1/4
41-1/4
41-1/2
41-1/4
41-1/4

112
112
112
112
112
112
43 24
55-7/8 43
55-7/8 43
57 28

29 28

52-1/4 64 28-3/4

50
50 22 28
16 13-1/4 21
16 13-1/4 21
70 111
70 111
70 111
64 34-1/2 29
68-3/4 85-1/2 33
68-3/4 85-1/2 33
38 30 24
60 68-1/2 50-1/2
70-1/2

72-1/2

60 30
1,600 60 60

20
29
29
29

70
70
70
24

2,000 60 60
2,000 60 60
1,800 60 30
2,300 120 30
2,800

425
180 30
44-1/2 30

2030 FErOH

Service
Clearances (inches)
F R Rt L Notes

42
48

48

36
36
30
o
o

42

36
36
36
36
36
42
42
42
42
42
42
36
36
36
30

30

30

30
o
o

69
69
69
48
60
60
36
30

36
36
42
42
36
36
36
36

18
48
30

6

6

30
30
o

42

48
36
36
36
36
48
48
48
48
48
48
42
36
36
30

30

48

30
o
o

48
48
48
48
60
60
36
30

36
36
42
42
36
36
36
42

60
30
30

36
36
30
36
o

30

42
30
30
42
48
36
36
36
36
36
36
o

48
48
o

o

30

30
o
o

36
36
36
42
60
60
30
34

30
30
30
30
36
36
36
24

(9/1/66)

30 2
72 2

72

4,2
4,2
4,2
4
4,2

30 4,6,11
30 4,6,11
30
o
o 12

36

48
30 3
30 3
42 3
42 3
36 13
36 13
36 13
36 13
36 13
36 13
o

30
30
o

o

30
4

4

4,6
30 6
o 11
o 11

54 4
54 4
54 4
42 7

60 2
60 2
30 7
30

30 7
30 7
30
30
36
36
36

6

2,4
4
5,4
4
4

A-l

Appendix A

Type Mod

2520

2540

2671
2701
2702

2703

2802

2803
2804

B2,B3

2814 1,2

2816 1,2

2820

2821 1,2,4

2821 3,5

2822

2840

2841

2846

2848

2860

2860 2

2860 3

2870

7320

7340 3

7404

7634

7770 3
7772 3

NOTES:

Description

Card Read Punch

Card Read Punch

Paper Tape Reader
Data Adapter Unit
Transmission Ctrl

Transmission Ctrl

Hypertape Ctrl

Tape Ctrl
Tape Ctrl

Switching Unit

Switching Unit
Drum Storage Ctrl

Control Unit

Control Unit

Paper Tape Rdr Ctrl Unit

Display Control

Storage Control

Channel Controller

Display Control

Selector Channel

Selector Channel

Selector Channel

Multiplexor Channel

Drum Storage

Hypertape Drive

Graphic Output Unit

Graphic Control Unit

Audio Response Unit
Audio Response Unit

BTU/Hr KVA CFM

6,350

3,000

1,200
1,800

1,360

2,500
4,000

750

1,500
4,000
7,000

14,000

1,700

4,800

5,500

5,200

3,542

8,200

10,000

11,600

11,600
2,800

12,000

3,000

6,000

1.85
1.2

0.3
2.0

0.6

1.0
1.5

0.15
1.2

1.5
2.4

4.8

2.05

1.4

75
50

120
800

300

500
700

120

280

550
300

600

150

300

1.9 1,000

1.5 900

1.5

3.05 420

3.65 740
4.25 1,060

4.25 1,060

1.1 320

4.0 700

200

2.5 500

1. For airflow, see specifications page for 2302 Disk Storage.

Conn Dimensions (inches)
Type Weight H F S

A

A
A

E
F

E
E

A

A
D

D

E

A

D

D

A

C

B

B
B

B
D

D

C

A

660

1,050

50 43

45-1/4 57-1/2

24

29-1/4

320 40 40 25-1/2
28-3/4 61-1/2 900 60

32

928 60

1,400 60
1,600 60

320 40

500 60

750 60
1,000 60
2,000 60

400 40

550 60

60

68 71

28-3/4 61-1/2

60 29
60 29

40 25-1/2

29 42

28-3/4 61-1/2
32 46

32 93

30 26-1/4

32
32

61-1/2

45-1/2 750

2,000

1,000

1,150

1,450
1,750

1,450

71-1/4 32-1/4 61-1/4

850

1,500

800

540

71 32-1/4 67-3/4

71 32-1/4 67-3/4
71 32-1/4 67-3/4

71 32-1/4 67-3/4
60 30 29

48 29 60

81 50 18

70 37-1/2 31-1/2

70 37-1/2 31-1/2

70 37-1/2 31-1/2

2. This unit is equipped with radio interference control circuitry and requires a good wired earth or building

ground. Total resistance of the ground conductor, measured between the receptacle and the building

grounding point, may not exceed 3 ohms. For proper operation, all components of the system or systems
to which this unit is attached must have the same ground reference. Conduit is not a satisfactory means

of grounding.

3. Powered from 2821.

4. For data, see specifications page for that item.

5. See System/360 specifications page for this data.
6. It is recommended that in the area immediately surrounding this unit provision be made for lowe ring the

lighting level to provide good image resolution.

7. Powered from control unit.

8. Minimum clearance for two 7340 units is 7 inches; clearances should alternate: 7, 22, 7, and 22 inches.

Clearance between 7340 and any other unit or structure is 30 inches.

9. Shipped in two sections, 50-1/8 inches and 35-3/8 inches long.

10. Included in specifications for 2822.

11. Available for remote installation only.

12. Powered from System/360.

13. Shipped in two sections 40 and 72 inches long.

Type

A

B

C

D

E
F

Plug

Russell & Stoll, FS3720

Russell & Stoll, FS3730

Russell & Stoll, FS3750

Russell & Stoll, FS3760

Russell & Stoll, SC7328

Russell & Stoll, jPS1034H

Connector

FS3913

FS3914

FS3933

FS3934
SC7428

jCS1034H

Receptacle

FS3743

FS3744

FS3753

FS3754
SC7324

jRSI034H

Rating

15 amp, 1 phase, 3 wire

15 amp, 3 phase, 4 wire

30 amp, 1 phase, 3 wire

30 amp, 3 phase, 4 wire

60 amp, 3 phase, 4 wire

100 amp, 3 phase, 4 wire

For additional information regarding physical characteristics, refer to IBM System/360
Installation Manual--Physical Planning, form C22-6820.

A-2 (9/1/66)

Service

Clearances(inches)

F R Rt L Notes

48
36

36

36

42 42
30 18

30 36
30 30

42 42
42 42

42 42

30 18

30 30
30 18

30 30

30 30

30

30

30

30

30
30

30

40

46

42
42

42
42

30

30

30

51

51
51

51

40

52

30

36

36
36

18

36
36
36

42 0
42 30

3
10

66 66 4

42 42 2

30 30
30 30

30 0

30 42
30 42 2
48 48

48 48

30 30

30

30

48

66

66
66

66
42

30

30

30

30

30
40

48

66

66
66

66
42

4

7,8

30 7
30

30 4
30 4

Appendix B

The information contained in this section
is intended to aid the CE in understanding
those special circuits that appear in the
2030 ALD's.

These special circuits are non-standard
logic blocks with unique input or output

M2-I VOLTAGE REGULATOR CARDS (U25AH, U25AG)

APPENDIX B. SPECIAL CIRCUITS

configurations that require further expla­
nation.

• Two cards, voltage regulator card 1 and voltage regulator
card 2, are used together to develop a regulated -18 volt
supply from the -30 volt power supply •

• A potentiometer on voltage regulator card 2 provides adjust­
ment of output voltage.

The sense amplifiers for the M2-I storage
require a well-regulated, -18 volt supply
voltage. This voltage is derived from the
-30 volt supply in the 2030 by means of two
voltage regulation cards (Figure B-1). The
output of the cards is -18 volts ±1%
regardless of wide swings in input supply
voltage.

J I SPEC -30 Volt

Input D07X

1

U25A~ 1

4G-AA

L J07X *PWR
Regulated

B09-Dl0 U25AG D07-- -18 Volts
Al

D05-B07
4G-AA

Figure 8-1. M2-1 voltage Regulator

voltage regulator card #2 (U25AG) is the
basic card containing the regulator circuit
and the adjustment potentiometer. For

CCROS DRIVER DECODE (TllEE)

storage units above 16K in size. an addi­
tional card (U25AH) is necessary to carry
the current required for the additional
sense amplifiers. Voltage regulator card
#1 adds two transistors in parallel with
the two controlled transistors on card #2.

The potentiometer on card #2 is part of
a voltage divider that sets a referance
voltage for the base of a control transis­
tor. Changing the potentiometer setting
changes the referance voltage, and thus
changes the current through the control
transistor.

The sense amplifier voltage is set to
-18 volts,± .01 volts accuracy, under con­
trolled conditions at the factory before
shipment. The potentiometer must not be
adjusted in the field unless the card
(U25AG) is replaced. If it is necessary to
verify or set this voltage, a very accurate
meter (such as the westen 901) must be
used. An example of these two cards may be
seen on logic page ZZ502.

• The TilEE block contains eight drive transistors •

• Each drive transistor drives two ROS words.

The TllEEblock is a multiple
input/multiple output logic block contain­
ing eight CCROS driver transistors (Figure
B-2). Eight of the input lines connect to
the bases of the drive transistors and feed
address information to the drive transis­
tors. A ninth address line input connects
to the emitters of all eight transistors to
form a matrix with the other eight address

lines. An additional input line provides
the transistors with a special +12 volt
collector voltage supply.

The eight outputs are tapped from the
eight drive transistor collector load
resistors. Given an address that falls
within a group of eight drive transistors,
one output line activates to provide a

2030 FETOM (9/1/66) A-3

Appendix B

drive pulse to complementary ROS word posi­
tions on a ROS board.

Address
Input

+12 Volt Special
Dri ver S uppl y

-- D08 r-----t>B09--
-- D09 *AR ~B08--

-- D07 ~B07 --
--D04 Tl1EE ~B06--
--D12 A1t:..B05--
--J08 M04--
-- J06 ~B03--
--D11 ~B02--

--D06~

I
----X4C-AA

Decoded Drive Lines
To ROS Board. Each
Line Drives Two Words,
One On Each Side of
the ROS Board.

Figure B-2. CCROS Driver Decode

M2-I Z-CURRENT DRIVER (U61AX)

• This block provides inhibit drive current for one 4K inhibit
winding.

• This block has two standard-level logic inputs.

The inhibit current driver provides inhibit
current for one inhibit winding_ (One
winding goes through 4096 cores.) There
are two logic inputs to the U61AX block;
the remaining inputs provide resistive and
capacitive load characferistics necessary
for the inhibit winding (Figure 3-3).

Store --Bit ----- B03r------,
Use this Segment----- B05 *A--CD

.. f-X ReSIstIve __ XU16AX

Load t--x D2
-30 Volt Supply -----J07X

Z Load {
J06X

-----G07X4B- BE

B12--Z Drive-Current
for One 4K Segment

These non-logic inputs are identified by
the X in the side of the block. One input
provides connection to the special -30 volt
power supply.

Figure B-3. Z-Current Driver

CCROS SENSE AMPLIFIER (S01EG)

• This block provides the first level of amplification for the
CCROS-output voltage-pulse.

• One input is the logic voltage input; the remaining inputs
provide reference voltage and impedance matching.

Non-logic Inputs 1 X
from Impedance and X*AR
Load Matching Ckts. ---- X

---- X507EG

Reference Voltage
Bit Input

I A7
---B09X
--- B10~5D-AG

D09---- Output Bit

This block represents a 5-transistor vol­
tage amplifier that senses the voltage
pulse at the output of a CCROS sense line.
The bit input to the block is the only
logic input. The other inputs are non­
logic inputs, identified by the X in the
side of the block (Figure B-4). A sample
of this block may be seen on logiC page
ED521. Figure B-4. CCROS Sense Amplifier

M2 GATE TRANSISTOR (S32EB)

• These blOcks are used to select one core storage drive 1 ine
and to permit drive current to flow through the selected
line.

A-4 (9/1/66)'

Appendix B

• Similar circuits using the same gate block are used for both
x- and Y-drive lines.

The S32EB gate block serveS as a multiple
AND block by decoding address information.
This address information conditions the
bases and emitters of the gate transistors
which are connected to form a matrix. The
eight plus-level logic inputs condition the
bases of eight NPN gate transistors, while
the minus logic input connects to the
emitters of all eight gate transistors.
Thus the minus input combined with any plus
input selects one line (Figure B-5).

An additional input, through a diode
(S25EE), provides a path for current when a
line is driven from a gate transistor at
the other end of the lines. A similar gate
circuit (S32EC) is used for the auxiliary
storage areas. This gate circuit selects
one of two lines instead of one of eight
lines. A sample of the S32EB gate may be

M2 GATE DECODE (S32AD)

seen on logic page MS411, while the S32EC
may be seen on logic page MS441.

Address
Decode
Inputs

--------D05 u. G08-
--------B05*G ~J07-

--------D11 ~G09-

--------B 11 S32EB ~ J09 - Output--One
--------J04 06~ G11- Line Selected
--------G04 ~ J 11 -
--------J10 ~G12-

--------GW ~J12-

LlA

-D02 S2se~, _ :G13~2A-AF

1A-AA I
Figure B-5. M2 Gate Transistor

• This block provides one level of decode in the M2 storage
unit •

• A non-logic output line provides a clamped resistive load.

This block performs a standard AND function
of the decoded bit inputs (Figure B-6). A
unique non-logic output pin provides a path
to the plus voltage supply through a resis­
tive load. The output voltage swing is
controlled by a diode in the LIM block.

LIM
R

l
D07 S61CD

53 rD07
S6lC!4

6A-AS .

Address Bit -B12 ~KD07 ------' 7A-AT

~~~~e S32AD J06-------------- To Gate Transistors 
49 

-J02 
5K-AN 

Figure 8-6. M2 Gate Decode 

2030 FETOM (9/1/66) A-5 



1400 Address Conversion 4-36 
1400 Address Error Detection 4-39 
1400 Addressing 4-35 
1400 Alternate Track Operation 4-73 
1400 Auxiliary Storage 4-46 
1400 Auxiliary Storage LS 4-46 
1400 Auxiliary Storage Map 4-37 
1400 Auxiliary Storage MPX 4-50 
1400 Card Read 4-64 
1400 Character Configurations 4-33 
1400 CKD Format 4-69 
1400 Compatibility 4-28 
1400 Console Inquiry 4-74 
1400 Console Operation 4-40 
1400 Disk Format 4-68 
1400 Horne Address 4-68 
1400 Hundreds High Conversion 4-52 
1400 Hundreds Low Conversion 4-48 
1400 I-Cycles 4-62 
1400 Indelible Address 4-70 
1400 I/O 4-62 
1400 Magnetic Tape 4-66 
1400 Module Overflow Detection 4-71 
1400 Op Code Conversion 4-39 
1400 PMS 4-59 
1400 Programmed Mode Switches 4-58 
1400 Record Zero 4-69 
1400 Seek Command 4-70 
1400 Select Out 4-63 
1400 Typebar Decode 4-66 

1620 Auxiliary Storage 4-80 
1620 Card Read 4-90 
1620 Compatibility 4-75 
1620 Console 4-91 
1620 Core Storage Maps 4-86 
1620 Diagnose Instructions 4-78 
1620 Digit Locations 4-76 
1620 Disk Format 4-85 
1620 Error High Stops 4-90 
1620 Flag Locations 4-76 
1620 General Register Assignments 4-88 
1620 I-Cycles 4-81 
1620 Mode Switching 4-77 
1620 Move and Translate Routines 4-89 
1620 Op Codes 4-78 
1620 Stop Condition Codes 4-92 
1620 Track Format 4-85 
1620 W-3 Bit 4-77 

16K Storage (M2-I) 2-111 
2030 Console 6-1 
32K Storage (M2-I) 2-113 
64K Addressing (M2) 2-82 
64K Storage (M2-I) 2-114 
8K Storage (M2-I) 2-105 
8K Storage unit (M2) 2-68 

Address Compare Switch 6-23 
Address Conversion (1400) 4-36 
Address Decode (Storage Protect 4-10 
Address Error Detection (1400) 4-39 

Address Register (M2) 2-68 
Address Table, ROS 2-23 
Addressing (1400) 4-35 
Addressing, Core Storage 2-63 
Addressing, Main Storage 1-43 
Addressing, ROS 2-19 
Add, Fixed Point 1-14 
Allow Low Priority 3-41 
Alternate Decode 2-37 
Alternate Track Operation (1400) 
ALU 2-52, 1-3 
ALU Check 2-55 
ALU Display 6-11 
Any Priority Pulse 
AOI Latch 2-4 
Arithmetic Operations 
ASCII 1-37 
ASCII Latch 2-44 

3-41 

1-13 

1-5 

INDEX 

4-73 

Autotest 1-79 
Auxiliary Storage 
Auxiliary Storage 
Auxiliary Storage 
Auxiliary Storage 
Auxiliary Storage 
Auxiliary Storage 
Auxiliary Storage 
Auxiliary Storage 
Auxiliary Storage 
Auxiliary Storage 
Auxiliary Storage 
Auxiliary Storage 
Auxiliary Storage 
Auxiliary Storage 

(1400) 4-46 
(1620) 4-80 
( M2 - I ) 2 -103 
for 16K (M2-I) 
for 16K (M2) 
for 32K (M2-I) 
for 32K (M2) 
for 8 K (M2 - I ) 
for 8K (M2) 

2-112 
2-79 

2-113 
2-82 

2-109 
2-72 

4-46 LS (1400) 
MAP 3-10 
MAP (1400) 
MPX (1400) 

Base Register 1-45 
Basic Programming 1-41 
Binary Add 3-4, 3-11 
Binary Numbers 1-26 
B- and A- Register Display 

4-37 
4-50 

6-11 
Board, ROS 2-16 
Boundary Restrictions 
Branch-On Condition 

1-3'6 
3-17, 3-19 

Branching 2-35 
Break-In Cycles 
Burst Mode 1-6 
Busses 1-9 
Byte 1-35 

3-3 

Card Read (1400) 4-64 
Card Read (1620) 4-90 
Carry 2-53 
CAS 2-5 
CCROS 2-5 
CF Field 2-33 
Channel Number One Display 6-6 
Channels 1-2, 1-6 
Character Configurations (1400) 4-33 
Characteristics 1-21 
Check Control Switch 6-25 
Check Reset Key 6-19 
Checks 3-37, 6-8 
CID 4-30 

2030 FETOM (9/1/6~) X-I 



C-Counter 4-25 
CKD Format (1400) 4-69 
CLD 2-46, 2-5 
Clear-UCW 6-15 
Clock 2-1 
Clock (Storage Protect) 4-8 
Clock Control Addressing (M2) 2-82 
Coincident Current 2-63 
Command 6-7 
Compatibility (1400) 4-28 

Address Conversion 4-36 
Address Error Detection 4-39 
Addressing 4-35 
Alternate Track Operation 4-73 
Auxiliary Storage 4-46 
Auxiliary Storage LS 4-46 
Auxiliary Storage Map 4-37 
Auxiliary Storage MPX 4-50 
Card Read 4-64 
Character Configurations 4-33 
CKD Format 4-69 
Console Inquiry 4-74 
Console Operation 4-40 
Disk Format 4-68 
Home Address 4-68 
Hundreds High Conversion 4-52 
Hundreds Low Conversion 4-48 
I-Cycles 4-62 
Indelible Address 4-70 
I/O 4-62 
Magnetic Tape 4-66 
Module Overflow Detection 4-71 
Op Code Conversion 4-39 
PMS 4-59 
Programmed Mode Switches 4-58 
Record Zero 4-69 
Seek Command 4-70 
Select Out 4-63 
Typebar Decode 4-66 

Compatibility (1620) 4-75 
Auxiliary Storage 4-80 
Card Read 4-90 
Console 4-91 
Core Storage Maps 4-86 
Diagnose Instructions 4-78 
Digit Locations 4-76 
Disk Format 4-85 
Error High Stops 4-90 
Flag Locations 4-76 
General Register Assignments 4-88 
I-Cycles 4-81 
Mode Switching 4-77 
Move and Translate Routines 4-89 
Op Codes 4-78 
Stop Condition Codes 4-92 
Track Format 4-85 
W-3 Bit 4-77 

Compatibility Differences 4-31 
Compatibility Initialization 4-30 
Condition Code 3-17, 1-51 
Condition Code Branching 1-52 
Condition Register 3-15 
Console (1620) 4-91 
Console and Maintenance Features 6-1 
Console Inquiry (1400) 4-74 
Console Operation (1400) 4-40 

X-2 (9/1/66) 

Control Field Mnemonics 2-38 
Control Field Parity 2-37 
Control Fields 2-30 
Control Points 2-8 
Control Program 1-76, 1-55 
Control Registers 2-25 
Control Unit 1-2 
Conversion, Binary-to-Hexadecimal 1-31 
Conversion, Decimal-to-Binary 1-29 
Conversion, Hexadecimal-to-Binary 1-31 
Conversion, Hexadecimal-to-Decimal 1-32 
Conversion, Decimal-to-Hexadecimal 1-33 
Conversion, Binary-to-Decimal 1-28 
Core Planes (M2) 2-70 
Core Array (M2-I) 2-92 
Core Image. Library 1-79 
Core Read (M2) 2-67 
Core Storage 1-2 
Core Storage Addressing 
Core Storage MAPS (1620) 
Core Storage (M2) 2~57 

2-63 
4-86 

64K Addressing 2-82 
8K Storage Unit 2-68 
Address Register 2-68 
Auxiliary Storage for 8K 
Auxiliary Storage for 16K 
Auxiliary Storage for 32K 
Clock Control Addressing 
Core Planes 2-70 
Core Read 2-67 
Data Ready 2-84 
Delay Lines 2-74 
Early Local Storage 
Inhibit 2-70 
Inhibit Control 
Interface 2-83 

2-90 

Memory Clock 2-76 
Memory/CPU Interface 
Phase Reversal 2-78 
Phase Reversal, 32K 
Read Call 2-84 
Read Echo 2-85 
Sense 2-66 
Storage 2-57 

2-84 

2-83 

2-80 

Storage Address Register 
Storage Clock 2-74 
Storage Read 2-85 
Storage Write 2-87 
Write Call 2-84 
Write Echo 2-85 

Core Storage (M2-I) 
16K Storage 2-111 
32K Storage 2-113 
64K Storage 2-114 

2-103 
for 8K 
for 16K 
for 32K 

8K Storage 2-105 
Auxiliary Storage 
Auxiliary Storage 
Auxiliary Storage 
Auxiliary Storage 
Core Array 2-92 
Current Source 2-98 
Data Flow 2-91 
Data Ready 2-116 
Gate 2-100 
Inhibit 2-101 
Interface 2-115 

2-72 
2-79 
2-82 

2-82 

2-68 

2-109 
2-112 

2-113 



Memory 2-91 
Memory/CPU Interface 2-115 
Read Call 2-116 
Read Echo 2-116 
Read Timing 2-97 
Sense 2-101 
Storage Clock 2-96 
Storage Unit 2-91 
Temperature Compensation 2-103 
Write Call 2-116 
Write Echo 2-116 
Write Timing 2-97 

Core Theory 2-62 
Count Register Display 6-6 
Counter Full 4-26 
CPU Checks 6-12 
CPU Data Flow 1-9 
CPU Errors 3-37 
CPU Status 6-12 
Current PSW 1-49 
Current Source (M2-I) 2-98 

Data Flow (Storage Protect) 4-13 
Data Flow (M2-I) 2-91 
Data Flow, ALU 2-52 
Data Flow, CPU 1-9 
Data Flow, ROS 2-18 
Data Ready (M2) 2-84 
Data Ready (M2-I) 2-116 
Data Register 6-7 
Dead Cycle 3-3 
Decimal Correcter 1-17, 2-53 
Delay Lines (M2) 2-74 
Delayed Stop 6-24 
Diagnose Instructions (1620) 4-78 
Diagnostics 6-25 
Digit Locations (1620) 4-76 
Disable 6-25 
Disk Compatibility 4-68 
Disk Format (1400) 4-68 
Disk Format (1620) 4-85 
Displacement 1-45 
Display 6-21 
Display Key 6-22 
Display Store Select 6-16 
Double Word 1-36 
Driver Cards, ROS 2-21 

Early Local Storage (M2) 2-84 
Early ROAR Stop 6-24 
EBCDI Code 1-37 
Effective Address 1-46 
Emergency Power-Off 5-5, 5-7 
Emergency Pull Switch 6-25 
Enable CE Meter 6-26 
Enable Process Meter 6-26 
Entry Block 2-49 
EPO 5-5, 5-7 
EPO Switch 6-1 
Error-High Stops (1620) 4-90 
Errors 3-37 
Exit Block 2-49 

Features 4-1 
Fixed-Point Addition 1-14 
Fixed-Point Arithmetic 1-13 
Fixed-Point Numbers 1-14 

Fixed-Point Numeric Format 1-37 
Fixed-Point Subtraction 1-15 
Flag Locations (1620) 4-76 
Flags 6-7 
Floating Point 3-35 
Floating-Point Add 1-23 
Floating-Point Arithmetic 1-21 
Floating-Point Subtract 1-24 
Forced Microprogrammed Entries 3-41 
Forced Write 6-14 
Format 1-35 
Functional Control 2-32 
Functional Units 2-1 
Functional Units (Storage Protection) 4-5 

Gate (M2-I) 2-100 
General Register Assignments (1620) 4-88 
General Registers 1-45 
G-Register 1-11 

Half Word 1-35 
Half-Current 2-63 
Hexadecimal 1-29 
Home Address (1400) 4-68 
Hundreds High Conversion (1400) 4-52 
Hundreds Low Conversion (1400) 4-48 

IC Restore 3-31 
I-Cycle Start 3-1 
I-Cycle Start, Index/Pack 3-20 
I-Cycles (1400) 4-62 
I-Cycles (1620) 4-81 
Indelible Address (1400) 4-70 
Indexing 3-23 
Indicating ROAR 2-28 
Indicators On OCP 6-13 
Information Format 1-35 
Inhibit (M2) 2-70 
Inhibit (M2-I) 2-101 
Inhibit CF Stop 6-24 
Inhibit Control (M2) 2-90 
Inhibit Winding (Storage Protect) 4-7 
Insert Storage Key 4-5, 1-74 
Instruction Branching 1-50 
Instruction Field 1-46 
Instruction Format 1-41 
Instruction Length 1-41 
Instruction Length Field 1-57 
Instruction Read In 3-1 
Instruction Sequencing 1-49 
Instructio~ Step 6-23 
Interface 1-7 
Interface (M2) 2-83 
Interface (M2-I) 2-115 
Interrupt 1-53 
Interrupt Key 6-15 
Interrupt Key (OCP) 6-15 
Interruption Code Field 1-58 
Interval Timer 4-25 
Interval Timer Switch 6-19 
Introduction 1-1 
IPL 1-76 
I/O (1400) 4-62 
I/O Interface 1-7 

Job Control 1-77 

2030 FETOM (9/1/66) X-3 



Key 6-7 

Lamp Test Key 6-20 
Language Translators 1-77 
Library Maintenance Program 1-80 
Linkage Editor 1-79 
Load Key 6-15 
Load Key(OCP) 6-15 
Load PSW 1-61 
Load System Program 1-80 
Long Precision 1-21 
Lower Indicator Panel 6-9 

ALU Display 6-11 
B- and A-Register Display 6-11 
Channel Number Two Display 6-9 
CPU Checks 6-12 
CPU Status 6-12 
Main Storage Address Register and Main 
Stor and Aux Stor Indicators 6-10 

Multiplexor Channel Tags 6-9 
MPX Channel Bus-Out Register 6-10 

LP Indicator 6-4 

M2 64K Addressing 2-82 
M2 8K Storage Unit 2-68 
M2 Address Register 2-68 
M2 Auxiliary Storage for 8K 
M2 Auxiliary Storage for 16K 
M2 Auxiliary Storage for 32K 
M2 Clock Control Addressing 
M2 Core Planes 2-70 
M2 Core Read 2-67 
M2 Data Ready 2-84 
M2 Delay Lines 2-74 
M2 Early Local Storage 
M2 Inhibit 2-70 
M2 Inhibit Control 
M2 Interface 2-83 

2-90 

M2 Memory Clock 2-76 
M2 Memory/CPU Interface 
M2 Phase Reversal 2-78 
M2 Phase Reversal, 32K 
M2 Read Call 2-84 
M2 Read Echo 2-85 
M2 Sense 2-66 
M2 Storage 2-57 

2-84 

2-83 

2-80 

M2 Storage Address Register 
M2 Storage Clock 2-74 
M2 Storage Read 2-85 
M2 Storage Write 2-87 
M2 Write Call 2-84 
M2 Write Echo 2-85 
M2-I 16K Storage 2-111 
M2-I 32K Storage 2-113 
M2-I·64K Storage 2-114 

2-103 
for 8K 
for 16K 
for 32K 

M2-I 8K Storage 2-105 
M2-I Auxiliary Storage 
M2-I Auxiliary Storage 
M2-I Auxiliary Storage 
M2-I Auxiliary Storage 
M2-I Core Array 2-92 
M2-I Current Source 2-98 
M2-I Data Flow 2-91 
M2-I Data Ready 2-116 
M2-I Gate 2-100 
M2-I Inhibit 2-101 
M2-I Interface 2-115 

X-4 (9/1/66) 

2-72 
2-79 
2-82 

2-82 

2-68 

2-109 
2-112 
2-113 

M2-I Memory 2-91 
M2-I Memory/CPU Interface 
M2-I Read Call 2-116 
M2-I Read Echo 2-116 

2-115 

M2-I Read Timing 2-97 
M2-I Sense 2-101 
M2-I Storage Clock 2-96 
M2-I Storage Unit 2-91 
M2-I Temperature Compensation 
M2-I Write Call 2-116 
M2-I Write Echo 2-116 
M2-I Write Timing 2-97 
Machine Check Handling 3-37 
Machine Check Mask 1-63 
Machine Check Register 3-37 
Machine Registers 1-11 
Macro Library 1-80 
Magnetic Core Theory 2-62 
Magnetic Tape (1400) 4-66 

2-103 

Main and Auxiliary Storage Control 2-33 
Main Storage Address Register and Main 
Stor and Aux Stor Indicators 6-10 

Masked Interruptions 1-63 
MC Register 3-37 
Memory (M2-I) 2-91 
Memory Clock (M2) 2-76 
Memory Wrap Request Latch 
Memory/CPU Interface (M2) 
Memory/CPU Interface (M2-I) 
Meter Panel 6-25 
Metering Switch 6-26 
Microprogram 2-30, 2-7 
Microprogram Break In 3-3 
Microprogram Entries, Forced 
Microprogram Sample 2-49 
Microprogram, Machine Check 
Mid-Pac Power-Off Sequence 
Mid-Pac Power-On Sequence 
M-Register 1-11 
Mnemonics 2-40 

3-41 
2-83 

2-115 

3-41 

3-40 
5-7 

5-7 

Mode Switching (1620) 4-77 
Module Overflow Detection (1400) 
Modules, ROS 2-16 

4-71 

Move and Translate Routines (1620) 
MPX Channel Bus-Out Register 6-10 
MPX ROS Latch 3-4 
Multiplex Mode 1-6 
Mu1tip1exoF Channel 1-6 

N-Register 1-11 
Numbering Systems 1-25 

OCP Interrupt Key 6-15 
OCP Load Key 6-15 
Op Code 1-42 
Op Code Conversion (1400) 4-39 
Op Codes 3-9 
Op Codes (1620) 4-78 
Oscillator 2-1 

4-89 

Overtemperature Sense 5-5, 5-7 
Overvo1tage or Overcurrent Sense 5-5, 5-7 

Pack 3-28 
Pack and Unpack 1-40 
Pack With Indexing 3-20 
Packed Decimal Arithmetic 1-16 
Packed Decimal Complement Add 1-19 



Packed Decimal Format 1-40 
Packed Decimal True Add 1-17 
Parity Check Timing 3-43 
PH Latch 2-3 
Phase Reversal (M2) 2-78 
Phase Reversal, 32K (M2) 2-80 
PMS 4-28 
PMS (1400) 4-59 
Power Distribution 5-6 
Power-Off Key 6-14 
Power-Off Sequence (Mid-Pac) 5-7 
Power-Off Sequence (Stepper Switch) 5-5 
Power-On Key 6-14 
Power-On Sequence (Mid-Pac) 5-7 
Power-On Sequence (Stepper Switch) 5-1 
Principles of Operation 3-1 
Priority Pulse 3-39 
Priority Stack Latches 3-43 
Privileged Instructions 1-67 
Problem State Bit 1-67 
Program Loader 1-77 
Program Mask 1-63 
Program Mode 1-54 
Programmed Mode Switch 4-28 
Programmed Mode Switches (1400) 4-58 
Programmed Status Word 1-49 
Programming Systems 1-74 
Protection Exception 4-3, 4-18, 4-19 
Protection Key 4-1, 4-3, 4-17 
Protection Stack 4-1 
PSW 1-49 
Pushbutton Controls on OCP 6-14 

Interrupt Key 6-14 
Load Key 6-14 
Power-Off Key 6-14 
Power-On Key 6-14 

Rate Switch 6-23 
Read Call (M2) 2-84 
Read Call (M2-I) 2-116 
Read Echo (M2) 2-85 
Read Echo (M2-I) 2-116 
Read Only Storage 2-4 
Read Timing (M2-I) 2-97 
Record Zero (1400) 4-69 
Register Assignment 1-11 
Registers 2-3 
Re1ocatab1e Library 1-80 
Restart 6-25 
R-Register 1-11 
ROAR 2-27 
ROAR Reset 6-17 
ROAR Restart 6-24 
ROAR Restore Buffer Latch 3-4 
ROAR Restore Latch 3-4 
ROAR Stop 6-23 
ROAR Sync 6-23 
ROS 2-4, 1-3 
ROS Addressing 2-19 
ROS Card 2-15 
ROS Control Switch 6-24 
ROS Controls 2-19 
ROS Display 6-4 
ROS Document 2-7, 2-15 
ROS Module 2-16 
ROS Scan 6-24 
ROS Sensing 2-24 

ROS Timings 2-26, 3-1 
ROS-to-Memory Timings 3-2 
ROS Word 2-12 
ROS Word Numbering 2-30 
Rotary Control Test Switches 6-23 
Rotary Switches 6-15 
RR Instruction 1-41 
RS Instruction 1-41 
RX Instruction 1-41 

SA Register 4-2 
SAL Control 2-9 
SAL Gate 2-11 
SAL Selections 2-11 
SAR Delayed Stop 6-24 
SAR Restart 6-24 
SAR Stop 6-24 
Second Error Stop Latch 3-41 
Seek Command (1400) 4-70 
Select Out (1400) 4-63 
Selector Channel 1-6, 1-8 
Sense (M2) 2-66 
Sense (M2-I) 2-101 
Sense Amp (Storage Protect) 4-10 
Sense Pads 2-13 
Sense Winding (Storage Protect) 4-7 
Set Condition Register 3-15 
Set Ie Key 6-18 
Set Program Mask 1-69 
Set Storage Key 4-5, 4-71 
Set System Mask 1-68 
Shared Sub-Channels 1-7 
Shift 3-32 
Shift Example 3-33 
Short Precision 1-21 
SI Instruction 1-41 
Single Cycle 6-23 
Sort/Merge 1-78 
Source Register 1-11 
Speed 1-4 
SS Instruction 1-41 
Stack Address Register 4-9 
Stack Latches 3-43 
Start Key 6-18 
Status Bits 1-66 
Status Set 2-36 
Stepper Switch Power-Off Sequence 5-5 
Stepper Switch Power-On Sequence 5-1 
Stop 6-25, 2-45 
Stop Condition Codes (1620) 4-92 
Stop Key 6-19 
Storage Address Register (M2) 2-68 
Storage Clock (M2) 2-74 
Storage Clock (M2-I) 2-96 
Storage Control Fields 2-34 
Storage Key 4-1 
Storage Key 4-16 
Storage Protect 

Address Decode 4-10 
Clock 4-8 
Data Flow 4-13 
Inhibit Winding 4-7 
Sense Amp 4-10 
Sense Winding 4-7 

Storage Protection 4-1, 1-70 
Storage Protection Array 4-6 
Storage Protection Functional Units 4-5 

2030 FETOM (9/1/66) X-5 



Storage Protection Theory of Operation 4-13 
Storage Read (M2) 2-85 
Storage Size 1-4 
Storage Unit (M2-I) 2-91 
Storage Write (M2) 2-87 
Store Key 6-20 
Sub-Channels 1-7 
Subtract Fixed Point 1-15 
Supervisor 1-53 
Supervisor Call 1-62 
Switch A 6-16 
Switch E 6-16 
System Clock 2-1 
System Mask 1-63 
System Reset Key 6-17 

Tags 6-8 
Temperature Compensation (M2-I) 2-103 
Theory of Operation (Storage 
Protection) 4-13 

Timer Update 4-26 
Track Format (1620) 4-85 
Two-Wire Addressing 2-62 
Typebar Decode (1400) 4-66 

Upper Indicator Panel 6-4 
Channel Number One Display 6-6 
Command 6-7 
Count Register Display 6-6 
Data Register 6-7 
Key 6-7 
LP Indicator 6-4 
ROS Display 6-4 
WX Indicator 6-5 

Utility Program 1-78 

W-3 Bit (1620) 
Word 1-35 
Wrap 2-43 

4-77 

2-84 
2-116 

2-85 
2-116 

2-97 

Write Call (M2) 
Write Call (M2-I) 
Write Echo (M2) 
Write Echo (M2-I) 
Write Timing (M2-I) 
WX Indicator 6-5 

Zone Format 1-37 
Zoned Decimal 1-40 

X-6 (9/1/66) 



CD 
u 

5 c:: >- e at ~ 
D c:: at CD 
... CD ~ -1D_.ca &I 
>- c· ... >-
rJ .; ....; Ul 

X 
-----------~~----------~ 

Y24-3360-1 

International Business Machines Corporation 

Field Engineering Division 

112 East Post Road, White Plains, N. Y. 10601 


	001
	002
	003
	004
	1-01
	1-02
	1-03
	1-04
	1-05
	1-06
	1-07
	1-08
	1-09
	1-10
	1-11
	1-12
	1-13
	1-14
	1-15
	1-16
	1-17
	1-18
	1-19
	1-20
	1-21
	1-22
	1-23
	1-24
	1-25
	1-26
	1-27
	1-28
	1-29
	1-30
	1-31
	1-32
	1-33
	1-34
	1-35
	1-36
	1-37
	1-38
	1-39
	1-40
	1-41
	1-42
	1-43
	1-44
	1-45
	1-46
	1-47
	1-48
	1-49
	1-50
	1-51
	1-52
	1-53
	1-54
	1-55
	1-56
	1-57
	1-58
	1-59
	1-60
	1-61
	1-62
	1-63
	1-64
	1-65
	1-66
	1-67
	1-68
	1-69
	1-70
	1-71
	1-72
	1-73
	1-74
	1-75
	1-76
	1-77
	1-78
	1-79
	1-80
	2-001
	2-002
	2-003
	2-004
	2-005
	2-006
	2-007
	2-008
	2-009
	2-010
	2-011
	2-012
	2-013
	2-014
	2-015
	2-016
	2-017
	2-018
	2-019
	2-020
	2-021
	2-022
	2-023
	2-024
	2-025
	2-026
	2-027
	2-028
	2-029
	2-030
	2-031
	2-032
	2-033
	2-034
	2-035
	2-036
	2-037
	2-038
	2-039
	2-040
	2-041
	2-042
	2-043
	2-044
	2-045
	2-046
	2-047
	2-048
	2-049
	2-050
	2-051
	2-052
	2-053
	2-054
	2-055
	2-056
	2-057
	2-058
	2-059
	2-060
	2-061
	2-062
	2-063
	2-064
	2-065
	2-066
	2-067
	2-068
	2-069
	2-070
	2-071
	2-072
	2-073
	2-074
	2-075
	2-076
	2-077
	2-078
	2-079
	2-080
	2-081
	2-082
	2-083
	2-084
	2-085
	2-086
	2-087
	2-088
	2-089
	2-090
	2-091
	2-092
	2-093
	2-094
	2-095
	2-096
	2-097
	2-098
	2-099
	2-100
	2-101
	2-102
	2-103
	2-104
	2-105
	2-106
	2-107
	2-108
	2-109
	2-110
	2-111
	2-112
	2-113
	2-114
	2-115
	2-116
	3-01
	3-02
	3-03
	3-04
	3-05
	3-06
	3-07
	3-08
	3-09
	3-10
	3-11
	3-12
	3-13
	3-14
	3-15
	3-16
	3-17
	3-18
	3-19
	3-20
	3-21
	3-22
	3-23
	3-24
	3-25
	3-26
	3-27
	3-28
	3-29
	3-30
	3-31
	3-32
	3-33
	3-34
	3-35
	3-36
	3-37
	3-38
	3-39
	3-40
	3-41
	3-42
	3-43
	3-44
	4-01
	4-02
	4-03
	4-04
	4-05
	4-06
	4-07
	4-08
	4-09
	4-10
	4-11
	4-12
	4-13
	4-14
	4-15
	4-16
	4-17
	4-18
	4-19
	4-20
	4-21
	4-22
	4-23
	4-24
	4-25
	4-26
	4-27
	4-28
	4-29
	4-30
	4-31
	4-32
	4-33
	4-34
	4-35
	4-36
	4-37
	4-38
	4-39
	4-40
	4-41
	4-42
	4-43
	4-44
	4-45
	4-46
	4-47
	4-48
	4-49
	4-50
	4-51
	4-52
	4-53
	4-54
	4-55
	4-56
	4-57
	4-58
	4-59
	4-60
	4-61
	4-62
	4-63
	4-64
	4-65
	4-66
	4-67
	4-68
	4-69
	4-70
	4-71
	4-72
	4-73
	4-74
	4-75
	4-76
	4-77
	4-78
	4-79
	4-80
	4-81
	4-82
	4-83
	4-84
	4-85
	4-86
	4-87
	4-88
	4-89
	4-90
	4-91
	4-92
	5-01
	5-02
	5-03
	5-04
	5-05
	5-06
	5-07
	5-08
	5-09
	6-01
	6-02
	6-03
	6-04
	6-05
	6-06
	6-07
	6-08
	6-09
	6-10
	6-11
	6-12
	6-13
	6-14
	6-15
	6-16
	6-17
	6-18
	6-19
	6-20
	6-21
	6-22
	6-23
	6-24
	6-25
	6-26
	A-01
	A-02
	A-03
	A-04
	A-05
	X-01
	X-02
	X-03
	X-04
	X-05
	X-06
	xBack

